1
|
Aksic M, Jakovcevski I, Hamad MIK, Jakovljevic V, Stankovic S, Vulovic M. The Neuroprotective Effect of Neural Cell Adhesion Molecule L1 in the Hippocampus of Aged Alzheimer's Disease Model Mice. Biomedicines 2024; 12:1726. [PMID: 39200191 PMCID: PMC11351965 DOI: 10.3390/biomedicines12081726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 09/02/2024] Open
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disorder and the most common form of dementia, causing the loss of cognitive function. Our previous study has shown, using a doubly mutated mouse model of AD (APP/PS1), that the neural adhesion molecule L1 directly binds amyloid peptides and decreases plaque load and gliosis when injected as an adeno-associated virus construct (AAV-L1) into APP/PS1 mice. In this study, we microinjected AAV-L1, using a Hamilton syringe, directly into the 3-month-old APP/PS1 mouse hippocampus and waited for a year until significant neurodegeneration developed. We stereologically counted the principal neurons and parvalbumin-positive interneurons in the hippocampus, estimated the density of inhibitory synapses around principal cells, and compared the AAV-L1 injection models with control injections of green fluorescent protein (AAV-GFP) and the wild-type hippocampus. Our results show that there is a significant loss of granule cells in the dentate gyrus of the APP/PS1 mice, which was improved by AAV-L1 injection, compared with the AAV-GFP controls (p < 0.05). There is also a generalized loss of parvalbumin-positive interneurons in the hippocampus of APP/PS1 mice, which is ameliorated by AAV-L1 injection, compared with the AAV-GFP controls (p < 0.05). Additionally, AAV-L1 injection promotes the survival of inhibitory synapses around the principal cells compared with AAV-GFP controls in all three hippocampal subfields (p < 0.01). Our results indicate that L1 promotes neuronal survival and protects the synapses in an AD mouse model, which could have therapeutic implications.
Collapse
Affiliation(s)
- Miljana Aksic
- Center for Medical Biochemistry, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (M.A.); (S.S.)
| | - Igor Jakovcevski
- Institut für Anatomie und Klinische Morphologie, Universität Witten/Herdecke, 58455 Witten, Germany
- Department of Neuroanatomy and Molecular Brain Research, Institute of Anatomy, Ruhr Universität Bochum, 44801 Bochum, Germany
| | - Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 64141, United Arab Emirates
| | - Vladimir Jakovljevic
- Center of Excellence for Redox Balance Research, Cardiovascular and Metabolic Disorders, Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| | - Sanja Stankovic
- Center for Medical Biochemistry, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (M.A.); (S.S.)
- Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Maja Vulovic
- Department of Anatomy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia;
| |
Collapse
|
2
|
Finkel Z, Esteban F, Rodriguez B, Clifford T, Joseph A, Alostaz H, Dalmia M, Gutierrez J, Tamasi MJ, Zhang SM, Simone J, Petekci H, Nath S, Escott M, Garg SK, Gormley AJ, Kumar S, Gulati S, Cai L. AAV6 mediated Gsx1 expression in neural stem progenitor cells promotes neurogenesis and restores locomotor function after contusion spinal cord injury. Neurotherapeutics 2024; 21:e00362. [PMID: 38664194 PMCID: PMC11452562 DOI: 10.1016/j.neurot.2024.e00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 05/05/2024] Open
Abstract
Genomic screened homeobox 1 (Gsx1 or Gsh1) is a neurogenic transcription factor required for the generation of excitatory and inhibitory interneurons during spinal cord development. In the adult, lentivirus (LV) mediated Gsx1 expression promotes neural regeneration and functional locomotor recovery in a mouse model of lateral hemisection spinal cord injury (SCI). The LV delivery method is clinically unsafe due to insertional mutations to the host DNA. In addition, the most common clinical case of SCI is contusion/compression. In this study, we identify that adeno-associated virus serotype 6 (AAV6) preferentially infects neural stem/progenitor cells (NSPCs) in the injured spinal cord. Using a rat model of contusion SCI, we demonstrate that AAV6 mediated Gsx1 expression promotes neurogenesis, increases the number of neuroblasts/immature neurons, restores excitatory/inhibitory neuron balance and serotonergic neuronal activity through the lesion core, and promotes locomotor functional recovery. Our findings support that AAV6 preferentially targets NSPCs for gene delivery and confirmed Gsx1 efficacy in clinically relevant rat model of contusion SCI.
Collapse
Affiliation(s)
- Zachary Finkel
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA
| | - Fatima Esteban
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA
| | - Brianna Rodriguez
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA
| | - Tanner Clifford
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA
| | - Adelina Joseph
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA
| | - Hani Alostaz
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA
| | - Mridul Dalmia
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA
| | - Juan Gutierrez
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA; University of California, Santa Barbara, CA 93106, USA
| | - Matthew J Tamasi
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA
| | - Samuel Ming Zhang
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA
| | - Jonah Simone
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA
| | - Hafize Petekci
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA
| | - Susmita Nath
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA
| | - Miriam Escott
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA
| | - Shivam Kumar Garg
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA
| | - Adam J Gormley
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA
| | - Sonia Gulati
- NeuroNovus Therapeutics Inc., 135 E 57th St., New York, NY 10022, USA
| | - Li Cai
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Rd, Piscataway, NJ 08854, USA; NeuroNovus Therapeutics Inc., 135 E 57th St., New York, NY 10022, USA.
| |
Collapse
|
3
|
Płatek R, Grycz K, Więckowska A, Czarkowska-Bauch J, Skup M. L1 Cell Adhesion Molecule Overexpression Down Regulates Phosphacan and Up Regulates Structural Plasticity-Related Genes Rostral and Caudal to the Complete Spinal Cord Transection. J Neurotrauma 2019; 37:534-554. [PMID: 31426714 DOI: 10.1089/neu.2018.6103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
L1 cell adhesion molecule (L1CAM) supports spinal cord cellular milieu after contusion and compression lesions, contributing to neuroprotection, promoting axonal outgrowth, and reducing outgrowth-inhibitory molecules in lesion proximity. We extended investigations into L1CAM molecular targets and explored long-distance effects of L1CAM rostral and caudal to complete spinal cord transection (SCT) in adult rats. L1CAM overexpression in neurons and glia after Th10/Th11 SCT was achieved using adeno-associated viral vector serotype 5 (AAV5) injected into an L1-lumbar segment immediately after transection. At 5 weeks, a L1CAM mRNA profound decrease detected rostral and caudal to the transection site was alleviated by AAV5-L1CAM treatment, with increased endogenous L1CAM rostral to the SCT. Transected corticospinal tract fibers showed attenuated retraction after treatment, accompanied by a multi-segmental increase of lesion-reduced expression of adenylate cyclase 1 (Adcy1), synaptophysin, growth-associated protein 43, and myelin basic protein genes caudal to transection, and Adcy1 rostral to transection. In parallel, chondroitin sulfate proteoglycan phosphacan elevated after SCT was downregulated after treatment. Low-molecular L1CAM isoforms generated after spinalization indicated the involvement of sheddases in L1CAM processing and long-distance effects. A disintegrin and metalloproteinase (ADAM)10 sheddase immunoreactivity, stronger in AAV5-L1CAM than AAV5- enhanced green fluorescent protein (EGFP)-transduced motoneurons indicated local ADAM10 upregulation by L1CAM. The results suggest that increased L1CAM availability and penetration of diffusible L1CAM fragments post-lesion induce both local and long-distance neuronal and glial responses toward better neuronal maintenance, neurite growth, and myelination. Despite the fact that intervention promoted beneficial molecular changes, kinematic analysis of hindlimb movements showed minor improvement, indicating that spinalized rats require longer L1CAM treatment to regain locomotor functions.
Collapse
Affiliation(s)
- Rafał Płatek
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Kamil Grycz
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | |
Collapse
|
4
|
Kakava-Georgiadou N, Bullich-Vilarrubias C, Zwartkruis MM, Luijendijk MCM, Garner KM, Adan RAH. Considerations related to the use of short neuropeptide promoters in viral vectors targeting hypothalamic neurons. Sci Rep 2019; 9:11146. [PMID: 31366942 PMCID: PMC6668470 DOI: 10.1038/s41598-019-47417-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/18/2019] [Indexed: 01/23/2023] Open
Abstract
Targeting specific neuronal cell types is a major challenge for unraveling their function and utilizing specific cells for gene therapy strategies. Viral vector tools are widely used to target specific cells or circuits for these purposes. Here, we use viral vectors with short promoters of neuropeptide genes to target distinct neuronal populations in the hypothalamus of rats and mice. We show that lowering the amount of genomic copies is effective in increasing specificity of a melanin-concentrating hormone promoter. However, since too low titers reduce transduction efficacy, there is an optimal titer for achieving high specificity and sufficient efficacy. Other previously identified neuropeptide promoters as those for oxytocin and orexin require further sequence optimization to increase target specificity. We conclude that promoter-driven viral vectors should be used with caution in order to target cells specifically.
Collapse
Affiliation(s)
- N Kakava-Georgiadou
- Department of Translational Neuroscience, Division of Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - C Bullich-Vilarrubias
- Department of Translational Neuroscience, Division of Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
- Master's Program Neuroscience and Cognition, Utrecht University, Utrecht, The Netherlands
| | - M M Zwartkruis
- Department of Translational Neuroscience, Division of Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
- Master's Program Neuroscience and Cognition, Utrecht University, Utrecht, The Netherlands
| | - M C M Luijendijk
- Department of Translational Neuroscience, Division of Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - K M Garner
- Department of Translational Neuroscience, Division of Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - R A H Adan
- Department of Translational Neuroscience, Division of Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands.
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
5
|
Wang Y, Wu W, Wu X, Sun Y, Zhang YP, Deng LX, Walker MJ, Qu W, Chen C, Liu NK, Han Q, Dai H, Shields LB, Shields CB, Sengelaub DR, Jones KJ, Smith GM, Xu XM. Remodeling of lumbar motor circuitry remote to a thoracic spinal cord injury promotes locomotor recovery. eLife 2018; 7:39016. [PMID: 30207538 PMCID: PMC6170189 DOI: 10.7554/elife.39016] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/09/2018] [Indexed: 12/18/2022] Open
Abstract
Retrogradely-transported neurotrophin signaling plays an important role in regulating neural circuit specificity. Here we investigated whether targeted delivery of neurotrophin-3 (NT-3) to lumbar motoneurons (MNs) caudal to a thoracic (T10) contusive spinal cord injury (SCI) could modulate dendritic patterning and synapse formation of the lumbar MNs. In vitro, Adeno-associated virus serotype two overexpressing NT-3 (AAV-NT-3) induced NT-3 expression and neurite outgrowth in cultured spinal cord neurons. In vivo, targeted delivery of AAV-NT-3 into transiently demyelinated adult mouse sciatic nerves led to the retrograde transportation of NT-3 to the lumbar MNs, significantly attenuating SCI-induced lumbar MN dendritic atrophy. NT-3 enhanced sprouting and synaptic formation of descending serotonergic, dopaminergic, and propriospinal axons on lumbar MNs, parallel to improved behavioral recovery. Thus, retrogradely transported NT-3 stimulated remodeling of lumbar neural circuitry and synaptic connectivity remote to a thoracic SCI, supporting a role for retrograde transport of NT-3 as a potential therapeutic strategy for SCI.
Collapse
Affiliation(s)
- Ying Wang
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States.,Neural Tissue Engineering Research Institute, Mudanjiang College of Medicine, Mudanjiang, China
| | - Wei Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - Xiangbing Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - Yan Sun
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States.,Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yi P Zhang
- Norton Neuroscience Institute, Norton Healthcare, Louisville, United States
| | - Ling-Xiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - Melissa Jane Walker
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - Wenrui Qu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - Chen Chen
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States.,Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indiana, United States
| | - Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - Qi Han
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - Heqiao Dai
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - Lisa Be Shields
- Norton Neuroscience Institute, Norton Healthcare, Louisville, United States
| | | | - Dale R Sengelaub
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, United States
| | - Kathryn J Jones
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, United States
| | - George M Smith
- Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, United States.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, United States.,Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, United States
| |
Collapse
|
6
|
Castle MJ, Turunen HT, Vandenberghe LH, Wolfe JH. Controlling AAV Tropism in the Nervous System with Natural and Engineered Capsids. Methods Mol Biol 2016; 1382:133-49. [PMID: 26611584 PMCID: PMC4993104 DOI: 10.1007/978-1-4939-3271-9_10] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
More than one hundred naturally occurring variants of adeno-associated virus (AAV) have been identified, and this library has been further expanded by an array of techniques for modification of the viral capsid. AAV capsid variants possess unique antigenic profiles and demonstrate distinct cellular tropisms driven by differences in receptor binding. AAV capsids can be chemically modified to alter tropism, can be produced as hybrid vectors that combine the properties of multiple serotypes, and can carry peptide insertions that introduce novel receptor-binding activity. Furthermore, directed evolution of shuffled genome libraries can identify engineered variants with unique properties, and rational modification of the viral capsid can alter tropism, reduce blockage by neutralizing antibodies, or enhance transduction efficiency. This large number of AAV variants and engineered capsids provides a varied toolkit for gene delivery to the CNS and retina, with specialized vectors available for many applications, but selecting a capsid variant from the array of available vectors can be difficult. This chapter describes the unique properties of a range of AAV variants and engineered capsids, and provides a guide for selecting the appropriate vector for specific applications in the CNS and retina.
Collapse
Affiliation(s)
- Michael J Castle
- Research Institute of the Children's Hospital of Philadelphia, 502-G Abramson Pediatric Research Building, 3615 Civic Center Boulevard, Philadelphia, PA, 19104, USA
- Department of Neurosciences, University of California-San Diego, La Jolla, CA, 92093, USA
| | - Heikki T Turunen
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Luk H Vandenberghe
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - John H Wolfe
- Research Institute of the Children's Hospital of Philadelphia, 502-G Abramson Pediatric Research Building, 3615 Civic Center Boulevard, Philadelphia, PA, 19104, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
7
|
Weinberg MS, Samulski RJ, McCown TJ. Adeno-associated virus (AAV) gene therapy for neurological disease. Neuropharmacology 2012; 69:82-8. [PMID: 22465202 DOI: 10.1016/j.neuropharm.2012.03.004] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/06/2012] [Accepted: 03/08/2012] [Indexed: 12/09/2022]
Abstract
Diseases of the central nervous system (CNS) have provided enormous opportunities for the therapeutic application of viral vector gene transfer. Adeno-associated virus (AAV) has been the vector of choice in recent clinical trials of neurological disease, including Parkinson's and Alzheimer's disease, due to the safety, efficacy, and stability of AAV gene transfer to the CNS. This review highlights the strategies employed for improving direct and peripheral targeting of therapeutic vectors to CNS tissue, and considers the significance of cellular and tissue transduction specificity, transgene regulation, and other variables that influence achievement of successful therapeutic goals. This article is part of the Special Issue entitled 'New Targets and Approaches to the Treatment of Epilepsy'.
Collapse
Affiliation(s)
- Marc S Weinberg
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|