1
|
Ampofo E, Nalbach L, Menger MD, Laschke MW. Regulatory Mechanisms of Somatostatin Expression. Int J Mol Sci 2020; 21:ijms21114170. [PMID: 32545257 PMCID: PMC7312888 DOI: 10.3390/ijms21114170] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022] Open
Abstract
Somatostatin is a peptide hormone, which most commonly is produced by endocrine cells and the central nervous system. In mammals, somatostatin originates from pre-prosomatostatin and is processed to a shorter form, i.e., somatostatin-14, and a longer form, i.e., somatostatin-28. The two peptides repress growth hormone secretion and are involved in the regulation of glucagon and insulin synthesis in the pancreas. In recent years, the processing and secretion of somatostatin have been studied intensively. However, little attention has been paid to the regulatory mechanisms that control its expression. This review provides an up-to-date overview of these mechanisms. In particular, it focuses on the role of enhancers and silencers within the promoter region as well as on the binding of modulatory transcription factors to these elements. Moreover, it addresses extracellular factors, which trigger key signaling pathways, leading to an enhanced somatostatin expression in health and disease.
Collapse
Affiliation(s)
- Emmanuel Ampofo
- Correspondence: ; Tel.: +49-6841-162-6561; Fax: +49-6841-162-6553
| | | | | | | |
Collapse
|
2
|
Jung S, Boie G, Doerr HG, Trollmann R. Oxygen-sensitive regulation and neuroprotective effects of growth hormone-dependent growth factors during early postnatal development. Am J Physiol Regul Integr Comp Physiol 2017; 312:R539-R548. [DOI: 10.1152/ajpregu.00477.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/30/2017] [Accepted: 01/30/2017] [Indexed: 12/14/2022]
Abstract
Perinatal hypoxia severely disrupts metabolic and somatotrophic development, as well as cerebral maturational programs. Hypoxia-inducible transcription factors (HIFs) represent the most important endogenous adaptive mechanisms to hypoxia, activating a broad spectrum of growth factors that contribute to cell survival and energy homeostasis. To analyze effects of systemic hypoxia and growth hormone (GH) therapy (rhGH) on HIF-dependent growth factors during early postnatal development, we compared protein (using ELISA) and mRNA (using quantitative RT PCR) levels of growth factors in plasma and brain between normoxic and hypoxic mice (8% O2, 6 h; postnatal day 7, P7) at P14. Exposure to hypoxia led to reduced body weight ( P < 0.001) and length ( P < 0.04) compared with controls and was associated with significantly reduced plasma levels of mouse GH ( P < 0.01) and IGF-1 ( P < 0.01). RhGH abrogated these hypoxia-induced changes of the GH/IGF-1 axis associated with normalization of weight and length gain until P14 compared with controls. In addition, rhGH treatment increased cerebral IGF-1, IGF-2, IGFBP-2, and erythropoietin mRNA levels, resulting in significantly reduced apoptotic cell death in the hypoxic, developing mouse brain. These data indicate that rhGH may functionally restore hypoxia-induced systemic dysregulation of the GH/IGF-1 axis and induce upregulation of neuroprotective, HIF-dependent growth factors in the hypoxic developing brain.
Collapse
Affiliation(s)
- Susan Jung
- Division of Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany; and
| | - Gudrun Boie
- Division of Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany; and
| | - Helmuth-Guenther Doerr
- Division of Pediatric Endocrinology, Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Regina Trollmann
- Division of Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany; and
| |
Collapse
|
3
|
Iwona BS. Growth Factors in the Pathogenesis of Retinal Neurodegeneration in Diabetes Mellitus. Curr Neuropharmacol 2017; 14:792-804. [PMID: 27528260 PMCID: PMC5333593 DOI: 10.2174/1570159x14666160813182009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/12/2015] [Accepted: 01/06/2015] [Indexed: 12/13/2022] Open
Abstract
Neurodegeneration is an initial process in the development of diabetic retinopathy (DR). High quantities of glutamate, oxidative stress, induction of the renin-angiotensin system (RAS) and elevated levels of RAGE are crucial elements in the retinal neurodegeneration caused by diabetes mellitus. At least, there is emerging proof to indicate that the equilibrium between the neurotoxic and neuroprotective components will affect the state of the retinal neurons. Somatostatin (SST), pigment epithelium-derived factor (PEDF), and erythropoietin (Epo) are endogenous neuroprotective peptides that are decreased in the eye of diabetic persons and play an essential role in retinal homeostasis. On the other hand, insulin-like growth factor 1 (IGF-1), and vascular endothelial growth factor (VEGF) are pivotal proteins which participate in the development of new capillaries and finally cause damage to the retinal neurons. During recent years, our knowledge about the function of growth factors in the pathogenesis of retinal neurodegeneration has increased. However, intensive investigations are needed to clarify the basic processes that contribute to retinal neurodegeneration and its association with damage to the capillary blood vessels. The objective of this review article is to show new insights on the role of neurotransmitters and growth factors in the pathogenesis of diabetic retinopathy. The information contained in this manuscript may provide the basis for novel strategies based on the factors of neurodegeneration to diagnose, prevent and treat DR in its earliest phases.
Collapse
Affiliation(s)
- Ben-Skowronek Iwona
- Department Pediatric Endocrinology and Diabetology, Medical University of Lublin, ul. Prof. A. Gebali 6, 20-093 Lublin, Poland
| |
Collapse
|
4
|
Podhorecka M, Halicka D, Szymczyk A, Macheta A, Chocholska S, Hus M, Darzynkiewicz Z. Assessment of red blood cell distribution width as a prognostic marker in chronic lymphocytic leukemia. Oncotarget 2016; 7:32846-53. [PMID: 27147570 PMCID: PMC5078056 DOI: 10.18632/oncotarget.9055] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/08/2016] [Indexed: 01/25/2023] Open
Abstract
Red blood cell distribution width (RDW) is a quantitative measure of the variability in size of circulating erythrocytes. It was recently reported that RDW is a prognostic factor for infection diseases, cardiovascular and pulmonary diseases, as well as some neoplasms. Moreover, RDW is remarkably strong predictor of longevity, including all causes of death, for adults aged 45 years and older. To explain this occurrence it was proposed that persistent IGFs/mTOR signaling is one of the factors that play a role in affecting the RDW and mortality.The above observations induced us to analyze the prognostic role of RDW in chronic lymphocytic leukemia (CLL) being the most frequent type of adult leukemia in Western countries. The obtained results have shown that RDW may be considered as a potential CLL prognostic marker. Elevated RDW level at the moment of diagnosis was associated with advanced disease and presence of other poor prognostic factors. It is also connected with overall survival indicating shorter time in patients with elevated RDW. It is possible that the presently observed correlation between mortality and RDW of the CLL patients is affected by their metabolic (IGF-1/mTOR driven)- rather than chronological- aging. The patients with high level of RDW are expected to have an increased persistent level of IGF-1/mTOR signaling. Within the framework of personalized therapy, these CLL patients therefore would be expected to be more sensitive to the treatment with mTOR inhibitors.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Agents/therapeutic use
- Erythrocyte Indices
- Erythrocytes/metabolism
- Female
- Humans
- Insulin-Like Growth Factor I/metabolism
- Kaplan-Meier Estimate
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Male
- Middle Aged
- Molecular Targeted Therapy
- Predictive Value of Tests
- Prognosis
- Proportional Hazards Models
- Protein Kinase Inhibitors/therapeutic use
- Retrospective Studies
- Risk Factors
- Signal Transduction
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- TOR Serine-Threonine Kinases/blood
Collapse
Affiliation(s)
- Monika Podhorecka
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Dorota Halicka
- Department of Pathology, New York Medical College, Valhalla, New York, USA
| | - Agnieszka Szymczyk
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Arkadiusz Macheta
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Sylwia Chocholska
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Marek Hus
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
5
|
|
6
|
Darzynkiewicz Z, Zhao H, Halicka HD, Li J, Lee YS, Hsieh TC, Wu JM. In search of antiaging modalities: evaluation of mTOR- and ROS/DNA damage-signaling by cytometry. Cytometry A 2014; 85:386-99. [PMID: 24677687 DOI: 10.1002/cyto.a.22452] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/06/2014] [Accepted: 06/02/2014] [Indexed: 12/31/2022]
Abstract
This review presents the evidence in support of the IGF-1/mTOR/S6K1 signaling as the primary factor contributing to aging and cellular senescence. Reviewed are also specific interactions between mTOR/S6K1 and ROS-DNA damage signaling pathways. Outlined are critical sites along these pathways, including autophagy, as targets for potential antiaging (gero-suppressive) and/or chemopreventive agents. Presented are applications of flow- and laser scanning- cytometry utilizing phospho-specific Abs, to monitor activation along these pathways in response to the reported antiaging drugs rapamycin, metformin, berberine, resveratrol, vitamin D3, 2-deoxyglucose, and acetylsalicylic acid. Specifically, effectiveness of these agents to attenuate the level of constitutive mTOR signaling was tested by cytometry and confirmed by Western blotting through measuring phosphorylation of the mTOR-downstream targets including ribosomal protein S6. The ratiometric analysis of phosphorylated to total protein along the mTOR pathway offers a useful parameter reporting the effects of gero-suppressive agents. In parallel, their ability to suppress the level of constitutive DNA damage signaling induced by endogenous ROS was measured. While the primary target of each of these agents may be different the data obtained on several human cancer cell lines, WI-38 fibroblasts and normal lymphocytes suggest common downstream mechanism in which the decline in mTOR/S6K1 signaling and translation rate is coupled with a reduction of oxidative phosphorylation and ROS that leads to decreased oxidative DNA damage. The combined assessment of constitutive γH2AX expression, mitochondrial activity (ROS, ΔΨm), and mTOR signaling provides an adequate gamut of cell responses to test effectiveness of gero-suppressive agents. Described is also an in vitro model of induction of cellular senescence by persistent replication stress, its quantitative analysis by laser scanning cytometry, and application to detect the property of the studied agents to attenuate the induction of senescence. Discussed is cytometric analysis of cell size and heterogeneity of size as a potential biomarker used to asses gero-suppressive agents and longevity.
Collapse
Affiliation(s)
- Zbigniew Darzynkiewicz
- Brander Cancer Research Institute and Department of Pathology, New York Medical College, Valhalla, New York, 10595
| | | | | | | | | | | | | |
Collapse
|
7
|
Günter CI, Bader A, Dornseifer U, Egert S, Dunda S, Grieb G, Wolter T, Pallua N, von Wild T, Siemers F, Mailänder P, Thamm O, Ernert C, Steen M, Sievers R, Reichert B, Rahmanian-Schwarz A, Schaller H, Hartmann B, Otte M, Kehl V, Ohmann C, Jelkmann W, Machens HG. A multi-center study on the regenerative effects of erythropoietin in burn and scalding injuries: study protocol for a randomized controlled trial. Trials 2013; 14:124. [PMID: 23782555 PMCID: PMC3653694 DOI: 10.1186/1745-6215-14-124] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 03/07/2013] [Indexed: 11/13/2022] Open
Abstract
Background Although it was initially assumed that erythropoietin (EPO) was a hormone that only affected erythropoiesis, it has now been proposed that EPO plays an additional key role in the regulation of acute and chronic tissue damage. Via the inhibition of inflammatory reactions and of apoptosis, stem cell recruitment, advancement of angiogenesis and growth factor release, EPO enhances healing and thus restitutio ad integrum after trauma. Human skin contains EPO receptors and is able to synthesize EPO. We therefore hypothesize that EPO is able to optimize wound healing in thermally injured patients. Methods/Design This is a large, prospective, randomized, double-blind, multi-center study, funded by the German Federal Ministry of Education and Research, and fully approved by the designated ethics committee. The trial, which is to investigate the effects of EPO in severely burned patients, is in its recruitment phase and is being carried out in 13 German burn care centers. A total of 150 patients are to be enrolled to receive study medication every other day for 21 days (EPO 150 IU/kg body weight or placebo). A follow-up of one year is planned. The primary endpoint of this study is the time until complete re-epithelialization of a defined skin graft donor site is reached. Furthermore, clinical parameters such as wound healing, scar formation (using the Vancouver scar scale), laboratory values, quality of life (SF-36), angiogenic effects, and gene- and protein-expression patterns are to be determined. The results will be carefully evaluated for gender differences. Discussion We are seeking new insights into the mechanisms of wound healing in thermally injured patients and more detailed information about the role EPO plays, specifically in these complex interactions. We additionally expect that the biomimetic effects of EPO will be useful in the treatment of acute thermal dermal injuries. Trial registration EudraCT Number: 2006-002886-38, Protocol Number: 0506, ISRCT Number: http://controlled-trials.com/ISRCTN95777824/ISRCTN95777824.
Collapse
|
8
|
Günter C, Bader A, Dornseifer U, Egert S, Dunda S, Grieb G, Wolter T, Pallua N, von Wild T, Siemers F, Mailänder P, Thamm O, Ernert C, Steen M, Sievers R, Reichert B, Rahmanian-Schwarz A, Schaller H, Hartmann B, Otte M, Kehl V, Ohmann C, Jelkmann W, Machens HG. A multi-center study on the regenerative effects of erythropoietin in burn and scalding injuries: study protocol for a randomized controlled trial. Trials 2013. [DOI: 10.1186/1468-6708-14-124] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
9
|
Abstract
Peptide hormones are powerful regulators of various biological processes. To guarantee continuous availability and function, peptide hormone secretion must be tightly coupled to its biosynthesis. A simple but efficient way to provide such regulation is through an autocrine feedback mechanism in which the secreted hormone is "sensed" by its respective receptor and initiates synthesis at the level of transcription and/or translation. Such a secretion-biosynthesis coupling has been demonstrated for insulin; however, because of insulin's unique role as the sole blood glucose-decreasing peptide hormone, this coupling is considered an exception rather than a more generally used mechanism. Here we provide evidence of a secretion-biosynthesis coupling for glucagon, one of several peptide hormones that increase blood glucose levels. We show that glucagon, secreted by the pancreatic α cell, up-regulates the expression of its own gene by signaling through the glucagon receptor, PKC, and PKA, supporting the more general applicability of an autocrine feedback mechanism in regulation of peptide hormone synthesis.
Collapse
|
10
|
Tanaka T, Kai S, Koyama T, Daijo H, Adachi T, Fukuda K, Hirota K. General anesthetics inhibit erythropoietin induction under hypoxic conditions in the mouse brain. PLoS One 2011; 6:e29378. [PMID: 22216265 PMCID: PMC3246473 DOI: 10.1371/journal.pone.0029378] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 11/28/2011] [Indexed: 12/20/2022] Open
Abstract
Background Erythropoietin (EPO), originally identified as a hematopoietic growth factor produced in the kidney and fetal liver, is also endogenously expressed in the central nervous system (CNS). EPO in the CNS, mainly produced in astrocytes, is induced under hypoxic conditions in a hypoxia-inducible factor (HIF)-dependent manner and plays a dominant role in neuroprotection and neurogenesis. We investigated the effect of general anesthetics on EPO expression in the mouse brain and primary cultured astrocytes. Methodology/Principal Findings BALB/c mice were exposed to 10% oxygen with isoflurane at various concentrations (0.10–1.0%). Expression of EPO mRNA in the brain was studied, and the effects of sevoflurane, halothane, nitrous oxide, pentobarbital, ketamine, and propofol were investigated. In addition, expression of HIF-2α protein was studied by immunoblotting. Hypoxia-induced EPO mRNA expression in the brain was significantly suppressed by isoflurane in a concentration-dependent manner. A similar effect was confirmed for all other general anesthetics. Hypoxia-inducible expression of HIF-2α protein was also significantly suppressed with isoflurane. In the experiments using primary cultured astrocytes, isoflurane, pentobarbital, and ketamine suppressed hypoxia-inducible expression of HIF-2α protein and EPO mRNA. Conclusions/Significance Taken together, our results indicate that general anesthetics suppress activation of HIF-2 and inhibit hypoxia-induced EPO upregulation in the mouse brain through a direct effect on astrocytes.
Collapse
Affiliation(s)
- Tomoharu Tanaka
- Department of Anesthesia, Kyoto University Hospital, Kyoto, Japan
- * E-mail: (TT); (KH)
| | - Shinichi Kai
- Department of Anesthesia, Kyoto University Hospital, Kyoto, Japan
| | - Tomohiro Koyama
- Department of Anesthesia, Kyoto University Hospital, Kyoto, Japan
| | - Hiroki Daijo
- Department of Anesthesia, Kyoto University Hospital, Kyoto, Japan
| | - Takehiko Adachi
- Department of Anesthesia, Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Kazuhiko Fukuda
- Department of Anesthesia, Kyoto University Hospital, Kyoto, Japan
| | - Kiichi Hirota
- Department of Anesthesia, Kyoto University Hospital, Kyoto, Japan
- * E-mail: (TT); (KH)
| |
Collapse
|
11
|
High glucose stimulates the expression of erythropoietin in rat glomerular epithelial cells. Lab Anim Res 2011; 27:245-50. [PMID: 21998614 PMCID: PMC3188732 DOI: 10.5625/lar.2011.27.3.245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/15/2011] [Accepted: 09/15/2011] [Indexed: 02/04/2023] Open
Abstract
It has been reported that the levels of erythropoietin are associated with diabetes mellitus. Glomerular epithelial cells, located in the renal cortex, play an important role in the regulation of kidney function and hyperglycemia-induced cell loss of glomerular epithelial cells is implicated in the onset of diabetic nephropathy. This study investigated the effect of high glucose on erythropoietin and erythropoietin receptor expression in rat glomerular epithelial cells. We found that 25 mM D-glucose, but not mannitol or L-glucose, stimulated erythropoietin mRNA and protein expression in a time dependent manner (>4 h) in rat glomerular epithelial cells. In addition, 25 mM glucose, but not mannitol or L-glucose, also increased the phosphorylation of erythropoietin receptor, suggesting a role for erythropoietin receptor phosphorylation in erythropoietin synthesis. We conclude that high glucose stimulates erythropoietin production and erythropoietin receptor phosphorylation in rat glomerular epithelial cells.
Collapse
|
12
|
Abstract
EPO (erythropoietin) has long been identified as a primary regulator of erythropoiesis. Subsequently, EPO has been recognized as playing a role in a broad variety of processes in cardiovascular pathophysiology. In particular, the tight interactions of EPO with the nitric oxide pathway, apoptosis, ischaemia, cell proliferation and platelet activation appear of great interest. Although enhanced EPO synthesis is viewed as an appropriate compensatory mechanism in the cardio-renal syndrome, which features CHF (congestive heart failure) and CRF (chronic renal failure), maladaptative excessive EPO synthesis in the advanced stages of these diseases appears to be predictive of higher mortality. Clinical trials based on the use of EPO in both heart and renal failure have so far produced contradictory results, whereas treatment targeted to restore low Hb levels appears rational and is supported by regulatory authorities. New areas for therapeutic use of EPO, such as acute coronary syndromes, are under investigation, and they are discussed in the present review together with other clinical applications in cardiovascular diseases. The revisited concept of a potential use of endogenous EPO levels as a predictor of CHF severity, as well as in the monitoring of responses to treatment, deserves appropriate investigation, as this may identify EPO as a useful biomarker in the clinical management of cardiovascular diseases.
Collapse
|