1
|
Farah A, Patel R, Poplawski P, Wastie BJ, Tseng M, Barry AM, Daifallah O, Dubb A, Paul I, Cheng HL, Feroz F, Su Y, Chan M, Zeilhofer HU, Price TJ, Bennett DL, Bannister K, Dawes JM. A role for leucine-rich, glioma inactivated 1 in regulating pain sensitivity. Brain 2025; 148:1001-1014. [PMID: 39301592 PMCID: PMC11884686 DOI: 10.1093/brain/awae302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Neuronal hyperexcitability is a key driver of persistent pain states, including neuropathic pain. Leucine-rich, glioma inactivated 1 (LGI1) is a secreted protein known to regulate excitability within the nervous system and is the target of autoantibodies from neuropathic pain patients. Therapies that block or reduce antibody levels are effective at relieving pain in these patients, suggesting that LGI1 has an important role in clinical pain. Here we have investigated the role of LGI1 in regulating neuronal excitability and pain-related sensitivity by studying the consequences of genetic ablation in specific neuron populations using transgenic mouse models. LGI1 has been well studied at the level of the brain, but its actions in the spinal cord and peripheral nervous system are poorly understood. We show that LGI1 is highly expressed in dorsal root ganglion (DRG) and spinal cord dorsal horn neurons in both mouse and human. Using transgenic mouse models, we genetically ablated LGI1, either specifically in nociceptors (LGI1fl/Nav1.8+) or in both DRG and spinal neurons (LGI1fl/Hoxb8+). On acute pain assays, we found that loss of LGI1 resulted in mild thermal and mechanical pain-related hypersensitivity when compared with littermate controls. In LGI1fl/Hoxb8+ mice, we found loss of Kv1 currents and hyperexcitability of DRG neurons. LGI1fl/Hoxb8+ mice displayed a significant increase in nocifensive behaviours in the second phase of the formalin test (not observed in LGI1fl/Nav1.8+ mice), and extracellular recordings in LGI1fl/Hoxb8+ mice revealed hyperexcitability in spinal dorsal horn neurons, including enhanced wind-up. Using the spared nerve injury model, we found that LGI1 expression was dysregulated in the spinal cord. LGI1fl/Nav1.8+ mice showed no differences in nerve injury-induced mechanical hypersensitivity, brush-evoked allodynia or spontaneous pain behaviour compared with controls. However, LGI1fl/Hoxb8+ mice showed a significant exacerbation of mechanical hypersensitivity and allodynia. Our findings point to effects of LGI1 at the level of both the DRG and the spinal cord, including an important impact of spinal LGI1 on pathological pain. Overall, we find a novel role for LGI1 with relevance to clinical pain.
Collapse
Affiliation(s)
- Adham Farah
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Ryan Patel
- Wolfson Sensory, Pain & Regeneration Centre, Guy’s Campus, Kings College London, London SE1 1UL, UK
| | - Piotr Poplawski
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Benjamin J Wastie
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Mandy Tseng
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Allison M Barry
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, Department of Neuroscience, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Omar Daifallah
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Akash Dubb
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Ivan Paul
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Hoi lao Cheng
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Faisal Feroz
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Yuhe Su
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Marva Chan
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, 8093 Zurich, Switzerland
| | - Theodore J Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, Department of Neuroscience, University of Texas at Dallas, Richardson, TX 75080, USA
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Kirsty Bannister
- Wolfson Sensory, Pain & Regeneration Centre, Guy’s Campus, Kings College London, London SE1 1UL, UK
| | - John M Dawes
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
2
|
Zeng Y, Sun ML, Liu D, Huang Y, Xie S, Zhao YX, Wu ZX, Liu Y, Ma G, Xie L, Dang YT, Hao LY, Wang QH, Wang HJ, Yang L, Xue ZY, Pan ZQ. Kv3.1 Interaction with UBR5 Is Required for Chronic Inflammatory Pain. Mol Neurobiol 2025; 62:429-444. [PMID: 38865078 DOI: 10.1007/s12035-024-04259-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024]
Abstract
Chronic inflammatory pain caused by neuronal hyperactivity is a common and refractory disease. Kv3.1, a member of the Kv3 family of voltage-dependent K+ channels, is a major determinant of the ability of neurons to generate high-frequency action potentials. However, little is known about its role in chronic inflammatory pain. Here, we show that although Kv3.1 mRNA expression was unchanged, Kv3.1 protein expression was decreased in the dorsal spinal horn of mice after plantar injection of complete Freund's adjuvant (CFA), a mouse model of inflammatory pain. Upregulating Kv3.1 expression alleviated CFA-induced mechanical allodynia and heat hyperalgesia, whereas downregulating Kv3.1 induced nociception-like behaviors. Additionally, we found that ubiquitin protein ligase E3 component n-recognin 5 (UBR5), a key factor in the initiation of chronic pain, binds directly to Kv3.1 to drive its ubiquitin degradation. Intrathecal injection of the peptide TP-CH-401, a Kv3.1 ubiquitination motif sequence, rescued the decrease in Kv3.1 expression and Kv currents through competitive binding to UBR5, and consequently attenuated mechanical and thermal hypersensitivity. These findings demonstrate a previously unrecognized pathway of Kv3.1 abrogation by UBR5 and indicate that Kv3.1 is critically involved in the regulation of nociceptive behavior. Kv3.1 is thus a promising new target for treating inflammatory pain.
Collapse
Affiliation(s)
- Ying Zeng
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Meng-Lan Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Di Liu
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Shan Xie
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Ya-Xuan Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Zi-Xuan Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Ya Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Gan Ma
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Ling Xie
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Yu-Tao Dang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Ling-Yun Hao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Qi-Hui Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Hong-Jun Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Li Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China
| | - Zhou-Ya Xue
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China.
- Department of Anesthesiology, The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, Yancheng, 224008, China.
| | - Zhi-Qiang Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Tong Shan Road no. 209, Xuzhou, 221004, Jiangsu Province, China.
| |
Collapse
|
3
|
Weng HR. Emerging Molecular and Synaptic Targets for the Management of Chronic Pain Caused by Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:3602. [PMID: 38612414 PMCID: PMC11011483 DOI: 10.3390/ijms25073602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Patients with systemic lupus erythematosus (SLE) frequently experience chronic pain due to the limited effectiveness and safety profiles of current analgesics. Understanding the molecular and synaptic mechanisms underlying abnormal neuronal activation along the pain signaling pathway is essential for developing new analgesics to address SLE-induced chronic pain. Recent studies, including those conducted by our team and others using the SLE animal model (MRL/lpr lupus-prone mice), have unveiled heightened excitability in nociceptive primary sensory neurons within the dorsal root ganglia and increased glutamatergic synaptic activity in spinal dorsal horn neurons, contributing to the development of chronic pain in mice with SLE. Nociceptive primary sensory neurons in lupus animals exhibit elevated resting membrane potentials, and reduced thresholds and rheobases of action potentials. These changes coincide with the elevated production of TNFα and IL-1β, as well as increased ERK activity in the dorsal root ganglion, coupled with decreased AMPK activity in the same region. Dysregulated AMPK activity is linked to heightened excitability in nociceptive sensory neurons in lupus animals. Additionally, the increased glutamatergic synaptic activity in the spinal dorsal horn in lupus mice with chronic pain is characterized by enhanced presynaptic glutamate release and postsynaptic AMPA receptor activation, alongside the reduced activity of glial glutamate transporters. These alterations are caused by the elevated activities of IL-1β, IL-18, CSF-1, and thrombin, and reduced AMPK activities in the dorsal horn. Furthermore, the pharmacological activation of spinal GPR109A receptors in microglia in lupus mice suppresses chronic pain by inhibiting p38 MAPK activity and the production of both IL-1β and IL-18, as well as reducing glutamatergic synaptic activity in the spinal dorsal horn. These findings collectively unveil crucial signaling molecular and synaptic targets for modulating abnormal neuronal activation in both the periphery and spinal dorsal horn, offering insights into the development of analgesics for managing SLE-induced chronic pain.
Collapse
Affiliation(s)
- Han-Rong Weng
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA 95757, USA
| |
Collapse
|
4
|
Viatchenko-Karpinski V, Kong L, Weng HR. Deficient AMPK activity contributes to hyperexcitability in peripheral nociceptive sensory neurons and thermal hyperalgesia in lupus mice. PLoS One 2023; 18:e0288356. [PMID: 37440542 PMCID: PMC10343046 DOI: 10.1371/journal.pone.0288356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Patients with systemic lupus erythematosus (SLE) often suffer from chronic pain. Little is known about the peripheral mechanisms underlying the genesis of chronic pain induced by SLE. The aim of this study was to investigate whether and how membrane properties in nociceptive neurons in the dorsal root ganglions (DRGs) are altered by SLE. We found elevation of resting membrane potentials, smaller capacitances, lower action potential thresholds and rheobases in nociceptive neurons in the DRGs from MRL/lpr mice (an SLE mouse model) with thermal hyperalgesia. DRGs from MRL/lpr mice had increased protein expressions in TNFα, IL-1β, and phosphorylated ERK but suppressed AMPK activity, and no changes in sodium channel 1.7 protein expression. We showed that intraplantar injection of Compound C (an AMPK inhibitor) induced thermal hyperalgesia in normal mice while intraplantar injection of AICAR (an AMPK activator) reduced thermal hyperalgesia in MRL/Lpr mice. Upon inhibition of AMPK membrane properties in nociceptive neurons from normal control mice could be rapidly switched to those found in SLE mice with thermal hyperalgesia. Our study indicates that increased excitability in peripheral nociceptive sensory neurons contributes to the genesis of thermal hyperalgesia in mice with SLE, and AMPK regulates membrane properties in nociceptive sensory neurons as well as thermal hyperalgesia in mice with SLE. Our study provides a basis for targeting signaling pathways regulating membrane properties of peripheral nociceptive neurons as a means for conquering chronic pain caused by SLE.
Collapse
Affiliation(s)
| | - Lingwei Kong
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, United States of America
| | - Han-Rong Weng
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA, United States of America
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA, United States of America
| |
Collapse
|
5
|
Dong T, Si H, Li Z, Bai Q, Tao F. Transcriptomic Analysis of Trigeminal Ganglion and Spinal Trigeminal Nucleus Caudalis in Mice with Inflammatory Temporomandibular Joint Pain. J Pain Res 2022; 15:1487-1502. [PMID: 35633917 PMCID: PMC9141904 DOI: 10.2147/jpr.s364887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/17/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Persistent facial pain heavily impacts the quality of life in patients with temporomandibular joint (TMJ) disorders. Previous studies have demonstrated that long non-coding ribonucleic acid (lncRNA) is an important regulator of pain. In this study, we aimed to analyze lncRNA expression in the whole transcriptome of trigeminal ganglia (TG) and spinal trigeminal nucleus caudalis (Sp5C) in a chronic inflammatory TMJ pain mouse model. METHODS Chronic inflammatory TMJ pain was induced by intra-TMJ injection of complete Freund's adjuvant (CFA). Mouse TG and Sp5C tissues were harvested on day 4 after CFA injection. The lncRNA expression patterns in the whole transcriptome of TG and Sp5C were profiled with RNA sequencing. RESULTS We observed that 38 lncRNAs and 849 mRNAs were differentially expressed after CFA treatment. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis further revealed relationships among those differentially expressed lncRNAs and mRNAs and their potential functions. Specific categories of biological process, cellular processes, and molecular function of the differentially expressed transcripts were ascertained. CONCLUSION Our results suggest that lncRNA expression in the whole transcriptome of trigeminal nociceptive system could contribute to the molecular mechanisms that underlie chronic inflammatory TMJ pain.
Collapse
Affiliation(s)
- Tieli Dong
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Haichao Si
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
- Department of Anesthesiology, Nanyang Central Hospital, Nanyang, People’s Republic of China
| | - Zhisong Li
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Qian Bai
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Feng Tao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| |
Collapse
|
6
|
Sun Z, Waybright JM, Beldar S, Chen L, Foley CA, Norris‐Drouin JL, Lyu T, Dong A, Min J, Wang Y, James LI, Wang Y. Cdyl Deficiency Brakes Neuronal Excitability and Nociception through Promoting Kcnb1 Transcription in Peripheral Sensory Neurons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104317. [PMID: 35119221 PMCID: PMC8981457 DOI: 10.1002/advs.202104317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/28/2021] [Indexed: 05/24/2023]
Abstract
Epigenetic modifications are involved in the onset, development, and maintenance of pain; however, the precise epigenetic mechanism underlying pain regulation remains elusive. Here it is reported that the epigenetic factor chromodomain Y-like (CDYL) is crucial for pain processing. Selective knockout of CDYL in sensory neurons results in decreased neuronal excitability and nociception. Moreover, CDYL facilitates histone 3 lysine 27 trimethylation (H3K27me3) deposition at the Kcnb1 intron region thus silencing voltage-gated potassium channel (Kv ) subfamily member Kv 2.1 transcription. Loss function of CDYL enhances total Kv and Kv 2.1 current density in dorsal root ganglia and knockdown of Kv 2.1 reverses the pain-related phenotypes of Cdyl deficiency mice. Furthermore, focal administration of a novel potent CDYL antagonist blunts nociception and attenuates neuropathic pain. These findings reveal that CDYL is a critical regulator of pain sensation and shed light on the development of novel analgesics targeting epigenetic mechanisms.
Collapse
Affiliation(s)
- Zhao‐Wei Sun
- Neuroscience Research Institute and Department of NeurobiologySchool of Basic Medical SciencesKey Laboratory for NeuroscienceMinistry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijing100083China
- Institute of Military Cognitive and Brain SciencesAcademy of Military Medical SciencesBeijing100039China
| | - Jarod M. Waybright
- Center for Integrative Chemical Biology and Drug DiscoveryDivision of Chemical Biology and Medicinal ChemistryUNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - Serap Beldar
- Structural Genomics ConsortiumUniversity of Toronto101 College StreetTorontoOntarioM5G 1L7Canada
| | - Lu Chen
- Neuroscience Research Institute and Department of NeurobiologySchool of Basic Medical SciencesKey Laboratory for NeuroscienceMinistry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijing100083China
| | - Caroline A. Foley
- Center for Integrative Chemical Biology and Drug DiscoveryDivision of Chemical Biology and Medicinal ChemistryUNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - Jacqueline L. Norris‐Drouin
- Center for Integrative Chemical Biology and Drug DiscoveryDivision of Chemical Biology and Medicinal ChemistryUNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - Tian‐Jie Lyu
- Neuroscience Research Institute and Department of NeurobiologySchool of Basic Medical SciencesKey Laboratory for NeuroscienceMinistry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijing100083China
| | - Aiping Dong
- Structural Genomics ConsortiumUniversity of Toronto101 College StreetTorontoOntarioM5G 1L7Canada
| | - Jinrong Min
- Structural Genomics ConsortiumUniversity of Toronto101 College StreetTorontoOntarioM5G 1L7Canada
- Hubei Key Laboratory of Genetic Regulation and Integrative BiologySchool of Life SciencesCentral China Normal UniversityWuhanHubei430079China
- Department of PhysiologyUniversity of TorontoTorontoOntarioM5S 1A8Canada
| | - Yu‐Pu Wang
- Neuroscience Research Institute and Department of NeurobiologySchool of Basic Medical SciencesKey Laboratory for NeuroscienceMinistry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijing100083China
| | - Lindsey I. James
- Center for Integrative Chemical Biology and Drug DiscoveryDivision of Chemical Biology and Medicinal ChemistryUNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNC27599USA
| | - Yun Wang
- Neuroscience Research Institute and Department of NeurobiologySchool of Basic Medical SciencesKey Laboratory for NeuroscienceMinistry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic DrugsPeking UniversityBeijing100083China
- PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| |
Collapse
|
7
|
IQM-PC332, a Novel DREAM Ligand with Antinociceptive Effect on Peripheral Nerve Injury-Induced Pain. Int J Mol Sci 2022; 23:ijms23042142. [PMID: 35216258 PMCID: PMC8876042 DOI: 10.3390/ijms23042142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 02/04/2023] Open
Abstract
Neuropathic pain is a form of chronic pain arising from damage of the neural cells that sense, transmit or process sensory information. Given its growing prevalence and common refractoriness to conventional analgesics, the development of new drugs with pain relief effects constitutes a prominent clinical need. In this respect, drugs that reduce activity of sensory neurons by modulating ion channels hold the promise to become effective analgesics. Here, we evaluated the mechanical antinociceptive effect of IQM-PC332, a novel ligand of the multifunctional protein downstream regulatory element antagonist modulator (DREAM) in rats subjected to chronic constriction injury of the sciatic nerve as a model of neuropathic pain. IQM-PC332 administered by intraplantar (0.01–10 µg) or intraperitoneal (0.02–1 µg/kg) injection reduced mechanical sensitivity by ≈100% of the maximum possible effect, with ED50 of 0.27 ± 0.05 µg and 0.09 ± 0.01 µg/kg, respectively. Perforated-patch whole-cell recordings in isolated dorsal root ganglion (DRG) neurons showed that IQM-PC332 (1 and 10 µM) reduced ionic currents through voltage-gated K+ channels responsible for A-type potassium currents, low, T-type, and high voltage-activated Ca2+ channels, and transient receptor potential vanilloid-1 (TRPV1) channels. Furthermore, IQM-PC332 (1 µM) reduced electrically evoked action potentials in DRG neurons from neuropathic animals. It is suggested that by modulating multiple DREAM–ion channel signaling complexes, IQM-PC332 may serve a lead compound of novel multimodal analgesics.
Collapse
|
8
|
Stack E, McMurray S, McMurray G, Wade J, Clark M, Young G, Marquette K, Jain S, Kelleher K, Chen T, Lin Q, Bloom L, Lin L, Finlay W, Suzuki R, Cunningham O. In vitro affinity optimization of an anti-BDNF monoclonal antibody translates to improved potency in targeting chronic pain states in vivo. MAbs 2020; 12:1755000. [PMID: 32329655 PMCID: PMC7188400 DOI: 10.1080/19420862.2020.1755000] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The role of brain-derived neurotrophic factor (BDNF) signaling in chronic pain has been well documented. Given the important central role of BDNF in long term plasticity and memory, we sought to engineer a high affinity, peripherally-restricted monoclonal antibody against BDNF to modulate pain. BDNF shares 100% sequence homology across human and rodents; thus, we selected chickens as an alternative immune host for initial antibody generation. Here, we describe the affinity optimization of complementarity-determining region-grafted, chicken-derived R3bH01, an anti-BDNF antibody specifically blocking the TrkB receptor interaction. Antibody optimization led to the identification of B30, which has a > 300-fold improvement in affinity based on BIAcore, an 800-fold improvement in potency in a cell-based pERK assay and demonstrates exquisite selectivity over related neurotrophins. Affinity improvements measured in vitro translated to in vivo pharmacological activity, with B30 demonstrating a 30-fold improvement in potency over parental R3bH01 in a peripheral nerve injury model. We further demonstrate that peripheral BDNF plays a role in maintaining the plasticity of sensory neurons following nerve damage, with B30 reversing neuron hyperexcitability associated with heat and mechanical stimuli in a dose-dependent fashion. In summary, our data demonstrate that effective sequestration of BDNF via a high affinity neutralizing antibody has potential utility in modulating the pathophysiological mechanisms that drive chronic pain states.
Collapse
Affiliation(s)
| | | | | | - Jason Wade
- Biomedicine Design, Pfizer, Dublin, Ireland.,Biomedicine Design, Pfizer, Cambridge, US
| | | | | | | | | | | | - Ting Chen
- Biomedicine Design, Pfizer, Cambridge, US
| | | | | | - Laura Lin
- Biomedicine Design, Pfizer, Cambridge, US
| | | | | | | |
Collapse
|
9
|
Hong J, Qiu J, Wang X, Zhang G. Characteristics of voltage-gated potassium currents in monosodium urate induced gouty arthritis in mice. Inflamm Res 2020; 69:589-598. [PMID: 32306120 DOI: 10.1007/s00011-020-01343-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 01/15/2020] [Accepted: 03/26/2020] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE To evaluate the role of K+ channels in pain following gouty arthritis. METHODS The model of acute gouty arthritis was induced by monosodium urate (MSU) in mice. The swelling degree was determined by measuring the circumference of the ankle joint. Mechanical hyperalgesia was detected by von Frey filaments. Two types of K+ currents, A-type currents (IA) and delayed rectifier currents (IK), were recorded in dorsal root ganglion (DRG) neurons using patch-clamp techniques. RESULTS The swelling degree reached its maximum at 10 h and the minimum pain threshold was maintained between 8 and 48 h after MSU treatment in mice. The amplitudes of IA and IK in DRG neurons were moderately increased on day 1 after MSU treatment, and then, they were gradually decreased with times and reached their minimums on day 4 (for IA) or 5 (for IK). Compared with control group, the activation curve of IA was significantly shifted to more positive potential and the recovery time of IA from inactivation was markedly prolonged, but inactivation and frequency dependence of IA appeared unaffected in MSU-treated group. Additionally, no change was observed in the activation curve of IK after MSU treatment. The excitability was significantly higher in the MSU group than in the control group. CONCLUSIONS MSU-induced gout pain may be related to the hyperexcitability of DRG neurons elicited by decreasing K+ currents.
Collapse
Affiliation(s)
- Jiangru Hong
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jie Qiu
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiniao Wang
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Guangqin Zhang
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
10
|
Chen QY, Tan CY, Wang Y, Ma KT, Li L, Si JQ. Mechanism of persistent hyperalgesia in neuropathic pain caused by chronic constriction injury. Neural Regen Res 2019; 14:1091-1098. [PMID: 30762024 PMCID: PMC6404508 DOI: 10.4103/1673-5374.250631] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Transmembrane member 16A (TMEM16A) is involved in many physiological functions, such as epithelial secretion, sensory conduction, nociception, control of neuronal excitability, and regulation of smooth muscle contraction, and may be important in peripheral pain transmission. To explore the role of TMEM16A in the persistent hyperalgesia that results from chronic constriction injury-induced neuropathic pain, a rat model of the condition was established by ligating the left sciatic nerve. A TMEM16A selective antagonist (10 μg T16Ainh-A01) was intrathecally injected at L5-6. For measurement of thermal hyperalgesia, the drug was administered once at 14 days and thermal withdrawal latency was recorded with an analgesia meter. For measurement of other indexes, the drug was administered at 12 days, once every 6 hours, totally five times. The measurements were performed at 14 days. Western blot assay was conducted to analyze TMEM16A expression in the L4-6 dorsal root ganglion. Immunofluorescence staining was used to detect the immunoreactivity of TMEM16A in the L4-6 dorsal root ganglion on the injured side. Patch clamp was used to detect electrophysiological changes in the neurons in the L4-6 dorsal root ganglion. Our results demonstrated that thermal withdrawal latency was shortened in the model rats compared with control rats. Additionally, TMEM16A expression and the number of TMEM16A positive cells in the L4-6 dorsal root ganglion were higher in the model rats, which induced excitation of the neurons in the L4-6 dorsal root ganglion. These findings were inhibited by T16Ainh-A01 and confirm that TMEM16A plays a key role in persistent chronic constriction injury-induced hyperalgesia. Thus, inhibiting TMEM16A might be a novel pharmacological intervention for neuropathic pain. All experimental protocols were approved by the Animal Ethics Committee at the First Affiliated Hospital of Shihezi University School of Medicine, China (approval No. A2017-170-01) on February 27, 2017.
Collapse
Affiliation(s)
- Qin-Yi Chen
- Department of Anesthesiology, First Affiliated Hospital of Shihezi University; Department of Physiology, Medical College of Shihezi University; Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Chao-Yang Tan
- Department of Physiology, Medical College of Shihezi University; Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Yang Wang
- Department of Physiology, Medical College of Shihezi University; Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Ke-Tao Ma
- Department of Physiology, Medical College of Shihezi University; Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Li Li
- Department of Physiology, Medical College of Shihezi University; Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region, China
| | - Jun-Qiang Si
- Department of Physiology, Medical College of Shihezi University; Key Laboratory of Xinjiang Endemic and Ethnic Disease, Shihezi University School of Medicine, Shihezi, Xinjiang Uygur Autonomous Region; Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
11
|
Sheng A, Hong J, Zhang L, Zhang Y, Zhang G. The Distributions of Voltage-Gated K + current Subtypes in Different Cell Sizes from Adult Mouse Dorsal Root Ganglia. J Membr Biol 2018; 251:573-579. [PMID: 29594433 DOI: 10.1007/s00232-018-0033-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 03/26/2018] [Indexed: 01/21/2023]
Abstract
Voltage-gated K+ (KV) currents play a crucial role in regulating pain by controlling neuronal excitability, and are divided into transient A-type currents (IA) and delayed rectifier currents (IK). The dorsal root ganglion (DRG) neurons are heterogeneous and the subtypes of KV currents display different levels in distinct cell sizes. To observe correlations of the subtypes of KV currents with DRG cell sizes, KV currents were recorded by whole-cell patch clamp in freshly isolated mouse DRG neurons. Results showed that IA occupied a high proportion in KV currents in medium- and large-diameter DRG neurons, whereas IK possessed a larger proportion of KV currents in small-diameter DRG neurons. A lower correlation was found between the proportion of IA or IK in KV currents and cell sizes. These data suggest that IA channels are mainly expressed in medium and large cells and IK channels are predominantly expressed in small cells.
Collapse
Affiliation(s)
- Anqi Sheng
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiangru Hong
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lulu Zhang
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Zhang
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Guangqin Zhang
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
12
|
Sheng A, Zhang Y, Li G, Zhang G. Inhibitory Effects of Honokiol on the Voltage-Gated Potassium Channels in Freshly Isolated Mouse Dorsal Root Ganglion Neurons. Neurochem Res 2017; 43:450-457. [PMID: 29177805 DOI: 10.1007/s11064-017-2440-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/17/2017] [Accepted: 11/22/2017] [Indexed: 01/06/2023]
Abstract
Voltage-gated potassium (KV) currents, subdivided into rapidly inactivating A-type currents (I A) and slowly inactivating delayed rectifier currents (I K), play a fundamental role in modulating pain by controlling neuronal excitability. The effects of Honokiol (Hon), a natural biphenolic compound derived from Magnolia officinalis, on KV currents were investigated in freshly isolated mouse dorsal root ganglion neurons using the whole-cell patch clamp technique. Results showed that Hon inhibited I A and I K in concentration-dependent manner. The IC50 values for block of I A and I K were 30.5 and 25.7 µM, respectively. Hon (30 µM) shifted the steady-state activation curves of I A and I K to positive potentials by 17.6 and 16.7 mV, whereas inactivation and recovery from the inactivated state of I A were unaffected. These results suggest that Hon preferentially interacts with the active states of the I A and I K channels, and has no effect on the resting state and inactivated state of the I A channel. Blockade on K+ channels by Hon may contribute to its antinociceptive effect, especially anti-inflammatory pain.
Collapse
Affiliation(s)
- Anqi Sheng
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Zhang
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Guang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Guangqin Zhang
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
13
|
Human dorsal-root-ganglion perfusion measured in-vivo by MRI. Neuroimage 2016; 141:81-87. [DOI: 10.1016/j.neuroimage.2016.07.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/02/2016] [Accepted: 07/12/2016] [Indexed: 01/21/2023] Open
|