1
|
Roggenbuck JJ, Boucraut J, Delmont E, Conrad K, Roggenbuck D. Diagnostic insights into chronic-inflammatory demyelinating polyneuropathies. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:337. [PMID: 30306076 DOI: 10.21037/atm.2018.07.34] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic inflammatory demyelinating polyneuropathy (CIDP) is a rare immune-mediated neuropathy with demyelination of nerve fibers as leading morphological feature. The course of disease can be chronic progressive or remitting relapsing. Whereas for acute immune-mediated neuropathies several serological markers have been identified and used successfully in clinical routine, the serological diagnosis of chronic variants such as CIDP has not yet been evolved satisfactory. The typical CIDP and its various atypical variants are characterized by a certain diversity of clinical phenotype and response to treatment. Thus, diagnostic markers could aid in the differential diagnosis of CIDP variants and stratification of patients for a better treatment response. Most patients respond well to a causal therapy including steroids, intravenous immunoglobulins and plasmapheresis. Apart from electrophysiological and morphological markers, several autoantibodies have been reported as candidate markers for CIDP, including antibodies against glycolipids or paranodal/nodal molecules. The present review provides a summary of the progress in autoantibody testing in CIDP and its possible implication on the stratification of the CIDP variants and treatment response.
Collapse
Affiliation(s)
| | - Joseph Boucraut
- Institut de Neurosciences de la Timone, Medicine Faculty, Aix Marseille University, Marseille, France.,Immunology laboratory, Conception Hospital, AP-HM, Marseille, France
| | - Emilien Delmont
- Referral Center for Neuromuscular Diseases and ALS, La Timone Hospital, AP-HM, Marseille, France
| | - Karsten Conrad
- Institute of Immunology, Technical University Dresden, Dresden, Germany
| | - Dirk Roggenbuck
- GA Generic Assays GmbH, Dahlewitz/Berlin, Germany.,Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology, Senftenberg, Germany
| |
Collapse
|
2
|
Singh MV, Weber EA, Singh VB, Stirpe NE, Maggirwar SB. Preventive and therapeutic challenges in combating Zika virus infection: are we getting any closer? J Neurovirol 2017; 23:347-357. [PMID: 28116673 PMCID: PMC5440476 DOI: 10.1007/s13365-017-0513-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/10/2017] [Indexed: 01/26/2023]
Abstract
The neuroteratogenic nature of Zika Virus (ZIKV) infection has converted what would have been a tropical disease into a global threat. Zika is transmitted vertically via infected placental cells especially in the first and second trimesters. In the developing central nervous system (CNS), ZIKV can infect and induce apoptosis of neural progenitor cells subsequently causing microcephaly as well as other neuronal complications in infants. Its ability to infect multiple cell types (placental, dermal, and neural) and increased environmental stability as compared to other flaviviruses (FVs) has broadened the transmission routes for ZIKV infection from vector-mediated to transmitted via body fluids. To further complicate the matters, it is genetically similar (about 40%) with the four serotypes of dengue virus (DENV), so much so that it can almost be called a fifth DENV serotype. This homology poses the risk of causing cross-reactive immune responses and subsequent antibody-dependent enhancement (ADE) of infection in case of secondary infections or for immunized individuals. All of these factors complicate the development of a single preventive vaccine candidate or a pharmacological intervention that will completely eliminate or cure ZIKV infection. We discuss all of these factors in detail in this review and conclude that a combinatorial approach including immunization and treatment might prove to be the winning strategy.
Collapse
Affiliation(s)
- Meera V Singh
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| | - Emily A Weber
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Vir B Singh
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Nicole E Stirpe
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Sanjay B Maggirwar
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| |
Collapse
|
3
|
Cao-Lormeau VM, Blake A, Mons S, Lastère S, Roche C, Vanhomwegen J, Dub T, Baudouin L, Teissier A, Larre P, Vial AL, Decam C, Choumet V, Halstead SK, Willison HJ, Musset L, Manuguerra JC, Despres P, Fournier E, Mallet HP, Musso D, Fontanet A, Neil J, Ghawché F. Guillain-Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet 2016; 387:1531-1539. [PMID: 26948433 PMCID: PMC5444521 DOI: 10.1016/s0140-6736(16)00562-6] [Citation(s) in RCA: 1652] [Impact Index Per Article: 183.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Between October, 2013, and April, 2014, French Polynesia experienced the largest Zika virus outbreak ever described at that time. During the same period, an increase in Guillain-Barré syndrome was reported, suggesting a possible association between Zika virus and Guillain-Barré syndrome. We aimed to assess the role of Zika virus and dengue virus infection in developing Guillain-Barré syndrome. METHODS In this case-control study, cases were patients with Guillain-Barré syndrome diagnosed at the Centre Hospitalier de Polynésie Française (Papeete, Tahiti, French Polynesia) during the outbreak period. Controls were age-matched, sex-matched, and residence-matched patients who presented at the hospital with a non-febrile illness (control group 1; n=98) and age-matched patients with acute Zika virus disease and no neurological symptoms (control group 2; n=70). Virological investigations included RT-PCR for Zika virus, and both microsphere immunofluorescent and seroneutralisation assays for Zika virus and dengue virus. Anti-glycolipid reactivity was studied in patients with Guillain-Barré syndrome using both ELISA and combinatorial microarrays. FINDINGS 42 patients were diagnosed with Guillain-Barré syndrome during the study period. 41 (98%) patients with Guillain-Barré syndrome had anti-Zika virus IgM or IgG, and all (100%) had neutralising antibodies against Zika virus compared with 54 (56%) of 98 in control group 1 (p<0.0001). 39 (93%) patients with Guillain-Barré syndrome had Zika virus IgM and 37 (88%) had experienced a transient illness in a median of 6 days (IQR 4-10) before the onset of neurological symptoms, suggesting recent Zika virus infection. Patients with Guillain-Barré syndrome had electrophysiological findings compatible with acute motor axonal neuropathy (AMAN) type, and had rapid evolution of disease (median duration of the installation and plateau phases was 6 [IQR 4-9] and 4 days [3-10], respectively). 12 (29%) patients required respiratory assistance. No patients died. Anti-glycolipid antibody activity was found in 13 (31%) patients, and notably against GA1 in eight (19%) patients, by ELISA and 19 (46%) of 41 by glycoarray at admission. The typical AMAN-associated anti-ganglioside antibodies were rarely present. Past dengue virus history did not differ significantly between patients with Guillain-Barré syndrome and those in the two control groups (95%, 89%, and 83%, respectively). INTERPRETATION This is the first study providing evidence for Zika virus infection causing Guillain-Barré syndrome. Because Zika virus is spreading rapidly across the Americas, at risk countries need to prepare for adequate intensive care beds capacity to manage patients with Guillain-Barré syndrome. FUNDING Labex Integrative Biology of Emerging Infectious Diseases, EU 7th framework program PREDEMICS. and Wellcome Trust.
Collapse
Affiliation(s)
- Van-Mai Cao-Lormeau
- Unit of Emerging Infectious Diseases, Institut Louis Malardé, Papeete, Tahiti, French Polynesia
| | - Alexandre Blake
- Institut Pasteur, Emerging Diseases Epidemiology Unit, Paris, France
| | - Sandrine Mons
- Service de Réanimation Polyvalente, Centre Hospitalier de Polynésie Française, Tahiti, French Polynesia
| | - Stéphane Lastère
- Clinical Laboratory, Centre Hospitalier de Polynésie Française, Tahiti, French Polynesia
| | - Claudine Roche
- Unit of Emerging Infectious Diseases, Institut Louis Malardé, Papeete, Tahiti, French Polynesia
| | - Jessica Vanhomwegen
- Institut Pasteur, Laboratory for Urgent Responses to Biological Threats, Paris, France; Unit Environment and Infectious Risks, Institut Pasteur, Paris, France
| | - Timothée Dub
- Institut Pasteur, Emerging Diseases Epidemiology Unit, Paris, France
| | - Laure Baudouin
- Service de Réanimation Polyvalente, Centre Hospitalier de Polynésie Française, Tahiti, French Polynesia
| | - Anita Teissier
- Unit of Emerging Infectious Diseases, Institut Louis Malardé, Papeete, Tahiti, French Polynesia
| | - Philippe Larre
- Service de neurologie, Centre Hospitalier de Polynésie Française, Papeete, Tahiti, Polynésie Française
| | - Anne-Laure Vial
- Direction de la Santé, Bureau de Veille Sanitaire, Papeete, French Polynesia
| | | | - Valérie Choumet
- Unit Environment and Infectious Risks, Institut Pasteur, Paris, France
| | - Susan K Halstead
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Hugh J Willison
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Lucile Musset
- Department of Immunology, Laboratory of Immunochemistry & Autoimmunity, Pitié-Salpêtrière Hospital (AP-HP), Paris, France
| | - Jean-Claude Manuguerra
- Institut Pasteur, Laboratory for Urgent Responses to Biological Threats, Paris, France; Unit Environment and Infectious Risks, Institut Pasteur, Paris, France
| | | | - Emmanuel Fournier
- Département de Neurophysiologie, Pitié-Salpêtrière Hospital (AP-HP), Paris, France
| | - Henri-Pierre Mallet
- Direction de la Santé, Bureau de Veille Sanitaire, Papeete, French Polynesia
| | - Didier Musso
- Unit of Emerging Infectious Diseases, Institut Louis Malardé, Papeete, Tahiti, French Polynesia
| | - Arnaud Fontanet
- Institut Pasteur, Emerging Diseases Epidemiology Unit, Paris, France; Conservatoire National des Arts et Métiers, Paris, France; Institut Pasteur, Centre for Global Health Research and Education, Paris, France.
| | - Jean Neil
- Department of Immunology, Laboratory of Immunochemistry & Autoimmunity, Pitié-Salpêtrière Hospital (AP-HP), Paris, France
| | - Frédéric Ghawché
- Service de neurologie, Centre Hospitalier de Polynésie Française, Papeete, Tahiti, Polynésie Française
| |
Collapse
|
4
|
Abraham PM, Quan SH, Dukala D, Soliven B. CD19 as a therapeutic target in a spontaneous autoimmune polyneuropathy. Clin Exp Immunol 2014; 175:181-91. [PMID: 24116957 DOI: 10.1111/cei.12215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2013] [Indexed: 01/21/2023] Open
Abstract
Spontaneous autoimmune polyneuropathy (SAP) in B7-2 knock-out non-obese diabetic (NOD) mice is mediated by myelin protein zero (P0)-reactive T helper type 1 (Th1) cells. In this study, we investigated the role of B cells in SAP, focusing on CD19 as a potential therapeutic target. We found that P0-specific plasmablasts and B cells were increased in spleens of SAP mice compared to wild-type NOD mice. Depletion of B cells and plasmablasts with anti-CD19 monoclonal antibody (mAb) led to attenuation of disease severity when administered at 5 months of age. This was accompanied by decreased serum immunoglobulin (Ig)G and IgM levels, depletion of P0-specific plasmablasts and B cells, down-regulation/internalization of surface CD19 and increased frequency of CD4(+) regulatory T cells in spleens. We conclude that B cells are crucial to the pathogenesis of SAP, and that CD19 is a promising B cell target for the development of disease-modifying agents in autoimmune neuropathies.
Collapse
Affiliation(s)
- P M Abraham
- Department of Neurology, The University of Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|
5
|
The application of glycosphingolipid arrays to autoantibody detection in neuroimmunological disorders. Curr Opin Chem Biol 2014; 18:78-86. [DOI: 10.1016/j.cbpa.2014.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/08/2014] [Accepted: 01/09/2014] [Indexed: 12/13/2022]
|
6
|
Abstract
A wide range of neuroimmunological diseases affect the central and peripheral nervous systems. These disorders are caused by autoimmune attack directed against structurally and functionally diverse nervous system antigens. One such category comprises peripheral nervous system (PNS) diseases, termed peripheral neuropathies, in which the target antigens for autoantibody-directed nerve injury are glycan structures borne by glycoproteins and glycolipids, particularly gangliosides that are concentrated in peripheral nerve. The archetypal PNS disorder is the acute paralytic disease, Guillain-Barré syndrome (GBS) in which autoantibodies against glycolipids arise in the context of acute infections that precede the clinical onset, notably Campylobacter jejuni enteritis. In addition, several chronic autoimmune neuropathies are associated with IgM antibodies directed against nerve glycans including sulphated glucuronic acid epitopes present on myelin-associated glycoprotein and sulphated glucuronyl paragloboside, a range of disialylated gangliosides including GD1b and GD3, and GM1 ganglioside. This chapter describes the immunological, pathological and clinical features of these disorders in the context of our broader knowledge of the glycobiology underpinning this neuroimmunological field.
Collapse
Affiliation(s)
- Hugh J Willison
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK,
| |
Collapse
|
7
|
Abstract
The peripheral nervous system (PNS) comprises the cranial nerves, the spinal nerves with their roots and rami, dorsal root ganglia neurons, the peripheral nerves, and peripheral components of the autonomic nervous system. Cell-mediated or antibody-mediated immune attack on the PNS results in distinct clinical syndromes, which are classified based on the tempo of illness, PNS component(s) involved, and the culprit antigen(s) identified. Insights into the pathogenesis of autoimmune neuropathy have been provided by ex vivo immunologic studies, biopsy materials, electrophysiologic studies, and experimental models. This review article summarizes earlier seminal observations and highlights the recent progress in our understanding of immunopathogenesis of autoimmune neuropathies based on data from animal models.
Collapse
Affiliation(s)
- Betty Soliven
- Address correspondence and reprint requests to Dr. Betty Soliven, Room S225, Department of Neurology MC2030, University of Chicago, 5841 S. Maryland Avenue, Chicago, IL 60637 or
| |
Collapse
|
8
|
Rinaldi S, Brennan KM, Kalna G, Walgaard C, van Doorn P, Jacobs BC, Yu RK, Mansson JE, Goodyear CS, Willison HJ. Antibodies to heteromeric glycolipid complexes in Guillain-Barré syndrome. PLoS One 2013; 8:e82337. [PMID: 24358172 PMCID: PMC3864991 DOI: 10.1371/journal.pone.0082337] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 10/09/2013] [Indexed: 12/29/2022] Open
Abstract
Autoantibodies are infrequently detected in the sera of patients with the demyelinating form of Guillain-Barré syndrome most commonly encountered in the Western world, despite abundant circumstantial evidence suggesting their existence. We hypothesised that antibody specificities reliant on the cis interactions of neighbouring membrane glycolipids could explain this discrepancy, and would not have been detected by traditional serological assays using highly purified preparations of single gangliosides. To assess the frequency of glycolipid complex antibodies in a Western European cohort of patients GBS we used a newly developed combinatorial glycoarray methodology to screen against large range of antigens (11 gangliosides, 8 other single glycolipids and 162 heterodimeric glycolipid complexes). Serum samples of 181 patients from a geographically defined, Western European cohort of GBS cases were analysed, along with 161 control sera. Serum IgG binding to single gangliosides was observed in 80.0% of axonal GBS cases, but in only 11.8% of cases with demyelinating electrophysiology. The inclusion of glycolipid complexes increased the positivity rate in demyelinating disease to 62.4%. There were 40 antigens with statistically significantly increased binding intensities in GBS as compared to healthy control sera. Of these, 7 complex antigens and 1 single ganglioside also produced statistically significantly increased binding intensities in GBS versus neurological disease controls. The detection of antibodies against specific complexes was associated with particular clinical features including disease severity, requirement for mechanical ventilation, and axonal electrophysiology. This study demonstrates that while antibodies against single gangliosides are often found in cases with axonal-type electrophysiology, antibodies against glycolipid complexes predominate in cases with demyelinating electrophysiology, providing a more robust serum biomarker than has ever been previously available for such cases. This work confirms the activation of the humoral immune system in the dysimmune disease process in GBS, and correlates patterns of antigen recognition with different clinical features.
Collapse
Affiliation(s)
- Simon Rinaldi
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| | - Kathryn M. Brennan
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Gabriela Kalna
- Bioinformatics, Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Christa Walgaard
- Department of Neurology, Erasmus Medical Centre, University Medical Center, Rotterdam, The Netherlands
| | - Pieter van Doorn
- Department of Neurology, Erasmus Medical Centre, University Medical Center, Rotterdam, The Netherlands
| | - Bart C. Jacobs
- Department of Neurology, Erasmus Medical Centre, University Medical Center, Rotterdam, The Netherlands
- Department of Immunology, Erasmus Medical Centre, University Medical Center, Rotterdam, The Netherlands
| | - Robert K. Yu
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Jan-Eric Mansson
- Laboratory Medicine/Clinical Chemistry, Sahlgren's University Hospital, Molndal, Sweden
| | - Carl S. Goodyear
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Hugh J. Willison
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
9
|
Lehmann HC, Hughes RAC, Kieseier BC, Hartung HP. Recent developments and future directions in Guillain-Barré syndrome. J Peripher Nerv Syst 2013; 17 Suppl 3:57-70. [PMID: 23279434 DOI: 10.1111/j.1529-8027.2012.00433.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Guillain-Barré syndrome (GBS) encompasses a spectrum of acquired neuropathic conditions characterized by inflammatory demyelinating or axonal peripheral neuropathy with acute onset. Clinical and experimental studies in the past years have led to substantial progress in epidemiology, pathogenesis of GBS variants, and identification of prognostic factors relevant to treatment. In this review we provide an overview and critical assessment of the most recent developments and future directions in GBS research.
Collapse
Affiliation(s)
- Helmar C Lehmann
- Department of Neurology, Heinrich-Heine-University, Medical School, Moorenstrasse 5, Düsseldorf, Germany
| | | | | | | |
Collapse
|
10
|
Glycolipid antigens and autoantibodies in autoimmune neuropathies. Trends Immunol 2013; 34:453-9. [DOI: 10.1016/j.it.2013.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/17/2013] [Accepted: 05/01/2013] [Indexed: 11/24/2022]
|
11
|
Elliott C, Lindner M, Arthur A, Brennan K, Jarius S, Hussey J, Chan A, Stroet A, Olsson T, Willison H, Barnett SC, Meinl E, Linington C. Functional identification of pathogenic autoantibody responses in patients with multiple sclerosis. ACTA ACUST UNITED AC 2012; 135:1819-33. [PMID: 22561643 PMCID: PMC3359756 DOI: 10.1093/brain/aws105] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Pathological and clinical studies implicate antibody-dependent mechanisms in the immunopathogenesis of multiple sclerosis. We tested this hypothesis directly by investigating the ability of patient-derived immunoglobulins to mediate demyelination and axonal injury in vitro. Using a myelinating culture system, we developed a sensitive and reproducible bioassay to detect and quantify these effects and applied this to investigate the pathogenic potential of immunoglobulin G preparations obtained from patients with multiple sclerosis (n = 37), other neurological diseases (n = 10) and healthy control donors (n = 13). This identified complement-dependent demyelinating immunoglobulin G responses in approximately 30% of patients with multiple sclerosis, which in two cases was accompanied by significant complement-dependent antibody mediated axonal loss. No pathogenic immunoglobulin G responses were detected in patients with other neurological disease or healthy controls, indicating that the presence of these demyelinating/axopathic autoantibodies is specific for a subset of patients with multiple sclerosis. Immunofluorescence microscopy revealed immunoglobulin G preparations with demyelinating activity contained antibodies that specifically decorated the surface of myelinating oligodendrocytes and their contiguous myelin sheaths. No other binding was observed indicating that the response is restricted to autoantigens expressed by terminally differentiated myelinating oligodendrocytes. In conclusion, our study identifies axopathic and/or demyelinating autoantibody responses in a subset of patients with multiple sclerosis. This observation underlines the mechanistic heterogeneity of multiple sclerosis and provides a rational explanation why some patients benefit from antibody depleting treatments.
Collapse
Affiliation(s)
- Christina Elliott
- Institute of Immunology, Immunity and Infection, University of Glasgow, Glasgow, G12 8TA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Abstract
Glycolipid-protein interactions are increasingly recognised as critical to numerous and diverse biological processes, including immune recognition, cell-cell signalling, pathogen adherence, and virulence factor binding. Previously, such carbohydrate-lectin interactions have been assessed in vitro largely by assaying protein binding against purified preparations of single glycolipids. Recent observations show that certain disease-associated autoantibodies and other lectins bind only to complexes formed by two different gangliosides. However, investigating such 1:1 glycolipid complexes can prove technically arduous. To address this problem, we have developed a semi-automated system for assaying lectin binding to large numbers of glycolipid complexes simultaneously. This employs an automated thin-layer chromatography sampler. Single glycolipids and their heterodimeric complexes are prepared in microvials. The autosampler is then used to print reproducible arrays of glycolipid complexes onto polyvinylidene difluoride membranes affixed to glass slides. A printing density of 300 antigen spots per slide is achievable. Following overnight drying, these arrays can then be probed with the lectin(s) of interest. Detection of binding is by way of a horseradish peroxidase-linked secondary antibody driving a chemiluminescent reaction rendered on radiographic film. Image analysis software can then be used to measure signal intensity for quantification.
Collapse
Affiliation(s)
- Simon Rinaldi
- SRI International Biosciences Division, Menlo Park, CA, USA
| | | | | |
Collapse
|
14
|
Abstract
Neurological dysfunction results from vascular, inflammatory, degenerative, neoplastic, metabolic or genetic causes. Of particular interest is a group of neurological symptoms thought to be linked to an underlying tumour, the so-called paraneoplastic syndromes. It is considered to be due to an attempt by the immune system to subjugate the growth of the tumour by triggering an antibody response against the neuronal antigens expressed by the neoplasm. The unfortunate consequence of this is an assault by the immune components on the nervous tissue, thereby rapidly precipitating a variety of neurological deficits. Every level of the nervous system is potentially vulnerable, with the disability being considered as irreversible due to the lack of regenerative capacity of the neurons. This phenomenon is rare, occurring at an approximate frequency of less than 1% of all tumours and often accompanied by the presence of specific high-titre autoantibodies in both the cerebrospinal fluid and blood. This group of antibodies are non-pathogenic markers for paraneoplastic neurological syndromes, which have expanded to almost 20 since the discovery, in 1986, of the first clinically relevant syndrome. More recently, a new generation of antineuronal antibodies against cell surface antigens, having a direct pathogenic role in causing the disease, has emerged to complement the existing repertoire. Neuronal antibodies are useful diagnostic markers of the brain disease and also, in some cases, may reveal an underlying malignancy, thus facilitating faster diagnosis and earlier treatment with consequently better prognosis.
Collapse
Affiliation(s)
- A R Karim
- Clinical Immunology Service, University of Birmingham, Birmingham B15 2TT, UK.
| | | |
Collapse
|
15
|
Hardy TA, Blum S, McCombe PA, Reddel SW. Guillain-barré syndrome: modern theories of etiology. Curr Allergy Asthma Rep 2011; 11:197-204. [PMID: 21451970 DOI: 10.1007/s11882-011-0190-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Guillain-Barré syndrome (GBS) is a classic failure of the immune system with a life-threatening attack upon a critical self-component. The active phase of the disease is short, concordant with the latency of a primary adaptive immune response. Triggers for GBS include infection and (rarely) vaccination; cross-reactivity between infectious and neural epitopes has been well demonstrated, particularly for Campylobacter jejuni and motor axonal forms of GBS in which non-protein gangliosides are antigenic. Most people are probably exposed to a GBS trigger, but only rarely does the disease develop. We propose that GBS illustrates competing determinants of the immune system's decision about whether to mount a response, and that in unlucky affected individuals, co-presentation of cross-reactive antigens with danger signals activating pattern-recognition receptors overcomes normal self-recognition such that a primary response is initiated that attacks the nerve. Then, in most cases of GBS, the response rapidly turns off, and second attacks rarely occur. This suggests active restoration of tolerance, and specific privileged site attributes of nerve and declining danger signals as the trigger wanes may contribute to this restoration. Standard immunosuppression has not been effective in GBS. We suggest this is because immune tolerance is already being restored by the time such therapies are initiated. This in turn suggests that improvements in GBS outcomes are likely to come from better protection of the nerve cells under attack while normal resumption of tolerance is permitted to proceed rather than exploring more aggressive immunosuppressive approaches.
Collapse
Affiliation(s)
- Todd A Hardy
- Department of Neurology, Concord Hospital, Sydney, Australia.
| | | | | | | |
Collapse
|
16
|
Houliston RS, Vinogradov E, Dzieciatkowska M, Li J, St. Michael F, Karwaski MF, Brochu D, Jarrell HC, Parker CT, Yuki N, Mandrell RE, Gilbert M. Lipooligosaccharide of Campylobacter jejuni: similarity with multiple types of mammalian glycans beyond gangliosides. J Biol Chem 2011; 286:12361-70. [PMID: 21257763 PMCID: PMC3069439 DOI: 10.1074/jbc.m110.181750] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Campylobacter jejuni is well known for synthesizing ganglioside mimics within the glycan component of its lipooligosaccharide (LOS), which have been implicated in triggering Guillain-Barré syndrome. We now confirm that this pathogen is capable of synthesizing a much broader spectrum of host glycolipid/glycoprotein mimics within its LOS. P blood group and paragloboside (lacto-N-neotetraose) antigen mimicry is exhibited by RM1221, a strain isolated from a poultry source. RM1503, a gastroenteritis-associated strain, expresses lacto-N-biose and sialyl-Lewis c units, the latter known as the pancreatic tumor-associated antigen, DU-PAN-2 (or LSTa). C. jejuni GC149, a Guillain-Barré syndrome-associated strain, expresses an unusual sialic acid-containing hybrid oligosaccharide with similarity to both ganglio and Pk antigens and can, through phase variation of its LOS biosynthesis genes, display GT1a or GD3 ganglioside mimics. We show that the sialyltransferase CstII and the galactosyltransferase CgtD are involved in the synthesis of multiple mimic types, with LOS structural diversity achieved through evolving allelic substrate specificity.
Collapse
Affiliation(s)
- R. Scott Houliston
- From the Institute for Biological Sciences, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Evgeny Vinogradov
- From the Institute for Biological Sciences, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Monika Dzieciatkowska
- From the Institute for Biological Sciences, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Jianjun Li
- From the Institute for Biological Sciences, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Frank St. Michael
- From the Institute for Biological Sciences, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Marie-France Karwaski
- From the Institute for Biological Sciences, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Denis Brochu
- From the Institute for Biological Sciences, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Harold C. Jarrell
- From the Institute for Biological Sciences, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Craig T. Parker
- the United States Department of Agriculture, Agriculture Research Service, Produce Safety and Microbiology Research, Albany, California 94710, and
| | - Nobuhiro Yuki
- the Departments of Microbiology and Medicine, National University of Singapore, Singapore 117597
| | - Robert E. Mandrell
- the United States Department of Agriculture, Agriculture Research Service, Produce Safety and Microbiology Research, Albany, California 94710, and
| | - Michel Gilbert
- From the Institute for Biological Sciences, National Research Council, Ottawa, Ontario K1A 0R6, Canada
- To whom correspondence should be addressed: Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada. Tel.: 613-991-9956; Fax: 613-952-9092; E-mail:
| |
Collapse
|
17
|
Hug I, Feldman MF. Analogies and homologies in lipopolysaccharide and glycoprotein biosynthesis in bacteria. Glycobiology 2010; 21:138-51. [PMID: 20871101 DOI: 10.1093/glycob/cwq148] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Bacteria generate and attach countless glycan structures to diverse macromolecules. Despite this diversity, the mechanisms of glycoconjugate biosynthesis are often surprisingly similar. The focus of this review is on the commonalities between lipopolysaccharide (LPS) and glycoprotein assembly pathways and their evolutionary relationship. Three steps that are essential for both pathways are completed by membrane proteins. These include the initiation of glycan assembly through the attachment of a first sugar residue onto the lipid carrier undecaprenyl pyrophosphate, the translocation across the plasma membrane and the final transfer onto proteins or lipid A-core. Two families of initiating enzymes have been described: the polyprenyl-P N-acetylhexosamine-1-P transferases and the polyprenyl-P hexosamine-1-P transferases, represented by Escherichia coli WecA and Salmonella enterica WbaP, respectively. Translocases are either Wzx-like flippases or adenosine triphosphate (ATP)-binding cassette transporters (ABC transporters). The latter can consist either of two polypeptides, Wzt and Wzm, or of a single polypeptide homolog to the Campylobacter jejuni PglK. Finally, there are two families of conjugating enzymes, the N-oligosaccharyltransferases (N-OTase), best represented by C. jejuni PglB, and the O-OTases, including Neisseria meningitidis PglL and the O antigen ligases involved in LPS biosynthesis. With the exception of the N-OTases, probably restricted to glycoprotein synthesis, members of all these transmembrane protein families can be involved in the synthesis of both glycoproteins and LPS. Because many translocation and conjugation enzymes display relaxed substrate specificity, these bacterial enzymes could be exploited in engineered living bacteria for customized glycoconjugate production, generating potential vaccines and therapeutics.
Collapse
Affiliation(s)
- Isabelle Hug
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
18
|
Usuki S, Taguchi K, Thompson SA, Chapman PB, Yu RK. Novel anti-idiotype antibody therapy for lipooligosaccharide-induced experimental autoimmune neuritis: use relevant to Guillain-Barré syndrome. J Neurosci Res 2010; 88:1651-63. [PMID: 20077429 DOI: 10.1002/jnr.22330] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Campylobacteriosis is a frequent antecedent event in Guillain-Barré syndrome (GBS), inducing high-titer serum antibodies for ganglioside antigens in the peripheral nervous system (PNS). Molecular mimicry between the lipooligosaccharide (LOS) component of Campylobacter jejuni and human peripheral nerve gangliosides is believed to play an important role in the pathogenesis of GBS. Conventional treatment strategies for patients with GBS include plasmapheresis, intravenous immunoglobulin (IVIG), and immunosuppression, which are invasive or relatively ineffective. In this study, we used our animal model of GBS, in which Lewis rats were immunized with GD3-like LOS isolated from C.jejuni. The animals developed anti-GD3 ganglioside antibodies and manifested neuromuscular dysfunction. To develop novel therapeutic strategies, we treated the animals by intraperitoneal administration of an anti-GD3 antiidiotype monoclonal antibody (BEC2) that specifically interacts with the pathogenic antibody. The treated animals had a remarkable reduction of anti-GD3 antibody titers and improvement of motor nerve functions. The results suggest that ganglioside mimics, such as antiidiotype antibodies, may be powerful reagents for therapeutic intervention in GBS by neutralizing specific pathogenic antiganglioside antibodies.
Collapse
Affiliation(s)
- S Usuki
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912-2697, USA
| | | | | | | | | |
Collapse
|
19
|
Current world literature. Curr Opin Neurol 2009; 22:554-61. [PMID: 19755870 DOI: 10.1097/wco.0b013e3283313b14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Lopez PHH, Schnaar RL. Gangliosides in cell recognition and membrane protein regulation. Curr Opin Struct Biol 2009; 19:549-57. [PMID: 19608407 DOI: 10.1016/j.sbi.2009.06.001] [Citation(s) in RCA: 232] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 06/10/2009] [Indexed: 12/16/2022]
Abstract
Gangliosides, sialic acid-bearing glycosphingolipids, are expressed on all vertebrate cells, and are the major glycans on nerve cells. They are anchored to the plasma membrane through their ceramide lipids with their varied glycans extending into the extracellular space. Through sugar-specific interactions with glycan-binding proteins on apposing cells, gangliosides function as receptors in cell-cell recognition, regulating natural killer cell cytotoxicity via Siglec-7, myelin-axon interactions via Siglec-4 (myelin-associated glycoprotein), and inflammation via E-selectin. Gangliosides also interact laterally in their own membranes, regulating the responsiveness of signaling proteins including the insulin, epidermal growth factor, and vascular endothelial growth factor receptors. In these ways, gangliosides act as regulatory elements in the immune system, in the nervous system, in metabolic regulation, and in cancer progression.
Collapse
Affiliation(s)
- Pablo H H Lopez
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|
21
|
Rinaldi S, Brennan KM, Goodyear CS, O'Leary C, Schiavo G, Crocker PR, Willison HJ. Analysis of lectin binding to glycolipid complexes using combinatorial glycoarrays. Glycobiology 2009; 19:789-96. [PMID: 19349623 DOI: 10.1093/glycob/cwp049] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glycolipids are major components of the plasma membrane, interacting with themselves, other lipids, and proteins to form an array of heterogeneous domains with diverse biological properties. Considerable effort has been focused on identifying protein binding partners for glycolipids and the glycan specificity for these interactions, largely achieved through assessing interactions between proteins and homogenous, single species glycolipid preparations. This approach risks overlooking both the enhancing and attenuating roles of heterogeneous glycolipid complexes in modulating lectin binding. Here we report a simple method for assessing lectin-glycolipid interactions. An automatic thin-layer chromatography sampler is employed to create easily reproducible arrays of glycolipids and their heterodimeric complexes immobilized on a synthetic polyvinyl-difluoride membrane. This array can then be probed with much smaller quantities of reagents than would be required using existing techniques such as ELISA and thin-layer chromatography with immuno-overlay. Using this protocol, we have established that the binding of bacterial toxins, lectins, and antibodies can each be attenuated, enhanced, or unaffected in the presence of glycolipid complexes, as compared with individual, isolated glycolipids. These findings underpin the wide-ranging influence and importance of glycolipid-glycolipid cis interactions when the nature of protein-carbohydrate recognition events is being assessed.
Collapse
Affiliation(s)
- Simon Rinaldi
- Division of Clinical Neurosciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8TA, UK
| | | | | | | | | | | | | |
Collapse
|