1
|
Vogler NW, Chen R, Virkler A, Tu VY, Gottfried JA, Geffen MN. Direct Piriform-to-Auditory Cortical Projections Shape Auditory-Olfactory Integration. J Neurosci 2024; 44:e1140242024. [PMID: 39510831 PMCID: PMC11622214 DOI: 10.1523/jneurosci.1140-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/12/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
In a real-world environment, the brain must integrate information from multiple sensory modalities, including the auditory and olfactory systems. However, little is known about the neuronal circuits governing how odors influence and modulate sound processing. Here, we investigated the mechanisms underlying auditory-olfactory integration using anatomical, electrophysiological, and optogenetic approaches, focusing on the auditory cortex as a key locus for cross-modal integration. First, retrograde and anterograde viral tracing strategies revealed a direct projection from the piriform cortex to the auditory cortex. Next, using in vivo electrophysiological recordings of neuronal activity in the auditory cortex of awake male or female mice, we found that odors modulate auditory cortical responses to sound. Finally, we used in vivo optogenetic manipulations during electrophysiology to demonstrate that olfactory modulation in the auditory cortex, specifically, odor-driven enhancement of sound responses, depends on direct input from the piriform cortex. Together, our results identify a novel role of piriform-to-auditory cortical circuitry in shaping olfactory modulation in the auditory cortex, shedding new light on the neuronal mechanisms underlying auditory-olfactory integration.
Collapse
Affiliation(s)
- Nathan W Vogler
- Departments of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania
| | - Ruoyi Chen
- Departments of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania
| | - Alister Virkler
- Neurology, Perelman School of Medicine, University of Pennsylvania
| | - Violet Y Tu
- Departments of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania
| | - Jay A Gottfried
- Neurology, Perelman School of Medicine, University of Pennsylvania
| | - Maria N Geffen
- Departments of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania
- Neurology, Perelman School of Medicine, University of Pennsylvania
- Neuroscience, Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
2
|
Vogler NW, Chen R, Virkler A, Tu VY, Gottfried JA, Geffen MN. Direct piriform-to-auditory cortical projections shape auditory-olfactory integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.602976. [PMID: 39071445 PMCID: PMC11275881 DOI: 10.1101/2024.07.11.602976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
In a real-world environment, the brain must integrate information from multiple sensory modalities, including the auditory and olfactory systems. However, little is known about the neuronal circuits governing how odors influence and modulate sound processing. Here, we investigated the mechanisms underlying auditory-olfactory integration using anatomical, electrophysiological, and optogenetic approaches, focusing on the auditory cortex as a key locus for cross-modal integration. First, retrograde and anterograde viral tracing strategies revealed a direct projection from the piriform cortex to the auditory cortex. Next, using in vivo electrophysiological recordings of neuronal activity in the auditory cortex of awake male or female mice, we found that odors modulate auditory cortical responses to sound. Finally, we used in vivo optogenetic manipulations during electrophysiology to demonstrate that olfactory modulation in auditory cortex, specifically, odor-driven enhancement of sound responses, depends on direct input from the piriform cortex. Together, our results identify a novel role of piriform-to-auditory cortical circuitry in shaping olfactory modulation in the auditory cortex, shedding new light on the neuronal mechanisms underlying auditory-olfactory integration.
Collapse
Affiliation(s)
- Nathan W. Vogler
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania
| | - Ruoyi Chen
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania
| | - Alister Virkler
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania
| | - Violet Y. Tu
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania
| | - Jay A. Gottfried
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania
| | - Maria N. Geffen
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
3
|
Crown LM, Featherstone RE, Sobell JL, Parekh K, Siegel SJ. The Use of Event-Related Potentials in the Study of Schizophrenia: An Overview. ADVANCES IN NEUROBIOLOGY 2024; 40:285-319. [PMID: 39562449 DOI: 10.1007/978-3-031-69491-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Event-related potentials (ERPs) are small voltage changes in the brain that reliably occur in response to auditory or visual stimuli. ERPs have been extensively studied in both humans and animals to identify biomarkers, test pharmacological agents, and generate testable hypotheses about the physiological and genetic basis of schizophrenia. In this chapter, we discuss how ERPs are generated and recorded as well as review canonical ERP components in the context of schizophrenia research in humans. We then discuss what is known about rodent homologs of these components and how they are altered in common pharmacologic and genetic manipulations used in preclinical schizophrenia research. This chapter will also explore the relationship of ERPs to leading hypotheses about the pathophysiology of schizophrenia. We conclude with an evaluation of both the utility and limitations of ERPs in schizophrenia research and offer recommendations of future directions that may be beneficial to the field.
Collapse
Affiliation(s)
- Lindsey M Crown
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert E Featherstone
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Janet L Sobell
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Krishna Parekh
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Steven J Siegel
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Gilday OD, Mizrahi A. Learning-Induced Odor Modulation of Neuronal Activity in Auditory Cortex. J Neurosci 2023; 43:1375-1386. [PMID: 36650061 PMCID: PMC9987573 DOI: 10.1523/jneurosci.1398-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023] Open
Abstract
Sensory cortices, even of primary regions, are not purely unisensory. Rather, cortical neurons in sensory cortex show various forms of multisensory interactions. While some multisensory interactions naturally co-occur, the combination of others will co-occur through experience. In real life, learning and experience will result in conjunction with seemingly disparate sensory information that ultimately becomes behaviorally relevant, impacting perception, cognition, and action. Here we describe a novel auditory discrimination task in mice, designed to manipulate the expectation of upcoming trials using olfactory cues. We show that, after learning, female mice display a transient period of several days during which they exploit odor-mediated expectations for making correct decisions. Using two-photon calcium imaging of single neurons in auditory cortex (ACx) during behavior, we found that the behavioral effects of odor-mediated expectations are accompanied by an odor-induced modulation of neuronal activity. Further, we find that these effects are manifested differentially, based on the response preference of individual cells. A significant portion of effects, but not all, are consistent with a predictive coding framework. Our data show that learning novel odor-sound associations evoke changes in ACx. We suggest that behaviorally relevant multisensory environments mediate contextual effects as early as ACx.SIGNIFICANCE STATEMENT Natural environments are composed of multisensory objects. It remains unclear whether and how animals learn the regularities of congruent multisensory associations and how these may impact behavior and neural activity. We tested how learned odor-sound associations affected single-neuron responses in auditory cortex. We introduce a novel auditory discrimination task for mice in which odors set different contexts of expectation to upcoming trials. We show that, although the task can be solved purely by sounds, odor-mediated expectation impacts performance. We further show that odors cause a modulation of neuronal activity in auditory cortex, which is correlated with behavior. These results suggest that learning prompts an interaction of odor and sound information as early as sensory cortex.
Collapse
Affiliation(s)
- Omri David Gilday
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Adi Mizrahi
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel,
- Department of Neurobiology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
5
|
Lizards' response to the sound of fire is modified by fire history. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
DeGuzman P, Jain A, Tabert MH, Parra LC. Olfaction Modulates Inter-Subject Correlation of Neural Responses. Front Neurosci 2020; 14:702. [PMID: 32754012 PMCID: PMC7366795 DOI: 10.3389/fnins.2020.00702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 06/09/2020] [Indexed: 11/13/2022] Open
Abstract
Odors can be powerful stimulants. It is well-established that odors provide strong cues for recall of locations, people and events. The effects of specific scents on other cognitive functions are less well-established. We hypothesized that scents with different odor qualities will have a different effect on attention. To assess attention, we used Inter-Subject Correlation of the EEG because this metric is strongly modulated by attentional engagement with natural audiovisual stimuli. We predicted that scents known to be "energizing" would increase Inter-Subject Correlation during watching of videos as compared to "calming" scents. In a first experiment, we confirmed this for eucalyptol and linalool while participants watched animated autobiographical narratives. The result was replicated in a second experiment, but did not generalize to limonene, also considered an "energizing" odorant. In a third, double-blind experiment, we tested a battery of scents including single molecules, as well as mixtures, as participants watched various short video clips. We found a varying effect of odor on Inter-Subject Correlation across the various scents. This study provides a basis for reliably and reproducibly assessing effects of odors on brain activity. Future research is needed to further explore the effect of scent-based up-modulation in engagement on learning and memory performance. Educators, product developers and fragrance brands might also benefit from such objective neurophysiological measures.
Collapse
Affiliation(s)
| | - Anshul Jain
- International Flavors & Fragrances, Inc., R&D, Union Beach, NJ, United States
| | - Matthias H. Tabert
- International Flavors & Fragrances, Inc., R&D, Union Beach, NJ, United States
| | - Lucas C. Parra
- Department of Biomedical Engineering, City College of New York, New York, NY, United States
| |
Collapse
|
7
|
Finton CJ, Keesom SM, Hood KE, Hurley LM. What's in a squeak? Female vocal signals predict the sexual behaviour of male house mice during courtship. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.01.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
Hanson JL, Hurley LM. Context-dependent fluctuation of serotonin in the auditory midbrain: the influence of sex, reproductive state and experience. ACTA ACUST UNITED AC 2013; 217:526-35. [PMID: 24198252 DOI: 10.1242/jeb.087627] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the face of changing behavioral situations, plasticity of sensory systems can be a valuable mechanism to facilitate appropriate behavioral responses. In the auditory system, the neurotransmitter serotonin is an important messenger for context-dependent regulation because it is sensitive to both external events and internal state, and it modulates neural activity. In male mice, serotonin increases in the auditory midbrain region, the inferior colliculus (IC), in response to changes in behavioral context such as restriction stress and social contact. Female mice have not been measured in similar contexts, although the serotonergic system is sexually dimorphic in many ways. In the present study, we investigated the effects of sex, experience and estrous state on the fluctuation of serotonin in the IC across contexts, as well as potential relationships between behavior and serotonin. Contrary to our expectation, there were no sex differences in increases of serotonin in response to a restriction stimulus. Both sexes had larger increases in second exposures, suggesting experience plays a role in serotonergic release in the IC. In females, serotonin increased during both restriction and interactions with males; however, the increase was more rapid during restriction. There was no effect of female estrous phase on the serotonergic change for either context, but serotonin was related to behavioral activity in females interacting with males. These results show that changes in behavioral context induce increases in serotonin in the IC by a mechanism that appears to be uninfluenced by sex or estrous state, but may depend on experience and behavioral activity.
Collapse
Affiliation(s)
- Jessica L Hanson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
9
|
Gandal MJ, Anderson RL, Billingslea EN, Carlson GC, Roberts TPL, Siegel SJ. Mice with reduced NMDA receptor expression: more consistent with autism than schizophrenia? GENES BRAIN AND BEHAVIOR 2013; 11:740-50. [PMID: 22726567 DOI: 10.1111/j.1601-183x.2012.00816.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reduced NMDA-receptor (NMDAR) function has been implicated in the pathophysiology of neuropsychiatric disease, most strongly in schizophrenia but also recently in autism spectrum disorders (ASD). To determine the direct contribution of NMDAR dysfunction to disease phenotypes, a mouse model with constitutively reduced expression of the obligatory NR1 subunit has been developed and extensively investigated. Adult NR1(neo-/-) mice show multiple abnormal behaviors, including reduced social interactions, locomotor hyperactivity, self-injury, deficits in prepulse inhibition (PPI) and sensory hypersensitivity, among others. Whereas such phenotypes have largely been interpreted in the context of schizophrenia, these behavioral abnormalities are rather non-specific and are frequently present across models of diseases characterized by negative symptom domains. This study investigated auditory electrophysiological and behavioral paradigms relevant to autism, to determine whether NMDAR hypofunction may be more consistent with adult ASD-like phenotypes. Indeed, transgenic mice showed behavioral deficits relevant to all core ASD symptoms, including decreased social interactions, altered ultrasonic vocalizations and increased repetitive behaviors. NMDAR disruption recapitulated clinical endophenotypes including reduced PPI, auditory-evoked response N1 latency delay and reduced gamma synchrony. Auditory electrophysiological abnormalities more closely resembled those seen in clinical studies of autism than schizophrenia. These results suggest that NMDAR hypofunction may be associated with a continuum of neuropsychiatric diseases, including schizophrenia and autism. Neural synchrony abnormalities suggest an imbalance of glutamatergic and GABAergic coupling and may provide a target, along with behavioral phenotypes, for preclinical screening of novel therapeutics.
Collapse
Affiliation(s)
- M J Gandal
- Translational Neuroscience Program, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Cohen L, Rothschild G, Mizrahi A. Multisensory integration of natural odors and sounds in the auditory cortex. Neuron 2011; 72:357-69. [PMID: 22017993 DOI: 10.1016/j.neuron.2011.08.019] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2011] [Indexed: 11/17/2022]
Abstract
VIDEO ABSTRACT Motherhood is associated with different forms of physiological alterations including transient hormonal changes and brain plasticity. The underlying impact of these changes on the emergence of maternal behaviors and sensory processing within the mother's brain are largely unknown. By using in vivo cell-attached recordings in the primary auditory cortex of female mice, we discovered that exposure to pups' body odor reshapes neuronal responses to pure tones and natural auditory stimuli. This olfactory-auditory interaction appeared naturally in lactating mothers shortly after parturition and was long lasting. Naive virgins that had experience with the pups also showed an appearance of olfactory-auditory integration in A1, suggesting that multisensory integration may be experience dependent. Neurons from lactating mothers were more sensitive to sounds as compared to those from experienced mice, independent of the odor effects. These uni- and multisensory cortical changes may facilitate the detection and discrimination of pup distress calls and strengthen the bond between mothers and their neonates.
Collapse
Affiliation(s)
- Lior Cohen
- Department of Neurobiology, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | |
Collapse
|
11
|
Abstract
Historical and psychophysical literature has demonstrated a perceptual interplay between olfactory and auditory stimuli-the neural mechanisms of which are not understood. Here, we report novel findings revealing that the early olfactory code is subjected to auditory cross-modal influences. In vivo extracellular recordings from the olfactory tubercle, a trilaminar structure within the basal forebrain, of anesthetized mice revealed that olfactory tubercle single units selectively respond to odors-with 65% of units showing significant odor-evoked activity. Remarkably, 19% of olfactory tubercle single units also showed robust responses to an auditory tone. Furthermore, 29% of single units tested displayed supraadditive or suppressive responses to the simultaneous presentation of odor and tone, suggesting cross-modal modulation. In contrast, olfactory bulb units did not show significant responses to tone presentation nor modulation of odor-evoked activity by tone-suggesting a lack of olfactory-auditory convergence upstream from the olfactory tubercle. Thus, the tubercle presents itself as a source for direct multimodal convergence within an early stage of odor processing and may serve as a seat for psychophysical interactions between smells and sounds.
Collapse
|