1
|
Lasry R, Gotkine M, Kruger JM. Peribulbar Corticosteroids for Ocular Myasthenia Gravis. J Neuroophthalmol 2024; 44:419-422. [PMID: 38578695 DOI: 10.1097/wno.0000000000002148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
BACKGROUND Ocular myasthenia gravis is treated predominantly by oral medications, with the potential for systemic adverse effects. Successful treatment has been achieved using peribulbar dexamethasone. We assessed the effect of peribulbar dexamethasone or triamcinolone (40-mg Triesence), a longer-acting corticosteroid, targeting the peribulbar area as opposed to directly injecting the affected extraocular muscle. This more convenient and secure approach holds the potential for straightforward integration within clinical environments. METHODS Retrospective chart review. RESULTS Five patients were identified that were treated with peribulbar corticosteroids. In 4 of the 5 cases, ophthalmoparesis was unilateral. One case had isolated ptosis, and 4 had both ptosis and ophthalmoparesis. Three of these 4 cases reported complete resolution of symptoms within weeks of a single injection. Improvement lasted between 5 to 6 months, and all patients responded to repeated injections. CONCLUSIONS Peribulbar corticosteroids can be effective in ocular myasthenia gravis. We suggest that longer-acting agents such as triamcinolone are preferable, to reduce injection frequency.
Collapse
Affiliation(s)
- Rachel Lasry
- Department of Developmental Biology and Cancer Research (RL), The Hebrew University-Hadassah Medical School, Jerusalem, Israel; and Departments of Neurology (MG) and Ophthalmology (JMK), Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | |
Collapse
|
2
|
Chien JY, Ciou JW, Yen Y, Huang SP. Protective effects of compound M01 on retinal ganglion cells in experimental anterior ischemic optic neuropathy by inhibiting TXNIP/NLRP3 inflammasome pathway. Biomed Pharmacother 2023; 169:115861. [PMID: 37972470 DOI: 10.1016/j.biopha.2023.115861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023] Open
Abstract
Apoptotic death of retinal ganglion cells (RGCs) is a common pathologic feature in different types of optic neuropathy, including ischemic optic neuropathy and glaucoma, ultimately leading to irreversible visual function loss. Potent and effective protection against RGC death is determinative in developing a successful treatment for these optic neuropathies. This study evaluated the neuroprotective effect of a HECT domain-E3 ubiquitin ligase inhibitor, M01, on retinal ganglion cells after ischemic injury. Experimental anterior ischemic optic neuropathy (AION) was induced by photothrombotic occlusion of microvessels supplying optic nerve in rats. M01 was administered (100 mg/Kg and 200 mg/Kg) subcutaneously for three consecutive days after AION induction. Administration of M01 (100 mg/Kg) significantly increased RGC survival and preserved visual function after AION induction. The number of TUNEL-positive cells and ED1-positive cells was significantly decreased, and optic disc edema was reduced considerably after ischemic infarction with M01 treatment. Moreover, M01 effectively ameliorated optic nerve demyelination and enhanced M2 microglial polarization after AION induction. M01 enhanced the expression of nuclear factor erythroid 2-related factor (Nrf2); subsequently, downregulated Thioredoxin interacting protein (TXNIP) expression, inhibited NLR family pyrin domain containing 3 (NLRP3) activation, and further decreased inflammatory factors, interleukin (IL)-1β and IL-6 in the retina after ischemic injury. These findings suggested that M01 has therapeutic potential by modulating Nrf2 and TXNIP/NLRP3 inflammasome pathways in the retina and optic nerve ischemic damage-related diseases.
Collapse
Affiliation(s)
- Jia-Ying Chien
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Jhih-Wei Ciou
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Yun Yen
- The Translational Research Program of Tzu Chi University, Hualien, Taiwan; College of Medical Technology, Taipei Medical University, Taipei, Taiwan
| | - Shun-Ping Huang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan; Department of Ophthalmology, Taichung Tzu Chi Hospital, Taichung, Taiwan.
| |
Collapse
|
3
|
Bernstein SL, Guo Y, Mehrabian Z, Miller NR. Neuroprotection and Neuroregeneration Strategies Using the rNAION Model: Theory, Histology, Problems, Results and Analytical Approaches. Int J Mol Sci 2022; 23:ijms232415604. [PMID: 36555246 PMCID: PMC9778957 DOI: 10.3390/ijms232415604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/18/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Nonarteritic anterior ischemic optic neuropathy (NAION) is the most common cause of sudden optic nerve (ON)-related vision loss in humans. Study of this disease has been limited by the lack of available tissue and difficulties in evaluating both treatments and the window of effectiveness after symptom onset. The rodent nonarteritic anterior ischemic optic neuropathy model (rNAION) closely resembles clinical NAION in its pathophysiological changes and physiological responses. The rNAION model enables analysis of the specific responses to sudden ischemic axonopathy and effectiveness of potential treatments. However, there are anatomic and genetic differences between human and rodent ON, and the inducing factors for the disease and the model are different. These variables can result in marked differences in lesion development between the two species, as well as in the possible responses to various treatments. These caveats are discussed in the current article, as well as some of the species-associated differences that may be related to ischemic lesion severity and responses.
Collapse
Affiliation(s)
- Steven L. Bernstein
- Department of Ophthalmology and Visual Sciences, University of Maryland at Baltimore School of Medicine, 10 S. Pine St., Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland at Baltimore School of Medicine, 10 S. Pine St., Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-410-706-3712
| | - Yan Guo
- Department of Ophthalmology and Visual Sciences, University of Maryland at Baltimore School of Medicine, 10 S. Pine St., Baltimore, MD 21201, USA
| | - Zara Mehrabian
- Department of Ophthalmology and Visual Sciences, University of Maryland at Baltimore School of Medicine, 10 S. Pine St., Baltimore, MD 21201, USA
| | - Neil R. Miller
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Li D, Gong Y. A Promising Strategy for Non-Arteritic Anterior Ischemic Optic Neuropathy: Intravitreal Mesenchymal Stem Cell Exosome. Curr Stem Cell Res Ther 2021; 16:109-114. [PMID: 32798377 DOI: 10.2174/1574888x15666200814121849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 11/22/2022]
Abstract
Non-arteritic anterior ischemic optic neuropathy (NAION) is a leading cause of optic nerverelated permanent visual impairment among individuals of over 50 years of age after glaucoma. Due to perplexing disorder regarding its pathogenesis, there is still no widely accepted and established treatment plan. Mesenchymal stem cells (MSCs) are one of the rare stem cell types that therapeutic agents for immunomodulation and ischemic tissue repair in clinical practice. However, there are certain disadvantages in using MSCs, such as potential tumorigenicity, need for autologous collection, and short survival time. Previous evidence suggested that MSC-exosome significantly attenuated post-ischemic neuronal damage and induced long-term neuroprotection associated with enhanced angiogenesis in MSCs. Therefore, we hypothesized that the intravitreal administration of MSC-exosome could be a potentially effective therapeutic approach for NAION by using a similar mechanism via promoting angiogenesis, neuro-regeneration, and neurological recovery, suppressing oxidative stress and reducing apoptosis, and suppressing inflammation and immunity based on its biological structure and function in NAION. Questions that need to be answered before testing clinically include dose regimen, injection frequency, the optimal duration of treatment, and duration of medication.
Collapse
Affiliation(s)
- Dongli Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| | - Yuanyuan Gong
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20080, China
| |
Collapse
|
5
|
Transcriptomic Analysis of circRNAs in the Peripheral Blood of Nonarteritic Anterior Ischemic Optic Neuropathy. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5732124. [PMID: 33294447 PMCID: PMC7718056 DOI: 10.1155/2020/5732124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/09/2020] [Accepted: 11/15/2020] [Indexed: 12/20/2022]
Abstract
The aim of the study is to explore the expression profile variation of circular RNAs (circRNAs) in the peripheral blood of subjects with nonarteritic anterior ischemic optic neuropathy (NAION) and without NAION, to analyze the differential expression results, and to predict the role of circRNAs in disease development, providing novel ideas and methods for treatment and diagnosis. High-throughput sequencing to explore the expression profiles of RNAs in the peripheral blood of 6 NAION patients and 5 healthy controls was applied. Quality control obtained the advanced data from the original data by ticking out the unqualified data. Then, cluster analysis, volcano plot, coexpression network, and protein-protein interaction network (PPI) were performed. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway were used to analyze the whole expressed genes. Lastly, the quantitative real-time Polymerase Chain Reaction (qRT-PCR) was used to verify those significantly differentially expressed circRNAs and do some bioinformatics analysis and prediction in 12 NAION patients and 12 controls. There were significant differences in the expression of 49 circRNAs in the peripheral blood of NAION patients, in which there were 24 upregulations and 25 downregulations (variation folds > 2 and P < 0.05), and it was confirmed that hsa_circ_0005583, hsa_circ_0003922, hsa_circ_0002021, and hsa_circ_0000462 were significantly downregulated (variation folds > 2 and P < 0.05), especially hsa_circ_0005583 which was the most significantly changed one (P < 0.001), and are related to processes such as neurodegeneration, oxidative stress, immunity, and metabolism. The expression profile of circRNAs in the peripheral blood of NAION patients is significantly changed, enriching our understanding of the disease.
Collapse
|
6
|
Pereira LS, Ávila MP, Salustiano LX, Paula AC, Arnhold E, McCulley TJ. Intravitreal Triamcinolone Acetonide Injection in a Rodent Model of Anterior Ischemic Optic Neuropathy: Response. J Neuroophthalmol 2019; 39:545-546. [PMID: 31453924 DOI: 10.1097/wno.0000000000000806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Luciano S Pereira
- Department of Ophthalmology, Universidade Federal de Goiás, Goiânia, Brazil Department of Pathology, Universidade Federal de Goiás, Goiânia, Brazil Department of Ophthalmology, Universidade Federal de Goiás, Goiânia, Brazil Department of Statistics, Universidade Federal de Goiás, Goiânia, Brazil The Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland
| | | | | | | | | | | |
Collapse
|
7
|
Harvey JP. Intravitreal Triamcinolone Acetonide Injection in a Rodent Model of Anterior Ischemic Optic Neuropathy: Comment. J Neuroophthalmol 2019; 39:545. [PMID: 31490344 DOI: 10.1097/wno.0000000000000801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Joshua P Harvey
- Ophthalmology Department, King's College Hospital, London, United Kingdom
| |
Collapse
|
8
|
Yao F, Zhang E, Gao Z, Ji H, Marmouri M, Xia X. Did you choose appropriate tracer for retrograde tracing of retinal ganglion cells? The differences between cholera toxin subunit B and Fluorogold. PLoS One 2018; 13:e0205133. [PMID: 30289890 PMCID: PMC6173421 DOI: 10.1371/journal.pone.0205133] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/19/2018] [Indexed: 12/31/2022] Open
Abstract
Cholera toxin subunit B (CTB) and Fluorogold(FG) are two widely utilized retrograde tracers to assess the number and function of retinal ganglion cells (RGCs). However, the relative advantages and disadvantages of these tracers remain unclear, which may lead to their inappropriate application. In this study, we compared these tracers by separately injecting the tracer into the superior Colliculi (SC) in rats, one or 2 weeks later, the rats were sacrificed, and their retinas, brains, and optic nerves were collected. From the first to second week, FG displayed a greater number of labeled RGCs and a larger diffusion area in the SC than CTB; The number of CTB labeled RGCs and the diffusion area of CTB in the SC increased significantly, but there was no distinction between FG; Furthermore, CTB exhibited more labeled RGC neurites and longer neurites than FG, but no difference was evident between the same trace; The optic nerves labeled using CTB were much clearer than those labeled using FG. In conclusion, both CTB and FG can be used for the retrograde labeling of RGCs in rats at 1 or 2 weeks. FG achieves retrograde labeling of a greater number of RGCs than CTB, whereas CTB better delineates the morphology of RGCs. Furthermore, CTB seems more suitable for retrograde labeling of some small, non-image forming nuclei in the brain to which certain RGC subtypes project their axons.
Collapse
Affiliation(s)
- Fei Yao
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Endong Zhang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaolin Gao
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongpei Ji
- Department of Ophthalmology, The People’s Hospital of Guizhou Province, Guiyang, Guizhou, China
| | - Mahmoud Marmouri
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|