1
|
Bidelman GM, Sisson A, Rizzi R, MacLean J, Baer K. Myogenic artifacts masquerade as neuroplasticity in the auditory frequency-following response. Front Neurosci 2024; 18:1422903. [PMID: 39040631 PMCID: PMC11260751 DOI: 10.3389/fnins.2024.1422903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
The frequency-following response (FFR) is an evoked potential that provides a neural index of complex sound encoding in the brain. FFRs have been widely used to characterize speech and music processing, experience-dependent neuroplasticity (e.g., learning and musicianship), and biomarkers for hearing and language-based disorders that distort receptive communication abilities. It is widely assumed that FFRs stem from a mixture of phase-locked neurogenic activity from the brainstem and cortical structures along the hearing neuraxis. In this study, we challenge this prevailing view by demonstrating that upwards of ~50% of the FFR can originate from an unexpected myogenic source: contamination from the postauricular muscle (PAM) vestigial startle reflex. We measured PAM, transient auditory brainstem responses (ABRs), and sustained frequency-following response (FFR) potentials reflecting myogenic (PAM) and neurogenic (ABR/FFR) responses in young, normal-hearing listeners with varying degrees of musical training. We first establish that PAM artifact is present in all ears, varies with electrode proximity to the muscle, and can be experimentally manipulated by directing listeners' eye gaze toward the ear of sound stimulation. We then show this muscular noise easily confounds auditory FFRs, spuriously amplifying responses 3-4-fold with tandem PAM contraction and even explaining putative FFR enhancements observed in highly skilled musicians. Our findings expose a new and unrecognized myogenic source to the FFR that drives its large inter-subject variability and cast doubt on whether changes in the response typically attributed to neuroplasticity/pathology are solely of brain origin.
Collapse
Affiliation(s)
- Gavin M. Bidelman
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, United States
- Program in Neuroscience, Indiana University, Bloomington, IN, United States
- Cognitive Science Program, Indiana University, Bloomington, IN, United States
| | - Alexandria Sisson
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, United States
| | - Rose Rizzi
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, United States
- Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Jessica MacLean
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, United States
- Program in Neuroscience, Indiana University, Bloomington, IN, United States
| | - Kaitlin Baer
- School of Communication Sciences and Disorders, University of Memphis, Memphis, TN, United States
- Veterans Affairs Medical Center, Memphis, TN, United States
| |
Collapse
|
2
|
MacLean J, Stirn J, Sisson A, Bidelman GM. Short- and long-term neuroplasticity interact during the perceptual learning of concurrent speech. Cereb Cortex 2024; 34:bhad543. [PMID: 38212291 PMCID: PMC10839853 DOI: 10.1093/cercor/bhad543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024] Open
Abstract
Plasticity from auditory experience shapes the brain's encoding and perception of sound. However, whether such long-term plasticity alters the trajectory of short-term plasticity during speech processing has yet to be investigated. Here, we explored the neural mechanisms and interplay between short- and long-term neuroplasticity for rapid auditory perceptual learning of concurrent speech sounds in young, normal-hearing musicians and nonmusicians. Participants learned to identify double-vowel mixtures during ~ 45 min training sessions recorded simultaneously with high-density electroencephalography (EEG). We analyzed frequency-following responses (FFRs) and event-related potentials (ERPs) to investigate neural correlates of learning at subcortical and cortical levels, respectively. Although both groups showed rapid perceptual learning, musicians showed faster behavioral decisions than nonmusicians overall. Learning-related changes were not apparent in brainstem FFRs. However, plasticity was highly evident in cortex, where ERPs revealed unique hemispheric asymmetries between groups suggestive of different neural strategies (musicians: right hemisphere bias; nonmusicians: left hemisphere). Source reconstruction and the early (150-200 ms) time course of these effects localized learning-induced cortical plasticity to auditory-sensory brain areas. Our findings reinforce the domain-general benefits of musicianship but reveal that successful speech sound learning is driven by a critical interplay between long- and short-term mechanisms of auditory plasticity, which first emerge at a cortical level.
Collapse
Affiliation(s)
- Jessica MacLean
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Jack Stirn
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, USA
| | - Alexandria Sisson
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, USA
| | - Gavin M Bidelman
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Cognitive Science Program, Indiana University, Bloomington, IN, USA
| |
Collapse
|
3
|
MacLean J, Stirn J, Sisson A, Bidelman GM. Short- and long-term experience-dependent neuroplasticity interact during the perceptual learning of concurrent speech. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559640. [PMID: 37808665 PMCID: PMC10557636 DOI: 10.1101/2023.09.26.559640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Plasticity from auditory experiences shapes brain encoding and perception of sound. However, whether such long-term plasticity alters the trajectory of short-term plasticity during speech processing has yet to be investigated. Here, we explored the neural mechanisms and interplay between short- and long-term neuroplasticity for rapid auditory perceptual learning of concurrent speech sounds in young, normal-hearing musicians and nonmusicians. Participants learned to identify double-vowel mixtures during ∼45 minute training sessions recorded simultaneously with high-density EEG. We analyzed frequency-following responses (FFRs) and event-related potentials (ERPs) to investigate neural correlates of learning at subcortical and cortical levels, respectively. While both groups showed rapid perceptual learning, musicians showed faster behavioral decisions than nonmusicians overall. Learning-related changes were not apparent in brainstem FFRs. However, plasticity was highly evident in cortex, where ERPs revealed unique hemispheric asymmetries between groups suggestive of different neural strategies (musicians: right hemisphere bias; nonmusicians: left hemisphere). Source reconstruction and the early (150-200 ms) time course of these effects localized learning-induced cortical plasticity to auditory-sensory brain areas. Our findings confirm domain-general benefits for musicianship but reveal successful speech sound learning is driven by a critical interplay between long- and short-term mechanisms of auditory plasticity that first emerge at a cortical level.
Collapse
|
4
|
Carter JA, Bidelman GM. Perceptual warping exposes categorical representations for speech in human brainstem responses. Neuroimage 2023; 269:119899. [PMID: 36720437 PMCID: PMC9992300 DOI: 10.1016/j.neuroimage.2023.119899] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 01/30/2023] Open
Abstract
The brain transforms continuous acoustic events into discrete category representations to downsample the speech signal for our perceptual-cognitive systems. Such phonetic categories are highly malleable, and their percepts can change depending on surrounding stimulus context. Previous work suggests these acoustic-phonetic mapping and perceptual warping of speech emerge in the brain no earlier than auditory cortex. Here, we examined whether these auditory-category phenomena inherent to speech perception occur even earlier in the human brain, at the level of auditory brainstem. We recorded speech-evoked frequency following responses (FFRs) during a task designed to induce more/less warping of listeners' perceptual categories depending on stimulus presentation order of a speech continuum (random, forward, backward directions). We used a novel clustered stimulus paradigm to rapidly record the high trial counts needed for FFRs concurrent with active behavioral tasks. We found serial stimulus order caused perceptual shifts (hysteresis) near listeners' category boundary confirming identical speech tokens are perceived differentially depending on stimulus context. Critically, we further show neural FFRs during active (but not passive) listening are enhanced for prototypical vs. category-ambiguous tokens and are biased in the direction of listeners' phonetic label even for acoustically-identical speech stimuli. These findings were not observed in the stimulus acoustics nor model FFR responses generated via a computational model of cochlear and auditory nerve transduction, confirming a central origin to the effects. Our data reveal FFRs carry category-level information and suggest top-down processing actively shapes the neural encoding and categorization of speech at subcortical levels. These findings suggest the acoustic-phonetic mapping and perceptual warping in speech perception occur surprisingly early along the auditory neuroaxis, which might aid understanding by reducing ambiguity inherent to the speech signal.
Collapse
Affiliation(s)
- Jared A Carter
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA; School of Communication Sciences and Disorders, University of Memphis, Memphis, TN, USA; Division of Clinical Neuroscience, School of Medicine, Hearing Sciences - Scottish Section, University of Nottingham, Glasgow, Scotland, UK
| | - Gavin M Bidelman
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
5
|
Kuang J, Liberman M. Integrating Voice Quality Cues in the Pitch Perception of Speech and Non-speech Utterances. Front Psychol 2018; 9:2147. [PMID: 30555365 PMCID: PMC6281971 DOI: 10.3389/fpsyg.2018.02147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 10/18/2018] [Indexed: 11/13/2022] Open
Abstract
Pitch perception plays a crucial role in speech processing. Since F0 is highly ambiguous and variable in the speech signal, effective pitch-range perception is important in perceiving the intended linguistic pitch targets. This study argues that the effectiveness of pitch-range perception can be achieved by taking advantage of other signal-internal information that co-varies with F0, such as voice quality cues. This study provides direct perceptual evidence that voice quality cues as an indicator of pitch ranges can effectively affect the pitch-height perception. A series of forced-choice pitch classification experiments with four spectral conditions were conducted to investigate the degree to which manipulating spectral slope affects pitch-height perception. Both non-speech and speech stimuli were investigated. The results suggest that the pitch classification function is significantly shifted under different spectral conditions. Listeners are likely to perceive a higher pitch when the spectrum has higher high-frequency energy (i.e., tenser phonation). The direction of the shift is consistent with the correlation between voice quality and pitch range. Moreover, cue integration is affected by the speech mode, where listeners are more sensitive to relative difference within an utterance when hearing speech stimuli. This study generally supports the hypothesis that voice quality is an important enhancement cue for pitch range.
Collapse
Affiliation(s)
- Jianjing Kuang
- Department of Linguistics, University of Pennsylvania, Philadelphia, PA, United States
| | | |
Collapse
|
6
|
Skoe E, Burakiewicz E, Figueiredo M, Hardin M. Basic neural processing of sound in adults is influenced by bilingual experience. Neuroscience 2017; 349:278-290. [DOI: 10.1016/j.neuroscience.2017.02.049] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 02/18/2017] [Accepted: 02/21/2017] [Indexed: 11/30/2022]
|
7
|
Moreno S, Bidelman GM. Examining neural plasticity and cognitive benefit through the unique lens of musical training. Hear Res 2014; 308:84-97. [DOI: 10.1016/j.heares.2013.09.012] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 09/14/2013] [Accepted: 09/19/2013] [Indexed: 11/30/2022]
|
8
|
Abstract
Linguistic and musical pitch provide an analytic window to evaluate how neural representations of important pitch attributes of a sound undergo transformation from early sensory to later cognitive stages of processing in the human brain, and how pitch-relevant experience shapes these representations. These pitch attributes are shaped differentially depending on their functional relevance to a listener. Neural encoding of pitch-relevant information is shaped by the perceptual salience of domain-specific features at subcortical (auditory brainstem) and cortical stages of processing. The emergence of a functional ear asymmetry in the neural encoding of pitch-relevant information at a lower sensory processing level supports the view that local and feedforward and feedback mechanisms are involved in pitch-relevant processing. A theoretical framework for a neural network is proposed involving coordination between local, feedforward, and feedback components that can account for experience-induced enhancement of pitch representations at multiple levels of the auditory pathway.
Collapse
|