1
|
Motanis H, Khorasani LN, Giza CC, Harris NG. Peering into the Brain through the Retrosplenial Cortex to Assess Cognitive Function of the Injured Brain. Neurotrauma Rep 2021; 2:564-580. [PMID: 34901949 PMCID: PMC8655812 DOI: 10.1089/neur.2021.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The retrosplenial cortex (RSC) is a posterior cortical area that has been drawing increasing interest in recent years, with a growing number of studies studying its contribution to cognitive and sensory functions. From an anatomical perspective, it has been established that the RSC is extensively and often reciprocally connected with the hippocampus, neocortex, and many midbrain regions. Functionally, the RSC is an important hub of the default-mode network. This endowment, with vast anatomical and functional connections, positions the RSC to play an important role in episodic memory, spatial and contextual learning, sensory-cognitive activities, and multi-modal sensory information processing and integration. Additionally, RSC dysfunction has been reported in cases of cognitive decline, particularly in Alzheimer's disease and stroke. We review the literature to examine whether the RSC can act as a cortical marker of persistent cognitive dysfunction after traumatic brain injury (TBI). Because the RSC is easily accessible at the brain's surface using in vivo techniques, we argue that studying RSC network activity post-TBI can shed light into the mechanisms of less-accessible brain regions, such as the hippocampus. There is a fundamental gap in the TBI field about the microscale alterations occurring post-trauma, and by studying the RSC's neuronal activity at the cellular level we will be able to design better therapeutic tools. Understanding how neuronal activity and interactions produce normal and abnormal activity in the injured brain is crucial to understanding cognitive dysfunction. By using this approach, we expect to gain valuable insights to better understand brain disorders like TBI.
Collapse
Affiliation(s)
- Helen Motanis
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Laila N. Khorasani
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Christopher C. Giza
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- Department of Pediatrics, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
| | - Neil G. Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, Geffen Medical School, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- Intellectual Development and Disabilities Research Center, UCLA Mattel Children's Hospital, University of California at Los Angeles, Los Angeles, California, USA
- *Address correspondence to: Neil G. Harris, PhD, Department of Neurosurgery, University of California at Los Angeles, Wasserman Building, 300 Stein Plaza, Room 551, Los Angeles, CA 90095, USA;
| |
Collapse
|
2
|
Martinez-Tapia RJ, Estrada-Rojo F, Lopez-Aceves TG, Rodríguez-Mata V, Perez-Torres A, Barajas-Martinez A, Garcia-Velasco S, Ugalde-Muñiz P, Navarro L. Diurnal Variation Induces Neurobehavioral and Neuropathological Differences in a Rat Model of Traumatic Brain Injury. Front Neurosci 2020; 14:564992. [PMID: 33132827 PMCID: PMC7550533 DOI: 10.3389/fnins.2020.564992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/25/2020] [Indexed: 01/21/2023] Open
Abstract
Traumatic brain injury (TBI) induces two types of brain damage: primary and secondary. Damage initiates a series of pathophysiological processes, such as metabolic crisis, excitotoxicity with oxidative stress-induced damage, and neuroinflammation. The long-term perpetuation of these processes has deleterious consequences for neuronal function. However, it remains to be elucidated further whether physiological variation in the brain microenvironment, depending on diurnal variations, influences the damage, and consequently, exerts a neuroprotective effect. Here, we established an experimental rat model of TBI and evaluated the effects of TBI induced at two different time points of the light–dark cycle. Behavioral responses were assessed using a 21-point neurobehavioral scale and the cylinder test. Morphological damage was assessed in different regions of the central nervous system. We found that rats that experienced a TBI during the dark hours had better behavioral performance than those injured during the light hours. Differences in behavioral performance correlated with less morphological damage in the perilesional zone. Moreover, certain brain areas (CA1 and dentate gyrus subregions of the hippocampus) were less prone to damage in rats that experienced a TBI during the dark hours. Our results suggest that diurnal variation is a crucial determinant of TBI outcome, and the hour of the day at which an injury occurs should be considered for future research.
Collapse
Affiliation(s)
| | - Francisco Estrada-Rojo
- Departamento de Fisiologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Teresita Guadalupe Lopez-Aceves
- Programa Regional de Posgrado en Biotecnologia, Facultad de Ciencias Quimico Biologicas, Universidad Autonoma de Sinaloa, Culiacán, Mexico
| | - Veronica Rodríguez-Mata
- Departamento de Biologia Celular y Tisular, Facultad de Medicina, Universidad Nacional Autonoma de México, Mexico City, Mexico
| | - Armando Perez-Torres
- Departamento de Biologia Celular y Tisular, Facultad de Medicina, Universidad Nacional Autonoma de México, Mexico City, Mexico
| | - Antonio Barajas-Martinez
- Departamento de Fisiologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Stephany Garcia-Velasco
- Departamento de Fisiologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Perla Ugalde-Muñiz
- Departamento de Fisiologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Luz Navarro
- Departamento de Fisiologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| |
Collapse
|
3
|
Traumatic brain injury and the misuse of alcohol, opioids, and cannabis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 157:195-243. [PMID: 33648670 DOI: 10.1016/bs.irn.2020.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Traumatic brain injury (TBI), most often classified as concussion, is caused by biomechanical forces to the brain resulting in short- or long-term impairment in brain function. TBI resulting from military combat, sports, violence, falls, and vehicular accidents is a major cause of long-term physical, cognitive, and psychiatric dysfunction. Psychiatric disorders associated with TBI include depression, anxiety, and substance use disorder, all having significant implications for post-TBI recovery and rehabilitation. This chapter reviews the current preclinical and clinical literature describing the bidirectional relationship between TBI and misuse of three commonly abused drugs: alcohol, opioids, and cannabis. We highlight the influence of each of these drugs on the incidence of TBI, as well as trends in their use after TBI. Furthermore, we discuss factors that may underlie post-injury substance use. Understanding the complex relationship between TBI and substance misuse will enhance the clinical treatment of individuals suffering from these two highly comorbid conditions.
Collapse
|
4
|
Hou J, Nelson R, Mohammad N, Mustafa G, Plant D, Thompson FJ, Bose P. Effect of Simultaneous Combined Treadmill Training and Magnetic Stimulation on Spasticity and Gait Impairments after Cervical Spinal Cord Injury. J Neurotrauma 2020; 37:1999-2013. [DOI: 10.1089/neu.2019.6961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Jiamei Hou
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
- BRRC, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| | - Rachel Nelson
- BRRC, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| | - Naweed Mohammad
- BRRC, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| | - Golam Mustafa
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
- BRRC, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| | - Daniel Plant
- Research Service, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
| | - Floyd J. Thompson
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
- BRRC, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
- Department of Neuroscience, University of Florida, Gainesville, Florida, USA
| | - Prodip Bose
- Department of Physiological Sciences, University of Florida, Gainesville, Florida, USA
- BRRC, North Florida/South Georgia Veterans Health System, Gainesville, Florida, USA
- Department of Anesthesiology, University of Florida, Gainesville, Florida, USA
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Folweiler KA, Samuel S, Metheny HE, Cohen AS. Diminished Dentate Gyrus Filtering of Cortical Input Leads to Enhanced Area Ca3 Excitability after Mild Traumatic Brain Injury. J Neurotrauma 2018; 35:1304-1317. [PMID: 29338620 PMCID: PMC5962932 DOI: 10.1089/neu.2017.5350] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mild traumatic brain injury (mTBI) disrupts hippocampal function and can lead to long-lasting episodic memory impairments. The encoding of episodic memories relies on spatial information processing within the hippocampus. As the primary entry point for spatial information into the hippocampus, the dentate gyrus is thought to function as a physiological gate, or filter, of afferent excitation before reaching downstream area Cornu Ammonis (CA3). Although injury has previously been shown to alter dentate gyrus network excitability, it is unknown whether mTBI affects dentate gyrus output to area CA3. In this study, we assessed hippocampal function, specifically the interaction between the dentate gyrus and CA3, using behavioral and electrophysiological techniques in ex vivo brain slices 1 week following mild lateral fluid percussion injury (LFPI). Behaviorally, LFPI mice were found to be impaired in an object-place recognition task, indicating that spatial information processing in the hippocampus is disrupted. Extracellular recordings and voltage-sensitive dye imaging demonstrated that perforant path activation leads to the aberrant spread of excitation from the dentate gyrus into area CA3 along the mossy fiber pathway. These results suggest that after mTBI, the dentate gyrus has a diminished capacity to regulate cortical input into the hippocampus, leading to increased CA3 network excitability. The loss of the dentate filtering efficacy reveals a potential mechanism by which hippocampal-dependent spatial information processing is disrupted, and may contribute to memory dysfunction after mTBI.
Collapse
Affiliation(s)
- Kaitlin A. Folweiler
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Anesthesiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sandy Samuel
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Anesthesiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hannah E. Metheny
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Anesthesiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Akiva S. Cohen
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Anesthesiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Hou J, Nelson R, Wilkie Z, Mustafa G, Tsuda S, Thompson FJ, Bose P. Mild and Mild-to-Moderate Traumatic Brain Injury-Induced Significant Progressive and Enduring Multiple Comorbidities. J Neurotrauma 2017; 34:2456-2466. [PMID: 28376701 DOI: 10.1089/neu.2016.4851] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) can produce life-long disabilities, including anxiety, cognitive, balance, and motor deficits. The experimental model of closed head TBI (cTBI) induced by weight drop/impact acceleration is known to produce hallmark TBI injuries. However, comprehensive long-term characterization of comorbidities induced by graded mild-to- mild/moderate intensities using this experimental cTBI model has not been reported. The present study used two intensities of weight drop (1.0 m and 1.25 m/450 g) to produce cTBI in a rat model to investigate initial and long-term disability of four comorbidities: anxiety, cognitive, vestibulomotor, and spinal reflex that related to spasticity. TBI and sham injuries were produced under general anesthesia. Time for righting recoveries post-TBI recorded to estimate duration of unconsciousness, revealed that the TBI mild/moderate group required a mean of 1 min 27 sec longer than the values observed for noninjured sham animals. Screening magnetic resonance imaging images revealed no anatomical changes, mid-line shifts, or hemorrhagic volumes. However, compared to sham injuries, significant long-term anxiety, cognitive, balance, and physiological changes in motor reflex related to spasticity were observed post-TBI for both TBI intensities. The longitudinal trajectory of anxiety and balance disabilities tested at 2, 4, 8, and 18 weeks revealed progressively worsening disabilities. In general, disability magnitudes were proportional to injury intensity for three of the four measures. A natural hypothesis would pose that all disabilities would increase incrementally relative to injury severity. Surprisingly, anxiety disability progressed over time to be greater in the mildest injury. Collectively, translational implications of these observations suggest that patients with mild TBI should be evaluated longitudinally at multiple time points, and that anxiety disorder could potentially have a particularly low threshold for appearance and progressively worsen post-injury.
Collapse
Affiliation(s)
- Jiamei Hou
- 1 Department of Physiological Sciences at the University of Florida , Gainesville, Florida.,2 BRRC , North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Rachel Nelson
- 2 BRRC , North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Zachary Wilkie
- 2 BRRC , North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Golam Mustafa
- 1 Department of Physiological Sciences at the University of Florida , Gainesville, Florida.,2 BRRC , North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Shigeharu Tsuda
- 1 Department of Physiological Sciences at the University of Florida , Gainesville, Florida.,2 BRRC , North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Floyd J Thompson
- 1 Department of Physiological Sciences at the University of Florida , Gainesville, Florida.,2 BRRC , North Florida/South Georgia Veterans Health System, Gainesville, Florida.,3 Department of Neuroscience, University of Florida , Gainesville, Florida
| | - Prodip Bose
- 1 Department of Physiological Sciences at the University of Florida , Gainesville, Florida.,2 BRRC , North Florida/South Georgia Veterans Health System, Gainesville, Florida.,4 Department of Neurology, University of Florida , Gainesville, Florida
| |
Collapse
|
7
|
Bu W, Ren H, Deng Y, Del Mar N, Guley NM, Moore BM, Honig MG, Reiner A. Mild Traumatic Brain Injury Produces Neuron Loss That Can Be Rescued by Modulating Microglial Activation Using a CB2 Receptor Inverse Agonist. Front Neurosci 2016; 10:449. [PMID: 27766068 PMCID: PMC5052277 DOI: 10.3389/fnins.2016.00449] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/20/2016] [Indexed: 12/12/2022] Open
Abstract
We have previously reported that mild TBI created by focal left-side cranial blast in mice produces widespread axonal injury, microglial activation, and a variety of functional deficits. We have also shown that these functional deficits are reduced by targeting microglia through their cannabinoid type-2 (CB2) receptors using 2-week daily administration of the CB2 inverse agonist SMM-189. CB2 inverse agonists stabilize the G-protein coupled CB2 receptor in an inactive conformation, leading to increased phosphorylation and nuclear translocation of the cAMP response element binding protein (CREB), and thus bias activated microglia from a pro-inflammatory M1 to a pro-healing M2 state. In the present study, we showed that SMM-189 boosts nuclear pCREB levels in microglia in several brain regions by 3 days after TBI, by using pCREB/CD68 double immunofluorescent labeling. Next, to better understand the basis of motor deficits and increased fearfulness after TBI, we used unbiased stereological methods to characterize neuronal loss in cortex, striatum, and basolateral amygdala (BLA) and assessed how neuronal loss was affected by SMM-189 treatment. Our stereological neuron counts revealed a 20% reduction in cortical and 30% reduction in striatal neurons bilaterally at 2-3 months post blast, with SMM-189 yielding about 50% rescue. Loss of BLA neurons was restricted to the blast side, with 33% of Thy1+ fear-suppressing pyramidal neurons and 47% of fear-suppressing parvalbuminergic (PARV) interneurons lost, and Thy1-negative fear-promoting pyramidal neurons not significantly affected. SMM-189 yielded 50-60% rescue of Thy1+ and PARV neuron loss in BLA. Thus, fearfulness after mild TBI may result from the loss of fear-suppressing neuron types in BLA, and SMM-189 may reduce fearfulness by their rescue. Overall, our findings indicate that SMM-189 rescues damaged neurons and thereby alleviates functional deficits resulting from TBI, apparently by selectively modulating microglia to the beneficial M2 state. CB2 inverse agonists thus represent a promising therapeutic approach for mitigating neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Wei Bu
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Huiling Ren
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Yunping Deng
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Nobel Del Mar
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Natalie M. Guley
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Bob M. Moore
- Department of Pharmaceutical Sciences, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Marcia G. Honig
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
| | - Anton Reiner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphis, TN, USA
- Department of Ophthalmology, University of Tennessee Health Science CenterMemphis, TN, USA
| |
Collapse
|
8
|
Osier ND, Dixon CE. The Controlled Cortical Impact Model: Applications, Considerations for Researchers, and Future Directions. Front Neurol 2016; 7:134. [PMID: 27582726 PMCID: PMC4987613 DOI: 10.3389/fneur.2016.00134] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/02/2016] [Indexed: 12/26/2022] Open
Abstract
Controlled cortical impact (CCI) is a mechanical model of traumatic brain injury (TBI) that was developed nearly 30 years ago with the goal of creating a testing platform to determine the biomechanical properties of brain tissue exposed to direct mechanical deformation. Initially used to model TBIs produced by automotive crashes, the CCI model rapidly transformed into a standardized technique to study TBI mechanisms and evaluate therapies. CCI is most commonly produced using a device that rapidly accelerates a rod to impact the surgically exposed cortical dural surface. The tip of the rod can be varied in size and geometry to accommodate scalability to difference species. Typically, the rod is actuated by a pneumatic piston or electromagnetic actuator. With some limits, CCI devices can control the velocity, depth, duration, and site of impact. The CCI model produces morphologic and cerebrovascular injury responses that resemble certain aspects of human TBI. Commonly observed are graded histologic and axonal derangements, disruption of the blood-brain barrier, subdural and intra-parenchymal hematoma, edema, inflammation, and alterations in cerebral blood flow. The CCI model also produces neurobehavioral and cognitive impairments similar to those observed clinically. In contrast to other TBI models, the CCI device induces a significantly pronounced cortical contusion, but is limited in the extent to which it models the diffuse effects of TBI; a related limitation is that not all clinical TBI cases are characterized by a contusion. Another perceived limitation is that a non-clinically relevant craniotomy is performed. Biomechanically, this is irrelevant at the tissue level. However, craniotomies are not atraumatic and the effects of surgery should be controlled by including surgical sham control groups. CCI devices have also been successfully used to impact closed skulls to study mild and repetitive TBI. Future directions for CCI research surround continued refinements to the model through technical improvements in the devices (e.g., minimizing mechanical sources of variation). Like all TBI models, publications should report key injury parameters as outlined in the NIH common data elements (CDEs) for pre-clinical TBI.
Collapse
Affiliation(s)
- Nicole D. Osier
- Department of Acute and Tertiary Care, University of Pittsburgh School of Nursing, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, Pittsburgh, PA, USA
| | - C. Edward Dixon
- Safar Center for Resuscitation Research, Pittsburgh, PA, USA
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| |
Collapse
|