1
|
Kaur P, Singh T, Jena L, Gupta T, Rana MK, Singh S, Singh R, Kumar P, Munshi A. Dapagliflozin Ameliorate Type-2 Diabetes Associated Neuropathy via Regulation of IGF-1R Signaling. J Neuroimmune Pharmacol 2025; 20:32. [PMID: 40178648 DOI: 10.1007/s11481-025-10200-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/22/2025] [Indexed: 04/05/2025]
Abstract
Dapagliflozin, an approved SGLT2 inhibitor, has been shown to have extra-glycemic effects like cardio-reno protection. However, the neuroprotective effects of SGLT2 inhibitors against diabetic neuropathy (DN) have not been explored. The current study aimed to determine the neuroprotective potential of Dapagliflozin against STZ-NAD-induced DN in Wistar rats via IGF-1 signaling. DN was induced by STZ-NAD in male Wistar rats. After 60 days of induction, behavioural tests were conducted to access DN, and treatment with Dapagliflozin (0.75 mg/kg & 1.50 mg/kg) was initiated for 30 days. At the end of the study, the brain and sciatic nerve were isolated and expression analysis of IGF-1R signaling molecules was carried out using western blotting, qRTPCR, and immunohistochemistry. Structural changes in the brain and sciatic nerve were ascertained by histopathology. The results showed that treatment with Dapagliflozin improved behavioural parameters in STZ-NAD-induced DN rats. The decreased expression levels of IGF1R signaling pathway molecules and increased expression of p-AKT were found to increase and decrease in the brain and sciatic nerve, respectively after the treatment. Histological studies demonstrated the restoration of normal architecture of the brain and sciatic nerve after treatment with dapagliflozin. The altered expression of IGF-1R signaling molecules established the neuroprotective potential of dapagliflozin against DN.
Collapse
Affiliation(s)
- Prabhsimran Kaur
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India
| | - Tashvinder Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India
| | - Laxmipriya Jena
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India
| | - Tanya Gupta
- Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India
| | - Manjit Kaur Rana
- Department of Pathology, All India Institute of Medical Sciences, Bathinda, 151001, India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India
| | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Bathinda, 151401, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
2
|
Randeni N, Luo J, Xu B. Critical Review on Anti-Obesity Effects of Anthocyanins Through PI3K/Akt Signaling Pathways. Nutrients 2025; 17:1126. [PMID: 40218884 PMCID: PMC11990295 DOI: 10.3390/nu17071126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/18/2025] [Accepted: 03/23/2025] [Indexed: 04/14/2025] Open
Abstract
Obesity is a global health crisis and is one of the major reasons for the rising prevalence of metabolic disorders such as type 2 diabetes, cardiovascular diseases, and certain cancers. There has been growing interest in the search for natural molecules with potential anti-obesity effects; among the phytochemicals of interest are anthocyanins, which are flavonoid pigments present in many fruits and vegetables. Anthocyanins influence obesity via several signaling pathways. The PI3K/Akt signaling pathway plays a major role with a focus on downstream targets such as GLUT4, FOXO, GSK3β, and mTOR, which play a central role in the regulation of glucose metabolism, lipid storage, and adipogenesis. The influence of critical factors such as oxidative stress and inflammation also affect the pathophysiology of obesity. However, the studies reviewed have certain limitations, including variations in experimental models, bioavailability challenges, and a lack of extensive clinical validation. While anthocyanin shows tremendous potential, challenges such as poor bioavailability, stability, and regulatory matters must be overcome for successful functional food inclusion of anthocyanins. The future of anthocyanin-derived functional foods lies in their ability to overcome hurdles. Therefore, this review highlights the molecular mechanisms of obesity through the PI3K/Akt signaling pathways and explores how anthocyanins can modulate these signaling pathways to address obesity and related metabolic disorders. It also addresses some ways to solve the challenges, like bioavailability and stability, while emphasizing future possibilities for anthocyanin-based functional foods in obesity management.
Collapse
Affiliation(s)
| | | | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, Beijing Normal-Hong Kong Baptist University, Zhuhai 519087, China; (N.R.); (J.L.)
| |
Collapse
|
3
|
Jin R, Pei H, Yue F, Zhang X, Zhang Z, Xu Y, Li J. Network Pharmacology Combined With Metabolomics Reveals the Mechanism of Yangxuerongjin Pill Against Type 2 Diabetic Peripheral Neuropathy in Rats. Drug Des Devel Ther 2025; 19:325-347. [PMID: 39834645 PMCID: PMC11745066 DOI: 10.2147/dddt.s473146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 12/28/2024] [Indexed: 01/22/2025] Open
Abstract
Purpose This study aims to explore the mechanism of Yangxuerongjin pill (YXRJP) in the treatment of diabetic peripheral neuropathy (DPN) by network pharmacology and metabolomics technology combined with animal experiments, and to provide scientific basis for the treatment of DPN. Methods In this study, network pharmacology analysis was applied to identify the active compounds, core targets and signal pathways, which might be responsible for the effect of DPN. The DPN model was established by high-fat diet combined with streptozotocin (STZ) injection, and the rats were given administration for 12 weeks. The body weight, thermal withdrawal latency (TWL), sciatic motor nerve conduction velocity (MNCV), biochemical indexes, pathological sections of sciatic nerve, oxidative stress factors and the expression levels of neuroprotection-related proteins were detected. Metabolomics technology was used to analyze the potential biomarkers and potential metabolic pathways in DPN treated with YXRJP. Results The results of network pharmacology showed that YXRJP could treat DPN through baicalin, β-sitosterol, 7-methoxy-2-methylisoflavone, aloe-emodin and luteolin on insulin resistance, Toll-like receptor (TLR), tumor necrosis factor (TNF) and other signaling pathways. YXRJP can prolong the TWL, increase the MNCV of the sciatic nerve, alleviate the injury of the sciatic nerve, reduce the levels of triglyceride (TG), improve the expression of Insulin-like growth factor 1 (IGF-1) protein in the sciatic nerve, and reduce the expression of protein kinase B (AKT) protein. Metabolomics results showed that the potential metabolic pathways of YXRJP in the treatment of DPN mainly involved amino acid metabolism such as arginine, alanine, aspartic acid, lipid metabolism and nucleotide metabolism. Conclusion YXRJP can effectively improve the symptoms of DPN rats and reduce nerve damage. The effects are mainly related to reducing oxidative stress injury, promoting the expression of neuroprotection-related proteins, reducing the expression of inflammation-related proteins, and affecting amino acid metabolism, lipid metabolism, and nucleotide metabolism pathways. Our findings revealed that YXRJP has a good therapeutic potential for DPN, which provides a reference for further studies on YXRJP.
Collapse
Affiliation(s)
- Ran Jin
- Beijing Tongrentang Technology Development Co., Ltd. Pharmaceutical Factory, Beijing, 100079, People’s Republic of China
| | - Hailuan Pei
- Beijing Tongrentang Technology Development Co., Ltd. Pharmaceutical Factory, Beijing, 100079, People’s Republic of China
| | - Feng Yue
- Beijing Tongrentang Technology Development Co., Ltd. Pharmaceutical Factory, Beijing, 100079, People’s Republic of China
| | - Xiaodi Zhang
- Beijing Tongrentang Technology Development Co., Ltd. Pharmaceutical Factory, Beijing, 100079, People’s Republic of China
| | - Zhicong Zhang
- Beijing Tongrentang Technology Development Co., Ltd. Pharmaceutical Factory, Beijing, 100079, People’s Republic of China
| | - Yi Xu
- Beijing Tongrentang Technology Development Co., Ltd. Pharmaceutical Factory, Beijing, 100079, People’s Republic of China
| | - Jinsheng Li
- Beijing Tongrentang Technology Development Co., Ltd. Pharmaceutical Factory, Beijing, 100079, People’s Republic of China
| |
Collapse
|
4
|
Durán AM, Zamora F, De León M. Dietary Docosahexaenoic Acid-Rich Supplementation Decreases Neurotoxic Lipid Mediators in Participants with Type 2 Diabetes and Neuropathic Pain. Nutrients 2024; 16:4025. [PMID: 39683418 DOI: 10.3390/nu16234025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES There is increasing evidence linking circulating neurotoxic lipids to the progression of chronic neuroinflammatory diseases in the peripheral and central nervous systems. Strategies to modify lipid profiles, such as docosahexaenoic acid (DHA)-rich supplementation, may aid in managing conditions like painful diabetic neuropathy (pDN). In a previous study, we demonstrated that three months of DHA supplementation significantly altered the metabolomic profile of patients with painful diabetic neuropathy (pDN), resulting in symptom improvement. This study investigates whether DHA-rich supplementation reduces neurotoxic lipid mediators associated with pDN in individuals with type 2 diabetes mellitus (T2DM). METHODS Forty individuals with type 2 diabetes participated in the "En Balance-PLUS" study, attending weekly lifestyle and nutrition education sessions while receiving daily supplementation of 1000 mg DHA and 200 mg EPA. Pain levels were assessed using the Short-Form McGill Pain Questionnaire (SF-MPQ) at baseline and after three months. Blood serum samples collected at these time points underwent untargeted lipidomic analyses, with ELISA used to evaluate biomarkers of necrosis (MLKL), autophagy (ATG5), and lipid chaperone protein (FABP5). RESULTS Untargeted lipidomic analysis revealed that several neurotoxic-associated lipids significantly decreased after DHA-rich supplementation. Also, circulating levels of MLKL were reduced, while protein levels of ATG5 and FABP5 significantly increased. CONCLUSIONS The reduction of circulating neurotoxic lipids and increase in neuroprotective lipids following DHA-rich supplementation are consistent with the reported roles of omega-3 polyunsaturated fatty acids (PUFAs) in reducing adverse symptoms associated with neuroinflammatory diseases and painful neuropathy.
Collapse
Affiliation(s)
- Alfonso M Durán
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Francis Zamora
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Marino De León
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
5
|
Rooban S, Senghor KA, Vinodhini V, Kumar J. Sestrin2 at the crossroads of cardiovascular disease and diabetes: A comprehensive review. OBESITY MEDICINE 2024; 51:100558. [DOI: 10.1016/j.obmed.2024.100558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Zhang Y, Ren L, Tian Y, Guo X, Wei F, Zhang Y. Signaling pathways that activate hepatic stellate cells during liver fibrosis. Front Med (Lausanne) 2024; 11:1454980. [PMID: 39359922 PMCID: PMC11445071 DOI: 10.3389/fmed.2024.1454980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Liver fibrosis is a complex process driven by various factors and is a key feature of chronic liver diseases. Its essence is liver tissue remodeling caused by excessive accumulation of collagen and other extracellular matrix. Activation of hepatic stellate cells (HSCs), which are responsible for collagen production, plays a crucial role in promoting the progression of liver fibrosis. Abnormal expression of signaling pathways, such as the TGF-β/Smads pathway, contributes to HSCs activation. Recent studies have shed light on these pathways, providing valuable insights into the development of liver fibrosis. Here, we will review six signaling pathways such as TGF-β/Smads that have been studied more in recent years.
Collapse
Affiliation(s)
- Youtian Zhang
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Long Ren
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yinting Tian
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Xiaohu Guo
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Fengxian Wei
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yawu Zhang
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Amin NG, Rahim AA, Rohoma K, Elwafa RAA, Dabees HMF, Elrahmany S. The relation of mTOR with diabetic complications and insulin resistance in patients with type 2 diabetes mellitus. Diabetol Metab Syndr 2024; 16:222. [PMID: 39261960 PMCID: PMC11389252 DOI: 10.1186/s13098-024-01450-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Dysregulation of the mechanistic target of rapamycin (mTOR) has been related to several metabolic conditions, notably obesity and type 2 diabetes (T2DM). This study aimed to evaluate the role of mTOR in patients with T2DM, and its relationship with insulin resistance and microvascular complications. METHODS This case-control study was conducted on 90 subjects attending the Outpatient Internal Medicine Clinic in Damanhur Teaching Hospital. Subjects were divided into 3 groups, Group I: 20 healthy controls, Group II: 20 subjects with T2DM without complications, and Group III: 50 subjects with T2DM with microvascular complications. An Enzyme-linked immunosorbent assay was used to measure serum mTOR levels. T2DM and diabetic complications were defined according to the diagnostic criteria of the American Diabetes Association. RESULTS The results revealed significant positive correlations to HbA1c (r = 0.530, P < 0.001), fasting glucose (r = 0.508, P < 0.001), and HOMA- IR (r = 0.559, P < 0.001), and a significant negative correlation to eGFR (r=-0.370, P = 0.002). Multivariate analysis revealed an independent association of mTOR and HbA1c values with the presence of microvascular complications. The prediction of microvascular complications was present at a cutoff value of 8 ng/ml mTOR with a sensitivity of 100% and specificity of 95% with an AUC of 0.983 and a p-value < 0.001. CONCLUSION mTOR is a prognostic marker of diabetic microvascular and is associated with insulin resistance in patients with T2DM. TRIAL REGISTRATION The study was conducted following the Declaration of Helsinki, and approved by the Ethics Committee of Alexandria University (0201127, 19/7/2018).
Collapse
Affiliation(s)
- Noha G Amin
- Department of Internal Medicine (Diabetes, Lipidology & Metabolism), Faculty of Medicine, Alexandria University, 17, Champollion Street, El Messallah, Alexandria, Egypt.
| | - A Abdel Rahim
- Department of Internal Medicine (Diabetes, Lipidology & Metabolism), Faculty of Medicine, Alexandria University, 17, Champollion Street, El Messallah, Alexandria, Egypt
| | - Kamel Rohoma
- Department of Internal Medicine (Diabetes, Lipidology & Metabolism), Faculty of Medicine, Alexandria University, 17, Champollion Street, El Messallah, Alexandria, Egypt
| | - Reham A Abo Elwafa
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Hossam M F Dabees
- Department of Internal Medicine (Diabetes, Lipidology & Metabolism), Faculty of Medicine, Alexandria University, 17, Champollion Street, El Messallah, Alexandria, Egypt
| | - Shimaa Elrahmany
- Department of Internal Medicine (Diabetes, Lipidology & Metabolism), Faculty of Medicine, Alexandria University, 17, Champollion Street, El Messallah, Alexandria, Egypt
| |
Collapse
|
8
|
Aghaei-Zarch SM. Crosstalk between MiRNAs/lncRNAs and PI3K/AKT signaling pathway in diabetes mellitus: Mechanistic and therapeutic perspectives. Noncoding RNA Res 2024; 9:486-507. [PMID: 38511053 PMCID: PMC10950585 DOI: 10.1016/j.ncrna.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 03/22/2024] Open
Abstract
Diabetes as a fastest growing diseases worldwide is characterized by elevated blood glucose levels. There's an enormous financial burden associated with this endocrine disorder, with unequal access to health care between developed and developing countries. PI3Ks (phosphoinositide 3-kinases) have been demonstrated to be crucial for glucose homeostasis, and malfunctioning of these molecules can contribute to an increase in glucose serum levels, the main pathophysiological feature of diabetes. Additionally, recent evidence suggests that miRNAs and lncRNAs are reciprocally interacting with this signaling pathway. It is therefore evident that abnormal regulation of miRNAs/lncRNAs in the lncRNAs/miRNAs/PI3K/AKT axis is related to clinicopathological characteristics and plays a crucial role in the regulation of biological processes. It has therefore been attempted in this review to describe the interaction between PI3K/AKT signaling pathway and various miRNAs/lncRNAs and their importance in DM biology. We also presented the clinical applications of PI3K/AKT-related ncRNAs/herbal medicine in patients with DM.
Collapse
Affiliation(s)
- Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Li J, Jia N, Cui M, Li Y, Jiang D, Chu X. Chinese herb couple against diabetes: integrating network pharmacology and mechanism study. J Biomol Struct Dyn 2024:1-17. [PMID: 38345075 DOI: 10.1080/07391102.2024.2314263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/30/2024] [Indexed: 01/04/2025]
Abstract
Cassia twig is a dry twig of Cinnamomum cassia Presl, a Lauraceae plant. Astragalus L is one of the largest genuses of flowering plants in the Leguminosae family. Roots of A. membranaceus Bge. var. mongholicus (Bge.) Hsiao, A. membranaceus (Fisch.) Bge. Chinese herb couple refers to the matching of two herbs in pairs, mostly with synergistic effects or toxicity reduction. This Chinese herb couple (Cassia twig-Astragalus) come from the classic famous book "Zhang Xichun's book on Chinese herb couple", which is widely used to treat diabetes. Moreover, both Cassia twig and Astragalus belong to the homology of medicine and food. However, its mechanism is still unclear. The study identified the effective components of Cassia twig-Astragalus by UPLC-Q-TOF-MS/MS and investigated the mechanism of Cassia twig-Astragalus in treating diabetes by virtue of network pharmacology, molecular docking and experimental verification. Firstly, based on UPLC-Q-TOF-MS/MS and network pharmacology, a total of 10 active ingredients of Astragalus and 6 active ingredients of Cassia twig were screened, and a total of 13 key targets were obtained. There were 64 targets at the intersection of Cassia twig-Astragalus with diabetes, mainly including IL-17, TNF, NF-κβ, AGE-RAGE signaling pathway, etc. It mainly involves the response of cells to insulin stimulation, the response to insulin and the positive regulation of cell adhesion. Secondly, molecular docking results showed that quercetin has good binding activities with AKT1 and TNF. Calycosin has good binding activities with AKT1, TNF and CAV1. Formononetin has good binding activities with TNF and IL-6. Isorhamnetin has good binding activities with AKT1, TNF and IL-6. Finally, the animal experiments showed that Cassia twig-Astragalus could improve the body weight, blood glucose and glucose tolerance in diabetic rats. After the intervention with Cassia twig-Astragalus, the inflammatory factors (IL-10, TNF-α, IL-6) were significantly improved in diabetic rats, which also effectively reduced TG and TC.
Collapse
Affiliation(s)
- Jing Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Nini Jia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mengyao Cui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yaqing Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | | | - Xiaoqin Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- Engineering Technology Research Center of Modern Pharmaceutical Preparation, Anhui Province, Hefei, China
| |
Collapse
|
10
|
Ciapała K, Mika J. Advances in Neuropathic Pain Research: Selected Intracellular Factors as Potential Targets for Multidirectional Analgesics. Pharmaceuticals (Basel) 2023; 16:1624. [PMID: 38004489 PMCID: PMC10675751 DOI: 10.3390/ph16111624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Neuropathic pain is a complex and debilitating condition that affects millions of people worldwide. Unlike acute pain, which is short-term and starts suddenly in response to an injury, neuropathic pain arises from somatosensory nervous system damage or disease, is usually chronic, and makes every day functioning difficult, substantially reducing quality of life. The main reason for the lack of effective pharmacotherapies for neuropathic pain is its diverse etiology and the complex, still poorly understood, pathophysiological mechanism of its progression. Numerous experimental studies, including ours, conducted over the last several decades have shown that the development of neuropathic pain is based on disturbances in cell activity, imbalances in the production of pronociceptive factors, and changes in signaling pathways such as p38MAPK, ERK, JNK, NF-κB, PI3K, and NRF2, which could become important targets for pharmacotherapy in the future. Despite the availability of many different analgesics, relieving neuropathic pain is still extremely difficult and requires a multidirectional, individual approach. We would like to point out that an increasing amount of data indicates that nonselective compounds directed at more than one molecular target exert promising analgesic effects. In our review, we characterize four substances (minocycline, astaxanthin, fisetin, and peimine) with analgesic properties that result from a wide spectrum of actions, including the modulation of MAPKs and other factors. We would like to draw attention to these selected substances since, in preclinical studies, they show suitable analgesic properties in models of neuropathy of various etiologies, and, importantly, some are already used as dietary supplements; for example, astaxanthin and fisetin protect against oxidative stress and have anti-inflammatory properties. It is worth emphasizing that the results of behavioral tests also indicate their usefulness when combined with opioids, the effectiveness of which decreases when neuropathy develops. Moreover, these substances appear to have additional, beneficial properties for the treatment of diseases that frequently co-occur with neuropathic pain. Therefore, these substances provide hope for the development of modern pharmacological tools to not only treat symptoms but also restore the proper functioning of the human body.
Collapse
Affiliation(s)
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31-343 Kraków, Poland;
| |
Collapse
|
11
|
Shu Y, He Y, Ye G, Liu X, Huang J, Zhang Q, Tian D, Wang T, Shu J. Curcumin inhibits the activity and induces apoptosis of activated hepatic stellate cell by suppressing autophagy. J Cell Biochem 2023; 124:1764-1778. [PMID: 37909649 DOI: 10.1002/jcb.30487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/09/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023]
Abstract
Curcumin, a kind of natural compound, has been previously proven to inhibit the autophagy in hepatic stellate cells (HSCs) and induce their apoptosis. However, it is not clear whether the enhanced apoptosis of activated HSCs (aHSCs) caused by curcumin depends on autophagy inhibition. We aim to verify this hypothesis and explore the potential mechanisms in this study. Immortalized human HSC line LX-2 was used as an experimental specimen and pretreated with transforming growth factor β1(TGF-β1) for 24 h to activate it before drug application. The levels of autophagy, apoptosis, cell activity, lipid metabolism, and the activity of the PI3K/Akt/mTOR signal pathway were evaluated by multiple methods, such as Western blotting, mcherry-EGFP-LC3B adenoviruses transfection, immunofluorescence, Nile Red staining, flow cytometry among others. Our results showed that rapamycin, an autophagy activator, could partly offset the effects of curcumin on autophagy and apoptosis of LX-2 cells, while 3-Methyladenine (3-MA), an autophagy inhibitor, could enhance these effects. Furthermore, curcumin could promote the activity of the PI3K/Akt/mTOR signal pathway in LX-2 cells, while PI3K inhibitor could partly offset this effect and increase the autophagy level. Overall, we demonstrated that curcumin could inhibit the activity and promote LX-2 cells apoptosis by suppressing autophagy by activating the PI3K/Akt/mTOR signal pathway. In addition, lipid recovery and energy deprivation due to autophagy inhibition may be the exact mechanism by which curcumin attenuates the pro-fibrotic activity of LX-2.
Collapse
Affiliation(s)
- Yongxiang Shu
- Department of Gastroenterology, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Yajun He
- Department of Clinical laboratory, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Guorong Ye
- Department of Gastroenterology, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Xuyou Liu
- Department of Gastroenterology, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Jiahuang Huang
- Department of Gastroenterology, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Qinghui Zhang
- Department of Gastroenterology, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Da Tian
- Department of Gastroenterology, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Tengyan Wang
- Department of Gastroenterology, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| | - Jianchang Shu
- Department of Gastroenterology, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
12
|
Dai Y, Zhou S, Qiao L, Peng Z, Zhao J, Xu D, Wu C, Li M, Zeng X, Wang Q. Non-apoptotic programmed cell deaths in diabetic pulmonary dysfunction: the new side of advanced glycation end products. Front Endocrinol (Lausanne) 2023; 14:1126661. [PMID: 37964954 PMCID: PMC10641270 DOI: 10.3389/fendo.2023.1126661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 09/26/2023] [Indexed: 11/16/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder that affects multiple organs and systems, including the pulmonary system. Pulmonary dysfunction in DM patients has been observed and studied for years, but the underlying mechanisms have not been fully understood. In addition to traditional mechanisms such as the production and accumulation of advanced glycation end products (AGEs), angiopathy, tissue glycation, oxidative stress, and systemic inflammation, recent studies have focused on programmed cell deaths (PCDs), especially the non-apoptotic ones, in diabetic pulmonary dysfunction. Non-apoptotic PCDs (NAPCDs) including autophagic cell death, necroptosis, pyroptosis, ferroptosis, and copper-induced cell death have been found to have certain correlations with diabetes and relevant complications. The AGE-AGE receptor (RAGE) axis not only plays an important role in the traditional pathogenesis of diabetes lung disease but also plays an important role in non-apoptotic cell death. In this review, we summarize novel studies about the roles of non-apoptotic PCDs in diabetic pulmonary dysfunction and focus on their interactions with the AGE-RAGE axis.
Collapse
Affiliation(s)
- Yimin Dai
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Shuang Zhou
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Lin Qiao
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Zhao Peng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Jiuliang Zhao
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Dong Xu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Chanyuan Wu
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Mengtao Li
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaofeng Zeng
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Qian Wang
- Department of Rheumatology and Clinical Immunology, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science and Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
13
|
Zhang X, Luo Z, Li J, Lin Y, Li Y, Li W. Sestrin2 in diabetes and diabetic complications. Front Endocrinol (Lausanne) 2023; 14:1274686. [PMID: 37920252 PMCID: PMC10619741 DOI: 10.3389/fendo.2023.1274686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
Diabetes is a global health problem which is accompanied with multi-systemic complications. It is of great significance to elucidate the pathogenesis and to identify novel therapies of diabetes and diabetic complications. Sestrin2, a stress-inducible protein, is primarily involved in cellular responses to various stresses. It plays critical roles in regulating a series of cellular events, such as oxidative stress, mitochondrial function and endoplasmic reticulum stress. Researches investigating the correlations between Sestrin2, diabetes and diabetic complications are increasing in recent years. This review incorporates recent findings, demonstrates the diverse functions and regulating mechanisms of Sestrin2, and discusses the potential roles of Sestrin2 in the pathogenesis of diabetes and diabetic complications, hoping to highlight a promising therapeutic direction.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zirui Luo
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Jiahong Li
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Yaxuan Lin
- The Second Clinical Medicine School, Guangzhou Medical University, Guangzhou, China
| | - Yu Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wangen Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
14
|
Medras ZJH, Mostafa YM, Ahmed AAM, El‐Sayed NM. Arctigenin improves neuropathy via ameliorating apoptosis and modulating autophagy in streptozotocin-induced diabetic mice. CNS Neurosci Ther 2023; 29:3068-3080. [PMID: 37170684 PMCID: PMC10493658 DOI: 10.1111/cns.14249] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/11/2023] [Accepted: 03/23/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Oxidative stress mediates the pathophysiology of diabetic neuropathy (DN) with activation of apoptotic pathway and reduction of autophagy. Arctigenin (ARC) is a natural lignan isolated from some plants of the Asteraceae family that shows antioxidant property. The present study aimed to explore the mechanistic neuroprotective effect of ARC on animal model for DN. METHODS DN was induced using streptozotocin (STZ) at a dose of 45 mg/kg, i.p, for five consecutive days and ARC was administered orally (25 or 50 mg) for 3 weeks. The mechanical sensitivity and thermal latency were determined using von Frey and hotplate, respectively. Beclin, p62, and LC3 were detected as markers for autophagy by western blot. Levels of reduced glutathione, lipid peroxides, and activities of catalase and superoxide dismutase were detected as readout for oxidative stress. Apoptotic parameters and histopathological changes were revealed in all experimental groups. RESULTS The present study showed deterioration of the function and structure of neurons as a result of hyperglycemia. Oxidative stress and impaired autophagy were observed in diabetic neurons as well as the activation of apoptotic pathway. ARC improved the behavioral and histopathological changes of diabetic mice. ARC combated oxidative stress through diminishing lipid peroxidation and improving the activity of antioxidant enzymes. This was concomitant by reducing the biomarkers of apoptosis. ARC augmented the expression of Beclin and LC3 while it lessened the expression of p62 indicating the activation of autophagy. These findings suggest that ARC can ameliorate DN by combating apoptosis and oxidative stress and improving autophagy.
Collapse
Affiliation(s)
| | - Yasser M. Mostafa
- Department of Pharmacology and Toxicology, Faculty of PharmacySuez Canal UniversityIsmailiaEgypt
- Department of Pharmacology & Toxicology, Faculty of PharmacyBadr University in CairoBadrEgypt
| | - Amal A. M. Ahmed
- Department of Cytology and Histology, Faculty of Veterinary MedicineSuez Canal UniversityIsmailiaEgypt
| | - Norhan M. El‐Sayed
- Department of Pharmacology and Toxicology, Faculty of PharmacySuez Canal UniversityIsmailiaEgypt
| |
Collapse
|
15
|
Taher MG, Mohammed MR, Al-Mahdawi MAS, Halaf NKA, Jalil AT, Alsandook T. The role of protein kinases in diabetic neuropathic pain: an update review. J Diabetes Metab Disord 2023; 22:147-154. [PMID: 37255803 PMCID: PMC10225446 DOI: 10.1007/s40200-023-01217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/23/2023] [Indexed: 06/01/2023]
Abstract
Objectives Diabetic neuropathic pain (DNP) is a debilitating symptom of diabetic neuropathy which seriously impairs patient's quality of life. Currently, there is no specific therapy for DNP except for duloxetine and gabapentin that show limited utility in alleviating DNP. The present review aims to discuss the central role of protein kinases in the pathogenesis of DNP and their therapeutic modulation. Methods Scopus, PubMed, and Google scholar were searched up to January 2022 to find relevant studies with English language in which the roles of proteins kinases in DNP were examined. Results DNP is associated with hyperactivity in pain sensory neurons and therapies aim to specifically suppress redundant discharges in these neurons without affecting the activity of other sensory and motor neurons. Transient receptor potential vanilloid 1 (TRPV1) and purinergic 2 × 7 receptors (P2 × 7R) are two receptor channels, highly expressed in pain sensory neurons and their blockade produces remarkable analgesic effects in DNP. The activities of receptor channels are mainly regulated by the protein kinases whose modulation provides remarkable analgesic effects in DNP models. Conclusion Capsaicin, TRPV1 modulator, is the only agent successfully examined in clinical trials with promising effects in patients with DNP. Current data suggest that blocking calcium calmodulin dependent protein kinase II (CaMKII) is superior to other approaches, considering its pivotal role in regulating the pain neuron potentials. By this means, DNP alleviation is achievable without affecting the activity of other sensory or motor neurons.
Collapse
Affiliation(s)
- Mustafa Gheni Taher
- Department of Pathology and Forensic Medicine, College of Medicine, University of Diyala, Baquba, Diyala Iraq
| | | | | | | | - Abduladheem Turki Jalil
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hilla, Babylon, Iraq
| | - Tahani Alsandook
- Department of Dentistry, Al-Turath University College, Baghdad, Iraq
| |
Collapse
|
16
|
Ramasubbu K, Devi Rajeswari V. Impairment of insulin signaling pathway PI3K/Akt/mTOR and insulin resistance induced AGEs on diabetes mellitus and neurodegenerative diseases: a perspective review. Mol Cell Biochem 2022; 478:1307-1324. [PMID: 36308670 DOI: 10.1007/s11010-022-04587-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/12/2022] [Indexed: 12/01/2022]
Abstract
Insulin resistance is common in type 2 diabetes mellitus (T2DM), neurodegenerative diseases, cardiovascular diseases, kidney diseases, and polycystic ovary syndrome. Impairment in insulin signaling pathways, such as the PI3K/Akt/mTOR pathway, would lead to insulin resistance. It might induce the synthesis and deposition of advanced glycation end products (AGEs), reactive oxygen species, and reactive nitrogen species, resulting in stress, protein misfolding, protein accumulation, mitochondrial dysfunction, reticulum function, and metabolic syndrome dysregulation, inflammation, and apoptosis. It plays a huge role in various neurodegenerative diseases like Parkinson's disease, Alzheimer's disease, Huntington's disease, and Amyloid lateral sclerosis. In this review, we intend to focus on the possible effect of insulin resistance in the progression of neurodegeneration via the impaired P13K/Akt/mTOR signaling pathway, AGEs, and receptors for AGEs.
Collapse
Affiliation(s)
- Kanagavalli Ramasubbu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632014, India.
| |
Collapse
|
17
|
Zheng J, Wang Y, Liu Y, Han S, Zhang Y, Luo Y, Yan Y, Li J, Zhao L. cPKCγ Deficiency Exacerbates Autophagy Impairment and Hyperphosphorylated Tau Buildup through the AMPK/mTOR Pathway in Mice with Type 1 Diabetes Mellitus. Neurosci Bull 2022; 38:1153-1169. [PMID: 35596894 PMCID: PMC9554100 DOI: 10.1007/s12264-022-00863-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/03/2022] [Indexed: 01/26/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM)-induced cognitive dysfunction is common, but its underlying mechanisms are still poorly understood. In this study, we found that knockout of conventional protein kinase C (cPKC)γ significantly increased the phosphorylation of Tau at Ser214 and neurofibrillary tangles, but did not affect the activities of GSK-3β and PP2A in the hippocampal neurons of T1DM mice. cPKCγ deficiency significantly decreased the level of autophagy in the hippocampal neurons of T1DM mice. Activation of autophagy greatly alleviated the cognitive impairment induced by cPKCγ deficiency in T1DM mice. Moreover, cPKCγ deficiency reduced the AMPK phosphorylation levels and increased the phosphorylation levels of mTOR in vivo and in vitro. The high glucose-induced Tau phosphorylation at Ser214 was further increased by the autophagy inhibitor and was significantly decreased by an mTOR inhibitor. In conclusion, these results indicated that cPKCγ promotes autophagy through the AMPK/mTOR signaling pathway, thus reducing the level of phosphorylated Tau at Ser214 and neurofibrillary tangles.
Collapse
Affiliation(s)
- Jiayin Zheng
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Yue Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100088, China
| | - Yue Liu
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Song Han
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Ying Zhang
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Yanlin Luo
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Yi Yan
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China
| | - Junfa Li
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| | - Li Zhao
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
18
|
Tan Q, Chen J, Gao G, Yizhang, Chen X, Yu Y, Zang G, Tang Z. Adenovirus vector encoding TPPII ignites HBV-specific CTL response by activating autophagy in CD8+ T cell. J Viral Hepat 2022; 29:178-188. [PMID: 34902200 DOI: 10.1111/jvh.13638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 11/01/2021] [Accepted: 11/26/2021] [Indexed: 12/19/2022]
Abstract
Early studies have shown that autophagy and TPPII are associated with HBV infection. In this study, adenovirus vector containing TPPII was constructed to immunize HBV transgenic mice in vivo to explore the potential mechanism of autophagy and HBV infection. Our goal is to provide new ideas for immunotherapy of hepatitis B. First, adenovirus vector containing TPPII was constructed. Then, we used adenovirus to immunize HBV transgenic mice and ATG5 knockout HBV transgenic mice. The autophagy of CD8+ T cells was detected by transmission electron microscopy and immunofluorescence electron microscopy, Western blot was used to detect the expression of autophagy LC3 and BECN1, CTL reaction, HBV DNA and HBsAg in serum, HBsAg and HBcAg in liver tissues by immunohistochemistry, to further examine the possible mechanisms involved in autophagy. Adv-HBcAg-TPPII promotes autophagy of CD8+ T lymphocyte, activates CTL response, inhibits HBV DNA replication and HBsAg expression, and PI3K/ Akt /m TOR signalling pathway may be involved in autophagy. This study demonstrates that autophagy of CD8+ T cells was induced by Adv-HBcAg-TPPII and the molecular mechanism may be related to the PI3K/ Akt /m TOR signalling pathway, providing a possible theoretical basis for immunotherapy of hepatitis B.
Collapse
Affiliation(s)
- Quanhui Tan
- Department of infection Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jie Chen
- Department of infection Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Gao Gao
- Department of infection Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yizhang
- Department of infection Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaohua Chen
- Department of infection Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yongsheng Yu
- Department of infection Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guoqin Zang
- Department of infection Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhenghao Tang
- Department of infection Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
19
|
Liao MF, Lu KT, Hsu JL, Lee CH, Cheng MY, Ro LS. The Role of Autophagy and Apoptosis in Neuropathic Pain Formation. Int J Mol Sci 2022; 23:2685. [PMID: 35269822 PMCID: PMC8910267 DOI: 10.3390/ijms23052685] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 01/18/2023] Open
Abstract
Neuropathic pain indicates pain caused by damage to the somatosensory system and is difficult to manage and treat. A new treatment strategy urgently needs to be developed. Both autophagy and apoptosis are critical adaptive mechanisms when neurons encounter stress or damage. Recent studies have shown that, after nerve damage, both autophagic and apoptotic activities in the injured nerve, dorsal root ganglia, and spinal dorsal horn change over time. Many studies have shown that upregulated autophagic activities may help myelin clearance, promote nerve regeneration, and attenuate pain behavior. On the other hand, there is no direct evidence that the inhibition of apoptotic activities in the injured neurons can attenuate pain behavior. Most studies have only shown that agents can simultaneously attenuate pain behavior and inhibit apoptotic activities in the injured dorsal root ganglia. Autophagy and apoptosis can crosstalk with each other through various proteins and proinflammatory cytokine expressions. Proinflammatory cytokines can promote both autophagic/apoptotic activities and neuropathic pain formation, whereas autophagy can inhibit proinflammatory cytokine activities and further attenuate pain behaviors. Thus, agents that can enhance autophagic activities but suppress apoptotic activities on the injured nerve and dorsal root ganglia can treat neuropathic pain. Here, we summarized the evolving changes in apoptotic and autophagic activities in the injured nerve, dorsal root ganglia, spinal cord, and brain after nerve damage. This review may help in further understanding the treatment strategy for neuropathic pain during nerve injury by modulating apoptotic/autophagic activities and proinflammatory cytokines in the nervous system.
Collapse
Affiliation(s)
- Ming-Feng Liao
- Linkou Medical Center, Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (M.-F.L.); (J.-L.H.); (C.-H.L.); (M.-Y.C.)
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 106, Taiwan;
| | - Kwok-Tung Lu
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 106, Taiwan;
| | - Jung-Lung Hsu
- Linkou Medical Center, Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (M.-F.L.); (J.-L.H.); (C.-H.L.); (M.-Y.C.)
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, Chang Gung University, New Taipei City 236, Taiwan
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei 110, Taiwan
- Brain and Consciousness Research Center, Shuang Ho Hospital, New Taipei City 235, Taiwan
| | - Chih-Hong Lee
- Linkou Medical Center, Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (M.-F.L.); (J.-L.H.); (C.-H.L.); (M.-Y.C.)
| | - Mei-Yun Cheng
- Linkou Medical Center, Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (M.-F.L.); (J.-L.H.); (C.-H.L.); (M.-Y.C.)
| | - Long-Sun Ro
- Linkou Medical Center, Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (M.-F.L.); (J.-L.H.); (C.-H.L.); (M.-Y.C.)
| |
Collapse
|
20
|
Qureshi Z, Ali MN, Khalid M. An Insight into Potential Pharmacotherapeutic Agents for Painful Diabetic Neuropathy. J Diabetes Res 2022; 2022:9989272. [PMID: 35127954 PMCID: PMC8813291 DOI: 10.1155/2022/9989272] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/11/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022] Open
Abstract
Diabetes is the 4th most common disease affecting the world's population. It is accompanied by many complications that deteriorate the quality of life. Painful diabetic neuropathy (PDN) is one of the debilitating consequences of diabetes that effects one-third of diabetic patients. Unfortunately, there is no internationally recommended drug that directly hinders the pathological mechanisms that result in painful diabetic neuropathy. Clinical studies have shown that anticonvulsant and antidepressant therapies have proven fruitful in management of pain associated with PDN. Currently, the FDA approved medications for painful diabetic neuropathies include duloxetine, pregabalin, tapentadol extended release, and capsaicin (for foot PDN only). The FDA has also approved the use of spinal cord stimulation system for the treatment of diabetic neuropathy pain. The drugs recommended by other regulatory bodies include gabapentin, amitriptyline, dextromethorphan, tramadol, venlafaxine, sodium valproate, and 5 % lidocaine patch. These drugs are only partially effective and have adverse effects associated with their use. Treating painful symptoms in diabetic patient can be frustrating not only for the patients but also for health care workers, so additional clinical trials for novel and conventional treatments are required to devise more effective treatment for PDN with minimal side effects. This review gives an insight on the pathways involved in the pathogenesis of PDN and the potential pharmacotherapeutic agents. This will be followed by an overview on the FDA-approved drugs for PDN and commercially available topical analgesic and their effects on painful diabetic neuropathies.
Collapse
Affiliation(s)
- Zunaira Qureshi
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, H-12, 44000 Islamabad, Pakistan
| | - Murtaza Najabat Ali
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, H-12, 44000 Islamabad, Pakistan
| | - Minahil Khalid
- Department of Biomedical Engineering and Sciences, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, H-12, 44000 Islamabad, Pakistan
| |
Collapse
|
21
|
Han F, Wang C, Zhou L, Mo M, Kong X, Chai Z, Deng L, Zhang J, Cao K, Wei C, Xu L, Chen J. Research advances on antioxidation, neuroprotection, and molecular mechanisms of
Lycium barbarum polysaccharides. BRAIN SCIENCE ADVANCES 2021. [DOI: 10.26599/bsa.2021.9050019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
22
|
Pang B, Qiao L, Wang S, Guo X, Xie Y, Han L. MiR-214-3p plays a protective role in diabetic neuropathic rats by regulating Nav1.3 and TLR4. Cell Biol Int 2021; 45:2294-2303. [PMID: 34296787 DOI: 10.1002/cbin.11677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 11/06/2022]
Abstract
This study aimed to investigate the functions of miR-214-3p in diabetic neuropathic rodents. The diabetic neuropathy was induced by intraperitoneal injection of streptozotocin (STZ) in rats, and miR-214-3p was delivered via tail vein injection of lentivirus. Hot or cold stimulus tests demonstrated that STZ induced thermal hyperalgesia. Neurophysiological measurements revealed that motor and sensory nerve conduction velocity and nerve blood flow were decreased in diabetic neuropathic rats. However, the STZ-induced hyperalgesia, and reduced nerve conduction velocity and nerve blood flow were all significantly reversed by miR-214-3p administration. HE staining, TUNEL, ELISA, and immunoblotting demonstrated that STZ led to obvious pathological lesion, cell apoptosis, and inflammation in dorsal root ganglion (DRG), evidenced by altered levels of apoptosis-related protein molecules and inflammatory factors, and activation of Toll-like receptor 4 (TLR4)/myeloid differentiation primary response gene 88/nuclear factor kappa B signaling. The pathological alterations in diabetic neuropathic rats in DRG were significantly ameliorated by miR-214-3p application. In addition, sodium channel protein type 3 subunit alpha isoform 1 (Nav1.3) and TLR4 were identified as targets of miR-214-3p via dual-luciferase reporter assay. MiR-214-3p may play its roles by downregulating Nav1.3 and TLR4. In summary, miR-214-3p alleviated diabetes-induced nerve injury, and pathological lesion, cell apoptosis, and inflammation in DRG by regulating Nav1.3 and TLR4 in STZ-induced rats. These findings may provide novel therapeutic targets for clinical treatment of diabetic neuropathy.
Collapse
Affiliation(s)
- Bo Pang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital, Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Ling Qiao
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital, Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Shaoxin Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital, Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xin Guo
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital, Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yun Xie
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital, Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Liping Han
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital, Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
23
|
Chen Y, Zheng YF, Lin XH, Zhang JP, Lin F, Shi H. Dendrobium mixture attenuates renal damage in rats with diabetic nephropathy by inhibiting the PI3K/Akt/mTOR pathway. Mol Med Rep 2021; 24:590. [PMID: 34165163 PMCID: PMC8222963 DOI: 10.3892/mmr.2021.12229] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/18/2021] [Indexed: 11/06/2022] Open
Abstract
Dendrobium mixture (DMix) is a Traditional Chinese Medicine widely used for preventing and treating diabetic nephropathy (DN). Autophagy contributes to DN development and progression. The present study aimed to investigate the mechanism underlying the protective effects of DMix on the kidneys of rats with DN and to determine whether this involves autophagy. Herein, a high‑sugar and high‑fat diet, combined with the intra‑abdominal injection of low‑dose streptozocin, was used to induce DN in 40 Sprague‑Dawley male rats. In total, 10 additional rats were used as controls. The rats with DN were then randomly divided into three groups and treated with DMix, gliquidone or saline via gastric administration for 8 weeks. Body weight, kidney weight, kidney index, fasting blood glucose (FBG), blood lipid, hemoglobin A1c (HbA1c), insulin, blood urea nitrogen and serum creatinine levels, as well as the 24‑h urinary albumin excretion rate (UAER) were measured. H&E, Periodic Acid‑Schiff and Masson staining were used to examine the renal pathology. The mRNA and protein expression levels of LC3 and Beclin‑1 in renal tissues were measured using reverse transcription‑quantitative PCR and immunohistochemistry, respectively. Western blotting was conducted to measure the protein expression levels of PI3K, phosphorylated (p)‑PI3K, Akt, p‑Akt, mTOR, p‑mTOR, LC3 and Beclin‑1 in renal tissues. It was found that DMix significantly reduced the FBG, blood lipids, HbA1c and insulin levels, kidney weight, kidney index and UAER in rats with DN, as well as improved renal function. Rats with DN showed notable glomerular hypertrophy, an increase in mesangial matrix content and renal interstitial fibrosis. Moreover, DMix notably reduced kidney damage. The results demonstrated that DMix inhibited the phosphorylation of PI3K, Akt and mTOR in the kidney tissues of rats with DN, and increased the protein and mRNA expression levels of LC3 and Beclin‑1. Therefore, it was suggested that DMix has protective effects on the kidney of rats with DN, which may be associated with the inhibition of the PI3K/Akt/mTOR signaling pathway and activation of renal autophagy by this traditional medicine.
Collapse
Affiliation(s)
- Yong Chen
- School of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Yan Fang Zheng
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Xiao Hui Lin
- School of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jie Ping Zhang
- School of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Fan Lin
- School of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Hong Shi
- School of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|