1
|
Zabrecky G, Shahrampour S, Whitely C, Alizadeh M, Conklin C, Wintering N, Doghramji K, Zhan T, Mohamed F, Newberg A, Monti D. An fMRI Study of the Effects of Vibroacoustic Stimulation on Functional Connectivity in Patients with Insomnia. SLEEP DISORDERS 2020; 2020:7846914. [PMID: 32089894 PMCID: PMC7024098 DOI: 10.1155/2020/7846914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/23/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND It is well known that vibratory and auditory stimuli from vehicles such as cars and trains can help induce sleep. More recent literature suggests that specific types of vibratory and acoustic stimulation might help promote sleep, but this has not been tested with neuroimaging. Thus, the purpose of this study was to observe the effects of vibroacoustic stimulation (providing both vibratory and auditory stimuli) on functional connectivity changes in the brain using resting state functional magnetic resonance imaging (rs-fMRI), and compare these changes to improvements in sleep in patients with insomnia. METHODS For this study, 30 patients with insomnia were randomly assigned to receive one month of a vibroacoustic stimulation or be placed in a waitlist control. Patients were evaluated pre- and postprogram with qualitative sleep questionnaires and measurement of sleep duration with an actigraphy watch. In addition, patients underwent rs-fMRI to assess functional connectivity. RESULTS The results demonstrated that those patients receiving the vibroacoustic stimulation had significant improvements in measured sleep minutes as well as in scores on the Insomnia Severity Index questionnaire. In addition, significant changes were noted in functional connectivity in association with the vermis, cerebellar hemispheres, thalamus, sensorimotor area, nucleus accumbens, and prefrontal cortex. CONCLUSIONS The results of this study show that vibroacoustic stimulation alters the brain's functional connectivity as well as improves sleep in patients with insomnia.
Collapse
Affiliation(s)
- George Zabrecky
- Department of Integrative Medicine and Nutritional Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Shiva Shahrampour
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Cutler Whitely
- Department of Integrative Medicine and Nutritional Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mahdi Alizadeh
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Chris Conklin
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Nancy Wintering
- Department of Integrative Medicine and Nutritional Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Karl Doghramji
- Sleep Disorders Center, Department of Psychiatry and Human Behavior, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Tingting Zhan
- Department of Biostatistics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Feroze Mohamed
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrew Newberg
- Department of Integrative Medicine and Nutritional Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Daniel Monti
- Department of Integrative Medicine and Nutritional Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
2
|
Zobeiri M, Chaudhary R, Blaich A, Rottmann M, Herrmann S, Meuth P, Bista P, Kanyshkova T, Lüttjohann A, Narayanan V, Hundehege P, Meuth SG, Romanelli MN, Urbano FJ, Pape HC, Budde T, Ludwig A. The Hyperpolarization-Activated HCN4 Channel is Important for Proper Maintenance of Oscillatory Activity in the Thalamocortical System. Cereb Cortex 2019; 29:2291-2304. [PMID: 30877792 PMCID: PMC6458902 DOI: 10.1093/cercor/bhz047] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/15/2019] [Accepted: 02/21/2019] [Indexed: 11/14/2022] Open
Abstract
Hyperpolarization-activated cation channels are involved, among other functions, in learning and memory, control of synaptic transmission and epileptogenesis. The importance of the HCN1 and HCN2 isoforms for brain function has been demonstrated, while the role of HCN4, the third major neuronal HCN subunit, is not known. Here we show that HCN4 is essential for oscillatory activity in the thalamocortical (TC) network. HCN4 is selectively expressed in various thalamic nuclei, excluding the thalamic reticular nucleus. HCN4-deficient TC neurons revealed a massive reduction of Ih and strongly reduced intrinsic burst firing, whereas the current was normal in cortical pyramidal neurons. In addition, evoked bursting in a thalamic slice preparation was strongly reduced in the mutant mice probes. HCN4-deficiency also significantly slowed down thalamic and cortical oscillations during active wakefulness. Taken together, these results establish that thalamic HCN4 channels are essential for the production of rhythmic intrathalamic oscillations and determine regular TC oscillatory activity during alert states.
Collapse
Affiliation(s)
- Mehrnoush Zobeiri
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Rahul Chaudhary
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Anne Blaich
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Rottmann
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Stefan Herrmann
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Patrick Meuth
- Klinik für Neurologie mit Institut für Translationale Neurologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Pawan Bista
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Tatyana Kanyshkova
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Annika Lüttjohann
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Venu Narayanan
- Klinik für Neurologie mit Institut für Translationale Neurologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Petra Hundehege
- Klinik für Neurologie mit Institut für Translationale Neurologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Sven G Meuth
- Klinik für Neurologie mit Institut für Translationale Neurologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, Italy
| | | | - Hans-Christian Pape
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Thomas Budde
- Institut für Physiologie I, Westfälische Wilhelms-Universität, Münster, Germany
| | - Andreas Ludwig
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Jan JE, Bax MCO, Owens JA, Ipsiroglu OS, Wasdell MB. Neurophysiology of circadian rhythm sleep disorders of children with neurodevelopmental disabilities. Eur J Paediatr Neurol 2012; 16:403-12. [PMID: 22264650 DOI: 10.1016/j.ejpn.2012.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 12/28/2011] [Accepted: 01/01/2012] [Indexed: 01/18/2023]
Abstract
This article reviews circadian rhythm sleep disorders (CRSDs) of children with neurodevelopmental disabilities. These sleep disturbances frequently occur in this population but they are misunderstood and under diagnosed. The causes and features of CRSD in children with brain disorders differ in many ways from those seen in typically developing children. It is the brain, including the eyes, which regulates sleep and circadian rhythmicity by modulating pineal melatonin production/secretion and when there is significant brain damage, the sleep/wake patterns may be modified. In most instances CRSD are not disorders of the suprachiasmatic nuclei because these small hypothalamic structures only adjust their functions to the changing photic and non-photic modulatory influences. Each form of CRSD is accompanied by characteristic changes in serum melatonin levels and clinical features. When nocturnal melatonin production/secretion is inappropriately timed or impaired in relation to the environment, timed melatonin replacement therapy will often be beneficial. In this review an attempt is made to clarify the neurophysiological mechanisms underlying the various forms of CRSD because without understanding the photic and non-photic influences on sleep, these sleep disorders can not be fully characterized, defined or even appropriately treated. In the future, the existing definitions for the different forms of CRSD should be modified by experts in pediatric sleep medicine in order to include children with neurodevelopmental disabilities.
Collapse
Affiliation(s)
- James E Jan
- Pediatric Neurology, University of British Columbia, Vancouver, BC, Canada.
| | | | | | | | | |
Collapse
|
5
|
Jan JE, Reiter RJ, Wong PKH, Bax MCO, Ribary U, Wasdell MB. Melatonin has membrane receptor-independent hypnotic action on neurons: an hypothesis. J Pineal Res 2011; 50:233-40. [PMID: 21210841 DOI: 10.1111/j.1600-079x.2010.00844.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Melatonin, which is known to have sleep-promoting properties, has no morpho-physiological barriers and readily enters neurons and their subcellular compartments from both the blood and cerebrospinal fluid. It has multiple receptor-dependent and receptor-independent functions. Sleep is a neuronal function, and it can no longer be postulated that one or more anatomical structures fully control sleep. Neurons require sleep for metabolically driven restorative purposes, and as a result, the process of sleep is modulated by peripheral and central mechanisms. This is an important finding because it suggests that melatonin should have intracellular sleep-inducing properties. Based on recent evidence, it is proposed that melatonin induces sleep at the neuronal level independently of its membrane receptors. Thus, the hypnotic action of melatonin and the mechanisms involving the circadian rhythms are separate neurological functions. This is contrary to the presently accepted view.
Collapse
Affiliation(s)
- James E Jan
- Diagnostic Neurophysiology, BC Children's Hospital, Vancouver, BC, Canada.
| | | | | | | | | | | |
Collapse
|