1
|
Zhou Z, Tian E, Wang J, Guo Z, Chen J, Guo J, Shi S, Xu W, Yu X, Qiao C, Zhang Y, Lu Y, Zhang S. Cognitive impairments and neurobiological changes induced by unilateral vestibular dysfunction in mice. Neurobiol Dis 2024; 202:106719. [PMID: 39481811 DOI: 10.1016/j.nbd.2024.106719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024] Open
Abstract
The vestibular system is essential for balance and spatial orientation, and its dysfunction can lead to cognitive deficits. This study investigates the effects of unilateral vestibular dysfunction (UVL) on cognitive function and the underlying neurobiological changes in mice. We established a unilateral labyrinthectomy (UL) model in mice and assessed cognitive function at 28 days post-surgery using a comprehensive battery of behavioral tests. We found significant impairments in spatial reference memory, working memory, and synaptic plasticity in UL mice, which persisted despite compensation for vestibular and postural motor deficits. Immunofluorescence staining revealed enhanced activation of c-Fos in the hippocampal dentate gyrus (DG) at various time points post-UL, suggesting a role of the hippocampus in cognitive deficits following UVL. RNA sequencing of the DG identified differentially expressed genes (DEGs) and altered pathways related to cognitive function, synaptic plasticity, and neuronal activation. Quantitative real-time PCR (qRT-PCR) validated the expression changes of selected genes. Our findings indicate that UVL leads to persistent cognitive impairments in mice, associated with altered neuronal activation and gene expression in the hippocampus. This study offers valuable insights into the neurobiological mechanisms underlying cognitive deficits associated with UVL. Moreover, it underscores the importance of early cognitive screening in patients with vestibular diseases, as this approach is instrumental in comprehensive condition assessment, precise diagnosis, targeted treatment, and effective rehabilitation.
Collapse
Affiliation(s)
- Zhanghong Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - E Tian
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhaoqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyu Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyu Shi
- Department of Rehabilitation, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wandi Xu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xixi Yu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caijuan Qiao
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Yuejin Zhang
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China; School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Yisheng Lu
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China.
| | - Sulin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Fitze DC, Ertl M, Radlinger L, Mast FW. Vestibular perceptual learning improves self-motion perception, posture, and gait in older adults. Commun Biol 2024; 7:1087. [PMID: 39237668 PMCID: PMC11377758 DOI: 10.1038/s42003-024-06802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
Vestibular motion perception declines with age, increasing the risk of falling substantially. We performed a two-week perceptual learning intervention using a self-motion direction discrimination task (2800 training trials per person) on a 6 degrees of freedom motion platform in healthy older adults (n = 40, aged 70-88 yr). Linear inter-aural and angular roll tilt vestibular thresholds improved with training (95% credible interval for pre/post difference), suggesting altered sensitivity post-training. Moreover, improved perceptual abilities transfer to actual posture (reduced sway) and gait parameters. Passive self-motion discrimination training provides a new and promising way to counteract age-related sensory decline. It can reduce the risk of falling, and thereby maintain individual autonomy and quality of life.
Collapse
Affiliation(s)
- Daniel C Fitze
- Department of Psychology, University of Bern, Fabrikstrasse 8, Bern, 3012, Switzerland.
| | - Matthias Ertl
- Department of Psychology, University of Bern, Fabrikstrasse 8, Bern, 3012, Switzerland
- Clinic for Neurology and Neurorehabilitation, Luzerner Kantonsspital, University teaching and research hospital, and University of Lucerne, Spitalstrasse 16, Luzern, 6000, Switzerland
- Faculty of Behavioural Sciences and Psychology, University of Lucerne, Frohburgstrasse 3, Luzern, 6002, Switzerland
| | - Lorenz Radlinger
- Department of Health Professions, Bern University of Applied Sciences, Stadtbachstrasse 64, Bern, 3012, Switzerland
| | - Fred W Mast
- Department of Psychology, University of Bern, Fabrikstrasse 8, Bern, 3012, Switzerland
| |
Collapse
|
3
|
Aedo-Sanchez C, Riquelme-Contreras P, Henríquez F, Aguilar-Vidal E. Vestibular dysfunction and its association with cognitive impairment and dementia. Front Neurosci 2024; 18:1304810. [PMID: 38601091 PMCID: PMC11004345 DOI: 10.3389/fnins.2024.1304810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/09/2024] [Indexed: 04/12/2024] Open
Abstract
The vestibular system plays an important role in maintaining balance and posture. It also contributes to vertical perception, body awareness and spatial navigation. In addition to its sensory function, the vestibular system has direct connections to key areas responsible for higher cognitive functions, such as the prefrontal cortex, insula and hippocampus. Several studies have reported that vestibular dysfunction, in particular bilateral vestibulopathy, is associated with an increased risk of cognitive impairment and the development of dementias such as Alzheimer's disease. However, it is still controversial whether there is a causal relationship between vestibular damage and cognitive dysfunction. In this mini-review, we will explore the relationship between the vestibular system, cognitive dysfunction and dementia, hypotheses about the hypothesis and causes that may explain this phenomenon and also some potential confounders that may also lead to cognitive impairment. We will also review multimodal neuroimaging approaches that have investigated structural and functional effects on the cortico-vestibular network and finally, describe some approaches to the management of patients with vestibular damage who have shown some cognitive impairment.
Collapse
Affiliation(s)
- Cristian Aedo-Sanchez
- Department of Medical Technology, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Patricio Riquelme-Contreras
- Department of Medical Technology, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Memory and Neuropsychiatric Center (CMYN), Department of Neurology, Hospital del Salvador and Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Neuropsychology and Clinical Neuroscience (LANNEC), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Fernando Henríquez
- Laboratory of Neuropsychology and Clinical Neuroscience (LANNEC), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
- Laboratory for Cognitive and Evolutionary Neuroscience (LaNCE), Department of Psychiatry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enzo Aguilar-Vidal
- Department of Medical Technology, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|