1
|
Cheng YY, Yao Q, Miao Y, Guan W. Metformin as a potential antidepressant: Mechanisms and therapeutic insights in depression. Biochem Pharmacol 2025; 233:116773. [PMID: 39894309 DOI: 10.1016/j.bcp.2025.116773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/03/2025] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
Depression is one of the most disabling psychiatric disorders, whose pathophysiology has not been fully understood. Increasing numbers of preclinical studies have highlighted that metformin, as the first-line hypoglycaemic agent, has a potential pleiotropic effect on depression. Moreover, there is emerging evidence that metformin shows antidepressant activity and improves depressive symptoms in rodent models of depression. However, the exact role and underlying mechanism of metformin in depression remain unclear and still need to be investigated. Recent studies suggest that metformin not only improves neuronal damage and structural plasticity in the hippocampus but also enhances the antidepressant effect of antidepressants. Therefore, in this review, we summarize the existing evidence for the use of metformin as a psychopharmaceutical and elaborate on the underlying mechanisms of metformin in mitigating the onset and progression of depression, as well as the associated biochemical signaling pathways and targets involved in the pathogenesis of depression. After reviewing several studies, we conclude that metformin helps reduce depressive symptoms by targeting multiple pathways, including the regulation of neurotransmitters, enhanced neurogenesis, anti-inflammatory effects, and changes in gut microbiota. We aim to gain a deeper understanding of the mechanism of action of metformin and provide new insights into its clinical value in the prevention and therapy of depression.
Collapse
Affiliation(s)
- Yuan-Yuan Cheng
- Department of Pharmacology, Nantong Stomatological Hospital, Nantong 226001 Jiangsu, China
| | - Qi Yao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong 226001 Jiangsu, China
| | - Yang Miao
- Department of Pharmacology, The First People's Hospital of Yancheng, Yancheng 224000 Jiangsu, China.
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001 Jiangsu, China.
| |
Collapse
|
2
|
Kodi T, Praveen S, Paka SK, Sankhe R, Gopinathan A, Krishnadas N, Kishore A. Neuroprotective Effects of Metformin and Berberine in Lipopolysaccharide-Induced Sickness-Like Behaviour in Mice. Adv Pharmacol Pharm Sci 2024; 2024:8599268. [PMID: 39346967 PMCID: PMC11438515 DOI: 10.1155/2024/8599268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/01/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024] Open
Abstract
Sickness behaviour, a set of behavioural changes associated with neuroinflammation, is expressed as decreased mobility and depressed behaviour. Activation of AMP-activated protein kinase (AMPK) is reported to regulate inflammation in conditions such as Alzheimer and traumatic brain injury. Metformin, an antidiabetic agent acting via AMPK activation, possesses anti-inflammatory properties. Similarly, the reported anti-inflammatory activities of berberine could be partially attributed to its ability to activate AMPK. In this study, we investigated the effects of metformin and berberine against lipopolysaccharide (LPS)-induced sickness-like behaviour, associated with neuroinflammation, impaired cognition, and oxidative stress. Swiss albino mice were divided into four groups, normal control, LPS control, metformin treatment, and berberine treatment. The control groups received saline for 7 days. Groups 3 and 4 received metformin (200 mg/kg) and berberine (100 mg/kg), respectively, orally once daily for 7 days. On day 7, 1 h after the treatments, animals received LPS (1.5 mg/kg i.p.) to induce sickness-like behaviour. Open field test (OFT) and forced swim test (FST), were performed within 2 h of LPS administration. Then, proinflammatory cytokines (IL-1β and TNF-α), acetylcholinesterase activity (AChE), and oxidative stress markers were estimated in the brain homogenate. In the LPS control group, immobility state, proinflammatory cytokines, AChE, and lipid peroxidation were significantly increased, whereas the glutathione levels were decreased. Pretreatment with metformin significantly improved immobility in the FST, with reduced IL-1β, oxidative stress markers, and AChE activity. However, no significant changes were observed in OFT. Berberine pretreatment exhibited only an apparent, statistically insignificant, improvement in sickness-like behaviour assessed using FST and OFT, cytokine levels, oxidative markers, and AChE. Several factors affect treatment efficacy, such as treatment duration and administered dose. Considering these, berberine warrants elaborate preclinical evaluation for neuroinflammation. Nevertheless, based on the effects observed, AMPK activators could regulate neuroinflammation, cognition, and oxidative stress linked with sickness-like behaviour.
Collapse
Affiliation(s)
- Triveni Kodi
- Department of Pharmacology Manipal College of Pharmaceutical Sciences Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sharanya Praveen
- Department of Pharmacology Manipal College of Pharmaceutical Sciences Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sravan Kumar Paka
- Department of Pharmacology Manipal College of Pharmaceutical Sciences Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Runali Sankhe
- Department of Pharmacology Manipal College of Pharmaceutical Sciences Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Adarsh Gopinathan
- Department of Pharmacology Manipal College of Pharmaceutical Sciences Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Nandakumar Krishnadas
- Department of Pharmacology Manipal College of Pharmaceutical Sciences Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Anoop Kishore
- Department of Pharmacology Manipal College of Pharmaceutical Sciences Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
3
|
Ismail TR, Yap CG, Naidu R, Shri L, Pamidi N. Environmental enrichment and the combined interventions of EE and metformin enhance hippocampal neuron survival and hippocampal-dependent memory in type 2 diabetic rats under stress through the BDNF-TrkB signaling pathways. Biomed Pharmacother 2024; 175:116729. [PMID: 38776676 DOI: 10.1016/j.biopha.2024.116729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) with depression causes severe cognitive impairments. The devastating conditions will further compromise the overall quality of life. The overconsumption of high-fat and high-sucrose (HFS) diet is one of the modifiable risk factors for T2D, depression, and cognitive impairments. Thus, it is essential to identify effective therapeutic strategies to overcome the cognitive impairments in T2D with depression. We proposed environmental enrichment (EE) which encompasses social, cognitive, and physical components as the alternative treatment for such impairments. We also investigated the potential neuroprotective properties of the antidiabetic drug metformin. This study aimed to investigate the effects of EE and metformin interventions on hippocampal neuronal death, and hippocampal-dependent memory impairment in T2D rats under stress. METHODS Thirty-two male rats (200-250 g) were divided into four groups: C group (standard diet + conventional cage), DS group [HFS-induced T2D + restraint stress (RS)], DSE group [HFS-induced T2D + RS + EE] and DSEM group [HFS + RS + EE + metformin]. Serum corticosterone (CORT) was measured to evaluate stress levels. The serum Free Oxygen Radicals Testing (FORT) and Free Oxygen Radicals Defence Test (FORD) were measured to evaluate the systemic oxidative status (OS). Serum brain-derived neurotrophic factor (BDNF) and T-maze tasks were performed to evaluate cognitive functions. Rats were humanely sacrificed to collect brains for histological, morphometric, and hippocampal gene expression studies. RESULTS The CORT and the serum FORT levels in the DSE and DSEM groups were lower than in the DS group. Meanwhile, the serum BDNF, T-maze scores, histological, and morphometric analysis were improved in the DSE and DSEM groups than in the DS group. These findings supported that EE and the combined interventions of EE and metformin had neuroprotective properties. The hippocampal gene expression analysis revealed that the DSE and DSEM groups showed improved regulation of BDNF-TrkB signalling pathways, including the BDNF/TrkB binding, PI3K - Akt pathway, Ras-MAPK pathway, PLCγ-Ca2+ pathway, and CREB transcription. CONCLUSION EE and the combined interventions of EE and metformin improved hippocampal neuron survival and hippocampal-dependent memory in T2D rats under stress by enhancing gene expression regulation of neurogenesis and synaptic plasticity.
Collapse
Affiliation(s)
- Teh Rasyidah Ismail
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; Clinical Laboratory Science Section, Institute of Medical Science Technology, Universiti Kuala Lumpur, Kajang, Selangor Darul Ehsan 43000, Malaysia
| | - Christina Gertrude Yap
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Lugganya Shri
- Asian Institute of Medicine, Science and Technology, Faculty of Applied Sciences, Batu 3 1/2, Jalan, Bukit Air Nasi, Bedong, Kedah 08100, Malaysia
| | - Narendra Pamidi
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| |
Collapse
|
4
|
Pedreañez A, Carrero Y, Vargas R, Hernandez-Fonseca JP, Mosquera-Sulbaran J. Possible role of metformin as an antidepressant in diabetes. J Affect Disord 2024; 351:349-355. [PMID: 38286229 DOI: 10.1016/j.jad.2024.01.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
OBJECTIVE Metformin (MET) is a drug used in the treatment of type 2 diabetes due to its insulin receptor sensitizing properties and anti-hepatic gluconeogenesis effect. One of the comorbidities in diabetes is the depression. This review aimed at summarizing the results of the available MET, depression and diabetes studies to clarify the possible role of MET in the depression during diabetes. METHODS A bibliographic search on PubMed, Embase, PsycINFO, Web of Science, Cochrane Central for studies referring to MET, depression and diabetes. RESULTS Several studies have associated depression to the chronic inflammation that characterizes diabetes. Additionally MET is an anti-inflammatory molecule that generally acts by activating AMPK and inhibiting the NF-kB factor. In the context of diabetes, MET can act directly as an anti-inflammatory drug as well as inhibiting other pro-inflammatory molecules. In this regard, MET may inhibit the pro-inflammatory effects of angiotensin II. By facilitating the action of insulin and reducing hepatic gluconeogenesis, MET reduces circulating glucose levels, decreasing the formation of advanced glycation end products and therefore inflammation. During diabetes, the gut microbiota and the permeability of the intestinal barrier are altered, causing high levels of circulating lipopolysaccharides (LPS), which induce inflammation. MET can normalize the microbiota and the intestinal barrier permeability reducing the levels of LPS and inflammation. Clinical and experimental studies show the anti-depressant effect of MET mediated by different mechanisms both at the peripheral level and in the central nervous system. CONCLUSION Therefore, MET as an anti-inflammatory drug can decrease symptoms of depression and represents a therapeutic approach to improve the psychological state of patients with diabetes. Additionally, insulin also has an anti-inflammatory effect that could act together with MET.
Collapse
Affiliation(s)
- Adriana Pedreañez
- Cátedra de Inmunología, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Yenddy Carrero
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Renata Vargas
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Juan P Hernandez-Fonseca
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela; Servicio de Microscopia Electrónica del Centro Nacional de Biotecnología (CNB-CSIC) Madrid, Spain
| | - Jesús Mosquera-Sulbaran
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela.
| |
Collapse
|
5
|
Li S, Yang D, Zhou X, Chen L, Liu L, Lin R, Li X, Liu Y, Qiu H, Cao H, Liu J, Cheng Q. Neurological and metabolic related pathophysiologies and treatment of comorbid diabetes with depression. CNS Neurosci Ther 2024; 30:e14497. [PMID: 37927197 PMCID: PMC11017426 DOI: 10.1111/cns.14497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND The comorbidity between diabetes mellitus and depression was revealed, and diabetes mellitus increased the prevalence of depressive disorder, which ranked 13th in the leading causes of disability-adjusted life-years. Insulin resistance, which is common in diabetes mellitus, has increased the risk of depressive symptoms in both humans and animals. However, the mechanisms behind the comorbidity are multi-factorial and complicated. There is still no causal chain to explain the comorbidity exactly. Moreover, Selective serotonin reuptake inhibitors, insulin and metformin, which are recommended for treating diabetes mellitus-induced depression, were found to be a risk factor in some complications of diabetes. AIMS Given these problems, many researchers made remarkable efforts to analyze diabetes complicating depression from different aspects, including insulin resistance, stress and Hypothalamic-Pituitary-Adrenal axis, neurological system, oxidative stress, and inflammation. Drug therapy, such as Hydrogen Sulfide, Cannabidiol, Ascorbic Acid and Hesperidin, are conducive to alleviating diabetes mellitus and depression. Here, we reviewed the exact pathophysiology underlying the comorbidity between depressive disorder and diabetes mellitus and drug therapy. METHODS The review refers to the available literature in PubMed and Web of Science, searching critical terms related to diabetes mellitus, depression and drug therapy. RESULTS In this review, we found that brain structure and function, neurogenesis, brain-derived neurotrophic factor and glucose and lipid metabolism were involved in the pathophysiology of the comorbidity. Obesity might lead to diabetes mellitus and depression through reduced adiponectin and increased leptin and resistin. In addition, drug therapy displayed in this review could expand the region of potential therapy. CONCLUSIONS The review summarizes the mechanisms underlying the comorbidity. It also overviews drug therapy with anti-diabetic and anti-depressant effects.
Collapse
Affiliation(s)
- Sixin Li
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Dong Yang
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Xuhui Zhou
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Lu Chen
- Department of Gastroenterology, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of GastroenterologyBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Lini Liu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Ruoheng Lin
- Department of Psychiatry, National Clinical Research Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Xinyu Li
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Ying Liu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Huiwen Qiu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Hui Cao
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Jian Liu
- Center for Medical Research and Innovation, The First Hospital, Hunan University of Chinese MedicineChangshaHunanChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
6
|
Monchaux de Oliveira C, Morael J, Guille A, Amadieu C, Vancassel S, Gaudout D, Capuron L, Pourtau L, Castanon N. Saffron extract interferes with lipopolysaccharide-induced brain activation of the kynurenine pathway and impairment of monoamine neurotransmission in mice. Front Nutr 2023; 10:1267839. [PMID: 37867499 PMCID: PMC10585275 DOI: 10.3389/fnut.2023.1267839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/05/2023] [Indexed: 10/24/2023] Open
Abstract
Background Although activation of inflammatory processes is essential to fight infections, its prolonged impact on brain function is well known to contribute to the pathophysiology of many medical conditions, including neuropsychiatric disorders. Therefore, identifying novel strategies to selectively counter the harmful effects of neuroinflammation appears as a major health concern. In that context, this study aimed to test the relevance of a nutritional intervention with saffron, a spice known for centuries for its beneficial effect on health. Methods For this purpose, the impact of an acute oral administration of a standardized saffron extract, which was previously shown to display neuromodulatory properties and reduce depressive-like behavior, was measured in mice challenged with lipopolysaccharide (LPS, 830 μg/kg, ip). Results Pretreatment with saffron extract (6.5 mg/kg, per os) did not reduce LPS-induced sickness behavior, preserving therefore this adaptive behavioral response essential for host defense. However, it interfered with delayed changes of expression of cytokines, chemokines and markers of microglial activation measured 24 h post-LPS treatment in key brain areas for behavior and mood control (frontal cortex, hippocampus, striatum). Importantly, this pretreatment also counteracted by that time the impact of LPS on several neurobiological processes contributing to inflammation-induced emotional alterations, in particular the activation of the kynurenine pathway, assessed through the expression of its main enzymes, as well as concomitant impairment of serotonergic and dopaminergic neurotransmission. Conclusion Altogether, this study provides important clues on how saffron extract interferes with brain function in conditions of immune stimulation and supports the relevance of saffron-based nutritional interventions to improve the management of inflammation-related comorbidities.
Collapse
Affiliation(s)
- Camille Monchaux de Oliveira
- INRAE, NutriNeuro, UMR 1286, Bordeaux University, Bordeaux IPB, Bordeaux, France
- Activ’Inside, Beychac-et-Caillau, France
| | - Jennifer Morael
- INRAE, NutriNeuro, UMR 1286, Bordeaux University, Bordeaux IPB, Bordeaux, France
| | - Alexandrine Guille
- INRAE, NutriNeuro, UMR 1286, Bordeaux University, Bordeaux IPB, Bordeaux, France
| | - Camille Amadieu
- INRAE, NutriNeuro, UMR 1286, Bordeaux University, Bordeaux IPB, Bordeaux, France
| | - Sylvie Vancassel
- INRAE, NutriNeuro, UMR 1286, Bordeaux University, Bordeaux IPB, Bordeaux, France
| | | | - Lucile Capuron
- INRAE, NutriNeuro, UMR 1286, Bordeaux University, Bordeaux IPB, Bordeaux, France
| | | | - Nathalie Castanon
- INRAE, NutriNeuro, UMR 1286, Bordeaux University, Bordeaux IPB, Bordeaux, France
| |
Collapse
|
7
|
Yin R, Zhang K, Li Y, Tang Z, Zheng R, Ma Y, Chen Z, Lei N, Xiong L, Guo P, Li G, Xie Y. Lipopolysaccharide-induced depression-like model in mice: meta-analysis and systematic evaluation. Front Immunol 2023; 14:1181973. [PMID: 37359525 PMCID: PMC10285697 DOI: 10.3389/fimmu.2023.1181973] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Depression is a complex and biologically heterogeneous disorder. Recent studies have shown that central nervous system (CNS) inflammation plays a key role in the development of depression. Lipopolysaccharide (LPS)-induced depression-like model in mice is commonly used to studying the mechanisms of inflammation-associated depression and the therapeutic effects of drugs. Numerous LPS-induced depression-like models in mice exist and differ widely in animal characteristics and methodological parameters. Here, we systematically reviewed studies on PubMed from January 2017 to July 2022 and performed cardinal of 170 studies and meta-analyses of 61 studies to support finding suitable animal models for future experimental studies on inflammation-associated depression. Mouse strains, LPS administration, and behavioral outcomes of these models have been assessed. In the meta-analysis, forced swimming test (FST) was used to evaluate the effect size of different mouse strains and LPS doses. The results revealed large effect sizes in ICR and Swiss mice, but less heterogeneity in C57BL/6 mice. For LPS intraperitoneal dose, the difference did not affect behavioral outcomes in C57BL/6 mice. However, in ICR mice, the most significant effect on behavioral outcomes was observed after the injection of 0.5 mg/kg LPS. Our results suggests that mice strains and LPS administration play a key role in the evaluation of behavioral outcomes in such models.
Collapse
Affiliation(s)
- Run Yin
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Kailing Zhang
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
| | - Yingming Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zilei Tang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Ruiyu Zheng
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yue Ma
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
| | - Zonghan Chen
- Academic Affairs Department, Yunnan University of Chinese Medicine, Kunming, China
| | - Na Lei
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
| | - Lei Xiong
- School of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Aromatic Chinese Herb Research, Yunnan Provincial University, Kunming, China
- Yunnan Innovation Team of Application Research on Traditional Chinese Medicine Theory of Disease Prevention, Yunnan University of Chinese Medicine, Kunming, China
| | - Peixin Guo
- Key Laboratory of Aromatic Chinese Herb Research, Yunnan Provincial University, Kunming, China
- College of Ethnic Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Gang Li
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Aromatic Chinese Herb Research, Yunnan Provincial University, Kunming, China
| | - Yuhuan Xie
- Key Laboratory of Aromatic Chinese Herb Research, Yunnan Provincial University, Kunming, China
- Yunnan Innovation Team of Application Research on Traditional Chinese Medicine Theory of Disease Prevention, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
8
|
Karami F, Jamaati H, Coleman-Fuller N, Zeini MS, Hayes AW, Gholami M, Salehirad M, Darabi M, Motaghinejad M. Is metformin neuroprotective against diabetes mellitus-induced neurodegeneration? An updated graphical review of molecular basis. Pharmacol Rep 2023; 75:511-543. [PMID: 37093496 DOI: 10.1007/s43440-023-00469-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 04/25/2023]
Abstract
Diabetes mellitus (DM) is a metabolic disease that activates several molecular pathways involved in neurodegenerative disorders. Metformin, an anti-hyperglycemic drug used for treating DM, has the potential to exert a significant neuroprotective role against the detrimental effects of DM. This review discusses recent clinical and laboratory studies investigating the neuroprotective properties of metformin against DM-induced neurodegeneration and the roles of various molecular pathways, including mitochondrial dysfunction, oxidative stress, inflammation, apoptosis, and its related cascades. A literature search was conducted from January 2000 to December 2022 using multiple databases including Web of Science, Wiley, Springer, PubMed, Elsevier Science Direct, Google Scholar, the Core Collection, Scopus, and the Cochrane Library to collect and evaluate peer-reviewed literature regarding the neuroprotective role of metformin against DM-induced neurodegenerative events. The literature search supports the conclusion that metformin is neuroprotective against DM-induced neuronal cell degeneration in both peripheral and central nervous systems, and this effect is likely mediated via modulation of oxidative stress, inflammation, and cell death pathways.
Collapse
Affiliation(s)
- Fatemeh Karami
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Jamaati
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Natalie Coleman-Fuller
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Maryam Shokrian Zeini
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health and Institute for Integrative Toxicology, Michigan State University, East Lansing, USA
| | - Mina Gholami
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Salehirad
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Darabi
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Hu P, Lu Y, Pan BX, Zhang WH. New Insights into the Pivotal Role of the Amygdala in Inflammation-Related Depression and Anxiety Disorder. Int J Mol Sci 2022; 23:11076. [PMID: 36232376 PMCID: PMC9570160 DOI: 10.3390/ijms231911076] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 12/04/2022] Open
Abstract
Depression and anxiety disorders are the two most prevalent psychiatric diseases that affect hundreds of millions of individuals worldwide. Understanding the etiology and related mechanisms is of great importance and might yield new therapeutic strategies to treat these diseases effectively. During the past decades, a growing number of studies have pointed out the importance of the stress-induced inflammatory response in the amygdala, a kernel region for processing emotional stimuli, as a potentially critical contributor to the pathophysiology of depression and anxiety disorders. In this review, we first summarized the recent progress from both animal and human studies toward understanding the causal link between stress-induced inflammation and depression and anxiety disorders, with particular emphasis on findings showing the effect of inflammation on the functional changes in neurons in the amygdala, at levels ranging from molecular signaling, cellular function, synaptic plasticity, and the neural circuit to behavior, as well as their contributions to the pathology of inflammation-related depression and anxiety disorders. Finally, we concluded by discussing some of the difficulties surrounding the current research and propose some issues worth future study in this field.
Collapse
Affiliation(s)
- Ping Hu
- Institute of Translational Medicine, Nanchang University, Nanchang 330001, China
| | - Ying Lu
- Department of Biological Science, School of Life Science, Nanchang University, Nanchang 330031, China
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, China
| | - Bing-Xing Pan
- Department of Biological Science, School of Life Science, Nanchang University, Nanchang 330031, China
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, China
| | - Wen-Hua Zhang
- Department of Biological Science, School of Life Science, Nanchang University, Nanchang 330031, China
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang 330031, China
| |
Collapse
|
10
|
Mendonça IP, de Paiva IHR, Duarte-Silva EP, de Melo MG, da Silva RS, do Nascimento MIX, Peixoto CA. Metformin improves depressive-like behavior in experimental Parkinson's disease by inducing autophagy in the substantia nigra and hippocampus. Inflammopharmacology 2022; 30:1705-1716. [PMID: 35931897 DOI: 10.1007/s10787-022-01043-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/16/2022] [Indexed: 11/05/2022]
Abstract
Parkinson's disease (PD) remains a disease of little known etiology. In addition to the motor symptoms, depression is present in about 40% of patients, contributing to the loss of quality of life. Recently, the involvement of the autophagy mechanism in the pathogenesis of depression has been studied, in addition to its involvement in PD as well. In this study, we tested the effects of metformin, an antidiabetic drug also with antidepressant effects, on depressive-like behavior in a rotenone-induced PD model and on the autophagy process. Mice 8-week-old male C57BL/6 were induced with rotenone for 20 consecutive days (2.5 mg/kg/day) and treated with metformin (200 mg/kg/day) from the 5th day of induction. All the animals were submitted to rotarod, sucrose preference and tail suspension tests. After euthanasia, the substantia nigra and hippocampus were removed for analysis by western blotting or fixed and analyzed by immunofluorescence. The results show that there was an impairment of autophagy in animals induced by rotenone both in nigral and extranigral regions as well as a depressive-like behavior. Metformin was able to inhibit depressive-like behavior and increase signaling pathway proteins, transcription factors and autophagosome-forming proteins, thus inducing autophagy in both the hippocampus and the substantia nigra. In conclusion, we show that metformin has an antidepressant effect in a rotenone-induced PD model, which may result, at least in part, from the induction of the autophagy process.
Collapse
Affiliation(s)
- Ingrid Prata Mendonça
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Recife, PE, Brazil. .,Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), Recife, Brazil.
| | - Igor Henrique Rodrigues de Paiva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Recife, PE, Brazil.,Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Eduardo Pereira Duarte-Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Recife, PE, Brazil.,Postgraduate Program in Biosciences and Biotechnology for Health (PPGBBS), Oswaldo Cruz Foundation (FIOCRUZ-PE)/Aggeu Magalhães Institute (IAM), Recife, PE, Brazil
| | - Michel Gomes de Melo
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Recife, PE, Brazil.,Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), Recife, Brazil
| | - Rodrigo S da Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Recife, PE, Brazil.,Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), Recife, Brazil
| | | | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ), Recife, PE, Brazil. .,National Institute of Science and Technology On Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
11
|
Lin Y, Dai X, Zhang J, Chen X. Metformin alleviates the depression-like behaviors of elderly apoE4 mice via improving glucose metabolism and mitochondrial biogenesis. Behav Brain Res 2022; 423:113772. [PMID: 35090900 DOI: 10.1016/j.bbr.2022.113772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/28/2021] [Accepted: 01/22/2022] [Indexed: 12/25/2022]
Abstract
Apolipoprotein E4 (apoE4) is closely related to late-onset depression (LOD). In addition, the benefits of metformin treatment of depression have been documented in a range of rodent studies and human trials, but few studies have probed into the effect of metformin on and the related mechanism in depressed elderly mice, especially in those APOE4 carriers. Here, we treated 13-month-old apoE3-targeted replacement (TR) and apoE4-TR mice with an intragastric administration of metformin (300 mg/kg/d) or normal saline for 5 months. We found that metformin exerted antidepressant effects on apoE4 mice, including reduced immobility time in TST and FST, and increased ratios of time and distance in the central area of OFT. Importantly, compared with apoE3 mice, apoE4 mice showed a higher expression of lactate dehydrogenase (LDH) and pyruvate dehydrogenase kinase (PDK1 and PDK4) in the hippocampus. The increased LDH level was rescued by metformin treatment. Moreover, the metformin administration increased the levels of transcriptional factor NRF-1 and TFAM, mtDNA, and most mitochondrial complex subunits in apoE-TR mice. Furthermore, it upregulated the expressions of antioxidant enzymes, such as MnSOD, GPX1, and GSR1/2. Interestingly, apoE4 blunted the hypoglycemic effect of metformin in aged mice. These data suggest that metformin ameliorates the depression-like behaviors probably by improving glucose metabolism and mitochondria biogenesis in the hippocampus of aged apoE4 mice. These findings imply that chronic metformin treatment can improve apoE4-mediated LOD, providing mechanistic insights for apoE4- and age-based depression prevention and therapy.
Collapse
Affiliation(s)
- Yingbin Lin
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350001, China
| | - Xiaoman Dai
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350001, China; Fujian Key Laboratory of Vascular Aging, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350001, China
| | - Jing Zhang
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350001, China; Fujian Key Laboratory of Vascular Aging, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350001, China.
| | - Xiaochun Chen
- Department of Neurology and Geriatrics, Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350001, China.
| |
Collapse
|
12
|
Beheshti F, Hosseini M, Arab Z, Asghari A, Anaeigoudari A. Ameliorative role of metformin on lipopolysaccharide-mediated liver malfunction through suppression of inflammation and oxidative stress in rats. TOXIN REV 2022; 41:55-63. [DOI: 10.1080/15569543.2020.1833037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/02/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zohreh Arab
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Asghari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Akbar Anaeigoudari
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
13
|
Xu T, Lu X, Arbab AAI, Wu X, Mao Y, Loor JJ, Yang Z. Metformin acts to suppress β-hydroxybutyric acid-mediated inflammatory responses through activation of AMPK signaling in bovine hepatocytes. J Anim Sci 2021; 99:6275009. [PMID: 33982074 DOI: 10.1093/jas/skab153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022] Open
Abstract
The occurrence of bovine ketosis involves the accumulation of β-hydroxybutyric acid (BHBA), which contributes to the initiation and acceleration of hepatic metabolic stress and inflammation. Metformin has other beneficial effects apart from its medical intervention for diabetes, such as prevention of laminitis and hyper-triglyceridemic. AMPK maintains energy homeostasis and is the intracellular target of metformin action. This study aims to uncover the role of metformin in modulating BHBA-induced inflammatory responses through the activation of AMPK signaling. The hepatocytes were isolated from the liver tissue of mid-lactation multiparous Holstein cows (~160 d postpartum). Treatments were conducted as follows: treated with PBS for 18 h (control); pretreated with PBS for 12 h followed by treatment of 1.2 mM BHBA for 6 h (BHBA); pretreated with 1.5 mM or 3 mM metformin for 12 h followed by the BHBA treatment (1.2 mM) for 6 h (M(1.5)+B; M(3)+B). The inhibitor of AMPK, Compound C, at a concentration of 10 μM, was applied to substantiate the AMPK-dependent responses. RT-qPCR were applied for the mRNA expression while Western-blots and immunofluorescence were conducted for the target proteins expression. Among dose-dependent assays for BHBA, the concentration of BHBA at 1.2 mM activated NF-κB signaling by upregulating the expression of phosphorylated NF-κB and pro-inflammatory cytokines compared with the control cells (P < 0.05). Along with the upregulation of phosphorylated AMPKα and ACCα, metformin at 1.5 and 3 mM inactivated NF-κB signaling components (p65 and IκBα) and the inflammatory genes (TNFA, IL6, IL1B and COX-2) which were activated by BHBA. Additionally, BHBA inhibited cells staining intensity in EdU assay were increased by pretreatment with metformin. The activation of AMPK resulted in the increased gene and protein expression of SIRT1, along with the deacetylation of H3K9 and H3K14. However, the AMPK inhibitor compound C blocked this effect. Compared with BHBA treated cells, the protein expression of COX-2 and IL-1β were decreased by the pretreatment with metformin, and the inhibitory effect of metformin was released by compound C. The bound of NF-κB onto IL1B promoter displayed higher in BHBA group and this was suppressed by pretreatment with metformin (P < 0.05). Altogether, metformin attenuates the BHBA-induced inflammation through the inactivation of NF-κB as a target for AMPK/SIRT1 signaling in bovine hepatocytes.
Collapse
Affiliation(s)
- Tianle Xu
- Joint International Research Laboratory of Agriculture and Agri-product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | | | - Xinyue Wu
- Joint International Research Laboratory of Agriculture and Agri-product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yongjiang Mao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Zhangping Yang
- Joint International Research Laboratory of Agriculture and Agri-product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
| |
Collapse
|
14
|
El Massry M, Alaeddine LM, Ali L, Saad C, Eid AA. Metformin: A Growing Journey from Glycemic Control to the Treatment of Alzheimer's Disease and Depression. Curr Med Chem 2021; 28:2328-2345. [PMID: 32900343 DOI: 10.2174/0929867327666200908114902] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 11/22/2022]
Abstract
Metabolic stress, transduced as an altered cellular redox and energy status, presents as the main culprit in many diseases, including diabetes. However, its role in the pathology of neurological disorders is still not fully elucidated. Metformin, a biguanide compound, is an FDA approved antidiabetic drug generally used for the treatment of type 2 diabetes. The recently described wide spectrum of action executed by this drug suggests a potential therapeutic benefit in a panoply of disorders. Current studies imply that metformin could play a neuroprotective role by reversing hallmarks of brain injury (metabolic dysfunction, neuronal dystrophy and cellular loss), in addition to cognitive and behavioral alterations that accompany the onset of certain brain diseases such as Alzheimer's disease (AD) and depression. However, the mechanisms by which metformin exerts its protective effect in neurodegenerative disorders are not yet fully elucidated. The aim of this review is to reexamine the mechanisms through which metformin performs its function while concentrating on its effect on reestablishing homeostasis in a metabolically disturbed milieu. We will also highlight the importance of metabolic stress, not only as a component of many neurological disorders, but also as a primary driving force for neural insult. Of interest, we will explore the involvement of metabolic stress in the pathobiology of AD and depression. The derangement in major metabolic pathways, including AMPK, insulin and glucose transporters, will be explored and the potential therapeutic effects of metformin administration on the reversal of brain injury in such metabolism dependent diseases will be exposed.
Collapse
Affiliation(s)
- Mohamed El Massry
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh 1107-2020, Beirut, Lebanon
| | - Lynn M Alaeddine
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh 1107-2020, Beirut, Lebanon
| | - Leen Ali
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh 1107-2020, Beirut, Lebanon
| | - Celine Saad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh 1107-2020, Beirut, Lebanon
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Bliss Street, 11-0236, Riad El-Solh 1107-2020, Beirut, Lebanon
| |
Collapse
|
15
|
Protective effect of metformin against ovariectomy induced depressive- and anxiety-like behaviours in rats: role of oxidative stress. Neuroreport 2021; 32:666-671. [PMID: 33913928 DOI: 10.1097/wnr.0000000000001634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Several studies have shown that low estrogen levels can lead to an increase in the incidence of depression and anxiety during menopause. The hippocampus and prefrontal cortex are parts of the brain involved in depressive- and anxiety-like behaviors. Recent studies have revealed that metformin has neuroprotective effects mainly due to its antioxidant properties. The aim of the present study was to examine the therapeutic potential of metformin in depressive- and anxiety-like behavior as well as oxidative stress in the prefrontal cortex and hippocampus of ovariectomized rats. Young female Wistar Albino rats were distributed into four groups (n:8): control, metformin-administered control, ovariectomized and metformin administered ovariectomized groups. Metformin (25 mg/kg) was administered daily by oral gavage for 2 weeks. Forced swimming test and open field test were performed to evaluate depression- and anxiety-like behaviors, respectively. Following the treatment with metformin, the tissues of the hippocampus and prefrontal cortex were isolated for the measurement of malondialdehyde, reduced glutathione and ascorbic acid contents. Ovariectomy resulted in depressive- and anxiety-like behaviors, and besides, increased content of malondialdehyde in both prefrontal cortex and hippocampus. The levels of ascorbic acid and glutathione were found to be reduced in ovariectomized rats. Metformin treatment significantly decreased depressive behaviour and malondialdehyde content in the prefrontal cortex. Reducing oxidative stress of the prefrontal cortex was suggested as a possible mechanism implicated in the beneficial effects of metformin on ovariectomy-induced depressive-like behaviour. We believe that the therapeutic efficiency of metformin needs to be tested for potential clinical use in surgical menopause or gonadal hormone deficiency women with depression.
Collapse
|
16
|
Hao Y, Tong Y, Guo Y, Lang X, Huang X, Xie X, Guan Y, Li Z. Metformin Attenuates the Metabolic Disturbance and Depression-like Behaviors Induced by Corticosterone and Mediates the Glucose Metabolism Pathway. PHARMACOPSYCHIATRY 2021; 54:131-141. [PMID: 33634460 DOI: 10.1055/a-1351-0566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Metabolism disturbances are common in patients with depression. The drug metformin has been reported to exhibit antidepressant activity. The purpose of this study was to investigate metabolism disturbances induced by corticosterone (CORT) and determine if metformin can reverse these effects and their accompanying depression-like behaviors. METHODS Rats were exposed to corticosterone with or without metformin administration. Depression-like behaviors were tested. Gene expression was confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis. In addition, the metabolites were quantified by LC-MS/MS analysis. RESULTS Metformin attenuated the depression-like behaviors induced by CORT. Furthermore, metformin reversed disturbances in body weight, serum glucose, and triglyceride levels, as well as hepatic TG levels induced by CORT. Metformin normalized the alterations in the expression of glucose metabolism-related genes (PGC-1α, G6pc, Pepck, Gck, PYGL, Gys2, PKLR, GLUT4) and insulin resistance-related genes (AdipoR1, AdipoR2) in the muscles and livers of rats induced by CORT. Metabolomic analysis showed that metformin reversed the effects of CORT on 11 metabolites involved in the pathways of the tricarboxylic acid cycle, glycolysis, and gluconeogenesis (3-phospho-D-glycerate, β-D-fructose 6-phosphate, D-glucose 6-phosphate, and pyruvate). CONCLUSION Our findings suggest that metformin can attenuate metabolism disturbances and depression-like behaviors induced by CORT mediating the glucose metabolism pathway.
Collapse
Affiliation(s)
- Yong Hao
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingpeng Tong
- Institute of Natural Medicine and Health Product, School of Advanced Study, Taizhou University, Taizhou, China
| | - Yanhong Guo
- Qingdao Mental Health Center, Qingdao University, Qingdao, China
| | - Xiaoe Lang
- Department of Psychiatry, The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | | | - Xiaoxian Xie
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yangtai Guan
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zezhi Li
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Xu T, Wu X, Lu X, Liang Y, Mao Y, Loor JJ, Yang Z. Metformin activated AMPK signaling contributes to the alleviation of LPS-induced inflammatory responses in bovine mammary epithelial cells. BMC Vet Res 2021; 17:97. [PMID: 33648513 PMCID: PMC7923493 DOI: 10.1186/s12917-021-02797-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/02/2021] [Indexed: 12/15/2022] Open
Abstract
Background Lipopolysaccharides (LPS) derived from gram-negative bacterial are often regarded as primary inducer of bovine mammary inflammation. This study evaluated the biological response of metformin activated AMPK signaling on LPS-induced inflammatory responses and metabolic changes in primary bovine mammary epithelial cells (pbMEC). The pbMEC were exposed to either 3 mmol/L Metf. for 12 h as Metf. group (Metf.) or 2 μg/mL LPS for 6 h as LPS group (LPS). Cells pretreated with 3 mmol/L metformin for 12 h followed by washing and 2 μg/mL LPS exposure for 6 h were served as ML group (ML). PBS was added to cells as the control group (Con.). Results Pre-incubation with Metf. inhibited LPS-induced expression of pro-inflammatory genes (TNF, IL1B, IL6, CXCL8, MYD88 and TLR4) and proteins (IL-1β, TNF-α, NLRP3, Caspase1, ASC) and was accompanied by increased activation of AMPK signaling. Compared with the LPS group, phosphorylation of p65 and IκBα in the ML group were decreased and accumulation of NF-κB in the nucleus was significantly reduced by pretreatment with metformin. Metformin protects the cells from the increase of LPS-induced binding activity of NF-κB on both TNFA and IL1B promoters. Compared with the LPS group, genes (G6PC, PCK2) and proteins (SREBP1, SCD1) related to lipogenesis and carbohydrate metabolism were downregulated while catabolic ones (PPARA, ACSL1, Glut1, HK1) were upregulated in the ML group. Furthermore, increased acetylation of H3K14 by LPS challenge was reversed by pretreatment with metformin. Conclusion Altogether, our results indicated that pretreatment with metformin dampens LPS-induced inflammatory responses mediated in part by AMPK/NF-κB/NLRP3 signaling and modification of histone H3K14 deacetylation and metabolic changes. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-02797-x.
Collapse
Affiliation(s)
- Tianle Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Xinyue Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China.,Joint International Research Laboratory of Agriculture and Agri-product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yusheng Liang
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, 61801, USA
| | - Yongjiang Mao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, 61801, USA
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, People's Republic of China. .,Joint International Research Laboratory of Agriculture and Agri-product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|