1
|
Sekyi MT, Feri M, Desfor S, Atkinson KC, Golestany B, Beltran F, Tiwari-Woodruff SK. Demyelination and neurodegeneration early in experimental autoimmune encephalomyelitis contribute to functional deficits in the anterior visual pathway. Sci Rep 2024; 14:24048. [PMID: 39402114 PMCID: PMC11473523 DOI: 10.1038/s41598-024-73792-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/20/2024] [Indexed: 10/17/2024] Open
Abstract
Impaired visual function is a prevalent feature of optic neuritis (ON) in multiple sclerosis (MS). Abnormal visual evoked potential (VEP) findings of increased latencies, reduced amplitudes and abnormal waveforms as well as decreased retinal nerve fiber layer (RNFL) assessed by optical coherence tomography (OCT) are hallmarks of ON-induced visual dysfunction. Here we utilized the experimental autoimmune encephalomyelitis (EAE) mouse model of MS to investigate the functional and pathological progression during early (before any clinical symptoms), peak (initial maximal clinical symptoms), and late (chronic disease for > 3 weeks) disease stages. Demyelination and initial stages of axon damage were observed in early EAE. Significant demyelination, inflammation, increased axon damage and impaired P1/N2 amplitudes and latencies by VEP were seen in middle and late EAE groups. A decrease in RNFL thickness by OCT was observed only during late EAE. NanoString analysis of optic nerves from late EAE indicated elevated inflammation-related genes, reduced myelin-related genes, and changes in axon degeneration-related genes. Early inflammatory demyelination and functional deficits of the visual pathway, if untreated, may lead to severe irrecoverable axon damage in EAE. These studies potentially help explain the progression of visual dysfunction during MS.
Collapse
Affiliation(s)
- Maria T Sekyi
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Rm 3140, Multidisciplinary Research Building, 900 University Ave, Riverside, CA, 92521, USA
| | - Micah Feri
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Rm 3140, Multidisciplinary Research Building, 900 University Ave, Riverside, CA, 92521, USA
| | - Shane Desfor
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Rm 3140, Multidisciplinary Research Building, 900 University Ave, Riverside, CA, 92521, USA
| | - Kelley C Atkinson
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Rm 3140, Multidisciplinary Research Building, 900 University Ave, Riverside, CA, 92521, USA
| | - Batis Golestany
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Rm 3140, Multidisciplinary Research Building, 900 University Ave, Riverside, CA, 92521, USA
| | - Fernando Beltran
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Rm 3140, Multidisciplinary Research Building, 900 University Ave, Riverside, CA, 92521, USA
| | - Seema K Tiwari-Woodruff
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Rm 3140, Multidisciplinary Research Building, 900 University Ave, Riverside, CA, 92521, USA.
| |
Collapse
|
2
|
Harrison TC, Blozis SA, Stuifbergen AK, Becker H. Longitudinal Effects of Sex, Aging, and Multiple Sclerosis Diagnosis on Function. Nurs Res 2023; 72:281-291. [PMID: 37350697 PMCID: PMC10655905 DOI: 10.1097/nnr.0000000000000656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
BACKGROUND A gap in research about the trajectories of function among men and women aging with functional limitations because of multiple sclerosis (MS) hinders ability to plan for future needs. OBJECTIVES Using a biopsychosocial model, we characterize how men and women with MS report changes over time in their function and test how person-level differences in age, diagnosis duration, and sex influence perceived function. METHODS A longitudinal study with multiple waves of surveys was used to collect data on participant perceptions of function, as well as demographic and contextual variables. Self-reported functional limitation was measured over a decade. The study participants were community residing with physician-diagnosed MS. RESULTS The people with MS had a diagnosis duration of about 13 years and were around 51 years of age, on average, at the start of the study. They were primarily women and non-Hispanic White. We analyzed the data using mixed-effects models. Subject-specific, functional limitation trajectories were described best with a quadratic growth model. Relative to men, women reported lower functional limitation and greater between-person variation and rates of acceleration in functional limitation scores. DISCUSSION Results suggest function progressed through two pathways for over a decade, particularly closer to diagnoses. Variability in trajectories between individuals based on sex and years since diagnosis of disease indicates that men and women with MS may experience perceptions of their function with age differently. This has implications for clinician advice to men and women with MS.
Collapse
|
3
|
Individual differences in visual evoked potential latency are associated with variance in brain tissue volume in people with multiple sclerosis: An analysis of brain function-structure correlates. Mult Scler Relat Disord 2022; 68:104116. [PMID: 36041331 DOI: 10.1016/j.msard.2022.104116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/16/2022] [Accepted: 08/13/2022] [Indexed: 12/15/2022]
Abstract
Visual evoked potentials (VEP) index visual pathway functioning, and are often used for clinical assessment and as outcome measures in people with multiple sclerosis (PwMS). VEPs may also reflect broader neural disturbances that extend beyond the visual system, but this possibility requires further investigation. In the present study, we examined the hypothesis that delayed latency of the P100 component of the VEP would be associated with broader structural changes in the brain in PwMS. We obtained VEP latency for a standard pattern-reversal checkerboard stimulus paradigm, in addition to Magnetic Resonance Imaging (MRI) measures of whole brain volume (WBV), gray matter volume (GMV), white matter volume (WMV), and T2-weighted fluid attenuated inversion recovery (FLAIR) white matter lesion volume (FLV). Correlation analyses indicated that prolonged VEP latency was significantly associated with lower WBV, GMV, and WMV, and greater FLV. VEP latency remained significantly associated with WBV, GMV, and WMV even after controlling for the variance associated with inter-ocular latency, age, time between VEP and MRI assessments, and other MRI variables. VEP latency delays were most pronounced in PwMS that exhibited low volume in both white and gray matter simultaneously. Furthermore, PwMS that had delayed VEP latency based on a clinically relevant cutoff (VEP latency ≥ 113 ms) in both eyes had lower WBV, GMV, and WMV and greater FLV in comparison to PwMS that had normal VEP latency in one or both eyes. The findings suggest that PwMS that have delayed latency in both eyes may be particularly at risk for exhibiting greater brain atrophy and lesion volume. These analyses also indicate that VEP latency may index combined gray matter and white matter disturbances, and therefore broader network connectivity and efficiency. VEP latency may therefore provide a surrogate marker of broader structural disturbances in the brain in MS.
Collapse
|
4
|
Covey TJ, Golan D, Doniger GM, Sergott R, Zarif M, Bumstead B, Buhse M, Kaczmarek O, Mebrahtu S, Bergmann C, Wilken J, Gudesblatt M. Longitudinal assessment of the relationship between visual evoked potentials and cognitive performance in multiple sclerosis. Clin Neurophysiol 2022; 137:66-74. [DOI: 10.1016/j.clinph.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/24/2022] [Accepted: 02/15/2022] [Indexed: 11/03/2022]
|
5
|
Backner Y, Zamir S, Petrou P, Paul F, Karussis D, Levin N. Anatomical and functional visual network patterns in progressive multiple sclerosis. Hum Brain Mapp 2021; 43:1590-1597. [PMID: 34931352 PMCID: PMC8886643 DOI: 10.1002/hbm.25744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/09/2022] Open
Abstract
The gradual accrual of disability over time in progressive multiple sclerosis is believed to be driven by widespread degeneration. Yet another facet of the problem may reside in the loss of the brain's ability to adapt to the damage incurred as the disease progresses. In this study, we attempted to examine whether changes associated with optic neuritis in the structural and functional visual networks can still be discerned in progressive patients even years after the acute insult. Forty-eight progressive multiple sclerosis patients, 21 with and 27 without prior optic neuritis, underwent structural and functional MRI, including DTI and resting state fMRI. Anatomical and functional visual networks were analyzed using graph theory-based methods. While no functional metrics were significantly different between the two groups, anatomical global efficiency and density were significantly lower in the optic neuritis group, despite no significant difference in lesion load between the groups. We conclude that long-standing distal damage to the optic nerve causes trans-synaptic effects and the early ability of the cortex to adapt may be altered, or possibly nullified. We suggest that this limited ability of the brain to compensate should be considered when attempting to explain the accumulation of disability in progressive multiple sclerosis patients.
Collapse
Affiliation(s)
- Yael Backner
- The fMRI Unit, Department of Neurology, Hadassah Medical Organization, Jerusalem, Israel.,The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sol Zamir
- The fMRI Unit, Department of Neurology, Hadassah Medical Organization, Jerusalem, Israel.,The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Panayiota Petrou
- Multiple Sclerosis Center, Department of Neurology, Hadassah Medical Organization, Jerusalem, Israel
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dimitrios Karussis
- Multiple Sclerosis Center, Department of Neurology, Hadassah Medical Organization, Jerusalem, Israel
| | - Netta Levin
- The fMRI Unit, Department of Neurology, Hadassah Medical Organization, Jerusalem, Israel.,The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
6
|
Berman S, Backner Y, Krupnik R, Paul F, Petrou P, Karussis D, Levin N, Mezer AA. Conduction delays in the visual pathways of progressive multiple sclerosis patients covary with brain structure. Neuroimage 2020; 221:117204. [PMID: 32745679 DOI: 10.1016/j.neuroimage.2020.117204] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 01/24/2023] Open
Abstract
In developed countries, multiple sclerosis (MS) is the leading cause of non-traumatic neurological disability in young adults. MS is a chronic demyelinating disease of the central nervous system, in which myelin is attacked, changing white matter structure and leaving lesions. The demyelination has a direct effect on white matter conductivity. This effect can be examined in the visual system, where damage is highly prevalent in MS, leading to substantial delays in conduction, commonly measured with visual evoked potentials (VEPs). The structural damage to the visual system in MS is often estimated with MRI measurements in the white matter. Recent developments in quantitative MRI (qMRI) provide improved sensitivity to myelin content and new structural methods allow better modeling of the axonal structure, leading researchers to link white matter microstructure to conduction properties of action potentials along fiber tracts. This study attempts to explain the variance in conduction latencies down the visual pathway using structural measurements of both the retina and the optic radiation (OR). Forty-eight progressive MS patients, participants in a longitudinal stem-cell therapy clinical trial, were included in this study, three and six months post final treatment. Twenty-seven patients had no history of optic neuritis, and were the main focus of this study. All participants underwent conventional MRI scans, as well as diffusion MRI and qMRI sequences to account for white matter microstructure. Optical coherence tomography scans were also obtained, and peripapillary retinal nerve fiber layer (pRNFL) thickness and macular volume measurements were extracted. Finally, latencies of recorded VEPs were estimated. Our results show that in non-optic neuritis progressive MS patients there is a relationship between the VEP latency and both retinal damage and OR lesion load. In addition, we find that qMRI values, sampled along the OR, are also correlated with VEP latency. Finally, we show that combining these parameters using PCA we can explain more than 40% of the inter-subject variance in VEP latency. In conclusion, this study contributes to understanding the relationship between the structural properties and conduction in the visual system in disease. We focus on the visual system, where the conduction latencies can be estimated, but the conclusions could be generalized to other brain systems where the white matter structure can be measured. It also highlights the importance of having multiple parameters when assessing the clinical stages of MS patients, which could have major implications for future studies of other white matter diseases.
Collapse
Affiliation(s)
- Shai Berman
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Yael Backner
- fMRI Unit, Neurology Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ronnie Krupnik
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Panayiota Petrou
- The Multiple Sclerosis Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Dimitrios Karussis
- The Multiple Sclerosis Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Netta Levin
- fMRI Unit, Neurology Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Aviv A Mezer
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
7
|
Backner Y, Petrou P, Glick-Shames H, Raz N, Zimmermann H, Jost R, Scheel M, Paul F, Karussis D, Levin N. Vision and Vision-Related Measures in Progressive Multiple Sclerosis. Front Neurol 2019; 10:455. [PMID: 31130910 PMCID: PMC6509148 DOI: 10.3389/fneur.2019.00455] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/15/2019] [Indexed: 02/04/2023] Open
Abstract
Background: Over the last few years there has been growing interest in use of visual measures as useful tools for multiple sclerosis (MS) prognosis and tracking. Optic neuritis (ON) being a prevalent and often-presenting symptom of the disease, as well as the high occurrence rate of posterior visual system damage independent of ON (optic radiation lesions), make the visual system a prime candidate for such endeavors. However, while the visual system makes for a convenient model in early stages of MS, processes which may be true in those stages may drastically change as the disease progresses, due to accumulated disease load. Here, we examine whether vision-related tools reflect demyelinative and axonal damage of the visual pathways and may be used for assessment in the clinical setup in progressive multiple sclerosis (MS) patients, in whom disease load may alter the early stage picture. Methods: Forty-eight progressive MS patients, with and without prior optic neuritis (ON), underwent a battery of behavioral tests, visual evoked potential (VEP) tests, optical coherence tomography (OCT), and structural MRI scans, at two time-points. Data were analyzed for stability between visits and for correlation between behavioral and electrophysiological data. Results: All measures were stable between visits. Significant differences were found in all measures between the affected and fellow eyes of ON patients and in VEP latencies between the affected and non-ON eyes. Motion perception differentially correlated with latencies of both ON eyes and with the non-ON eyes. Retinal nerve fiber layer thickness correlated with the latencies of non-ON eyes but not of either ON eye. No difference in lesion load was found between the ON and non-ON patients. Conclusions: ON still leaves its mark in the patient's visual system over time, with all visual measures of the affected eyes notably reduced compared to fellow eyes. Motion perception, reflecting myelination level along the visual pathway, shows its usefulness also in progressive MS. In the non-ON eyes, axonal loss appears to explain prolonged latencies, unlike in ON eyes, where demyelination appears to be the main mechanism. Lastly, the visual measures assessed herein are applicable as valid assessment tools in therapeutic studies.
Collapse
Affiliation(s)
- Yael Backner
- fMRI Unit, Neurology Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Panayiota Petrou
- Neurology Department, The Multiple Sclerosis Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Haya Glick-Shames
- fMRI Unit, Neurology Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Noa Raz
- fMRI Unit, Neurology Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Hanna Zimmermann
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rebecca Jost
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Michael Scheel
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dimitrios Karussis
- Neurology Department, The Multiple Sclerosis Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Netta Levin
- fMRI Unit, Neurology Department, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|