1
|
Shah SN, Dounavi ME, Malhotra PA, Lawlor B, Naci L, Koychev I, Ritchie CW, Ritchie K, O’Brien JT. Dementia risk and thalamic nuclei volumetry in healthy midlife adults: the PREVENT Dementia study. Brain Commun 2024; 6:fcae046. [PMID: 38444908 PMCID: PMC10914447 DOI: 10.1093/braincomms/fcae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/31/2023] [Accepted: 02/13/2024] [Indexed: 03/07/2024] Open
Abstract
A reduction in the volume of the thalamus and its nuclei has been reported in Alzheimer's disease, mild cognitive impairment and asymptomatic individuals with risk factors for early-onset Alzheimer's disease. Some studies have reported thalamic atrophy to occur prior to hippocampal atrophy, suggesting thalamic pathology may be an early sign of cognitive decline. We aimed to investigate volumetric differences in thalamic nuclei in middle-aged, cognitively unimpaired people with respect to dementia family history and apolipoprotein ε4 allele carriership and the relationship with cognition. Seven hundred participants aged 40-59 years were recruited into the PREVENT Dementia study. Individuals were stratified according to dementia risk (approximately half with and without parental dementia history). The subnuclei of the thalamus of 645 participants were segmented on T1-weighted 3 T MRI scans using FreeSurfer 7.1.0. Thalamic nuclei were grouped into six regions: (i) anterior, (ii) lateral, (iii) ventral, (iv) intralaminar, (v) medial and (vi) posterior. Cognitive performance was evaluated using the computerized assessment of the information-processing battery. Robust linear regression was used to analyse differences in thalamic nuclei volumes and their association with cognitive performance, with age, sex, total intracranial volume and years of education as covariates and false discovery rate correction for multiple comparisons. We did not find significant volumetric differences in the thalamus or its subregions, which survived false discovery rate correction, with respect to first-degree family history of dementia or apolipoprotein ε4 allele status. Greater age was associated with smaller volumes of thalamic subregions, except for the medial thalamus, but only in those without a dementia family history. A larger volume of the mediodorsal medial nucleus (Pfalse discovery rate = 0.019) was associated with a faster processing speed in those without a dementia family history. Larger volumes of the thalamus (P = 0.016) and posterior thalamus (Pfalse discovery rate = 0.022) were associated with significantly worse performance in the immediate recall test in apolipoprotein ε4 allele carriers. We did not find significant volumetric differences in thalamic subregions in relation to dementia risk but did identify an interaction between dementia family history and age. Larger medial thalamic nuclei may exert a protective effect on cognitive performance in individuals without a dementia family history but have little effect on those with a dementia family history. Larger volumes of posterior thalamic nuclei were associated with worse recall in apolipoprotein ε4 carriers. Our results could represent initial dysregulation in the disease process; further study is needed with functional imaging and longitudinal analysis.
Collapse
Affiliation(s)
- Sita N Shah
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Maria-Eleni Dounavi
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Paresh A Malhotra
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, London SW7 2AZ, UK
| | - Brian Lawlor
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin D02 PX31, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin D02 X9W9, Ireland
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin D02 PX31, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin D02 X9W9, Ireland
| | - Ivan Koychev
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Craig W Ritchie
- Centre for Dementia Prevention, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Karen Ritchie
- Institute de Neurosciences de Montpellier, INSERM, Montpellier 34093, France
| | - John T O’Brien
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| |
Collapse
|
2
|
Cai S, Lv Y, Huang K, Zhang W, Wang Q, Huang L, Wang J. Modulation on Glutamic Pathway of Frontal-Striatum-Thalamus by rs11146020 and rs3813296 Gene Polymorphism in First-Episode Negative Schizophrenia. Front Neurosci 2020; 14:351. [PMID: 32372910 PMCID: PMC7186427 DOI: 10.3389/fnins.2020.00351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/23/2020] [Indexed: 12/11/2022] Open
Abstract
Objectives The frontal-striatum-thalamus pathway is important in the glutamic neural circuit. The hypofunction of GRIN1 and GRIA2 subunits from glutamic receptors has been hypothesized as the primary process in the etiology of schizophrenia. Identified gene polymorphism involved in the pathogenesis of schizophrenia may uncover relevant mechanism pathways. Methods We selected two loci of rs11146020 and rs3813296 distributed in GRIN1 and GRIA2 genes and tested their main and interaction effects on causality connections and structural characteristics in the frontal-striatum-thalamus pathway in 55 Han Chinese first-episode negative schizophrenia patients. Results We found that: (1) rs11146020 has a significant main effect on the causality connections between the bilateral dorsolateral prefrontal cortex, and rs3813296 mainly influences those of the descending pathway from the prefrontal cortex to the striatum; (2) interaction effect of rs11146020 and rs3813296 on causality connections are located in the ascending pathway from the pallidum to the dorsolateral prefrontal cortex; and (3) the two loci have effects on the volumes of several regions of this pathway. Conclusion Our results suggested there is modulation on glutamic frontal-striatum-thalamus pathway by rs11146020 and rs3813296 gene polymorphism. Patients with different genotypes have different neuroimaging characteristics, which indirectly reminded clinicians those patients should receive different clinical interventions.
Collapse
Affiliation(s)
- Suping Cai
- School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Yahui Lv
- School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Kexin Huang
- School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Wei Zhang
- School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Qiang Wang
- The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Liyu Huang
- School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Jijun Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|