1
|
Yang C, Sun ZP, Jiang J, Cai XL, Wang Y, Wang H, Che C, Tu E, Pan AH, Zhang Y, Wang XP, Cui MZ, Xu XM, Yan XX, Zhang QL. Increased expression of the proapoptotic presenilin associated protein is involved in neuronal tangle formation in human brain. Sci Rep 2024; 14:25274. [PMID: 39455681 PMCID: PMC11512019 DOI: 10.1038/s41598-024-77026-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Presenilin-associated protein (PSAP) is a mitochondrial proapoptotic protein as established in cell biology studies. It remains unknown whether it involves in neurodegenerative diseases. Here, we explored PASP expression in adult and aged human brains and its alteration relative to Alzheimer-disease (AD)-type neuropathology. In pathology-free brains, light PASP immunoreactivity (IR) occurred among largely principal neurons in the cerebrum and subcortical structures. In the brains with AD pathology, enhanced PSAP IR occurred in neuronal and neuritic profiles with a tangle-like appearance, with PSAP and pTau protein levels elevated in neocortical lysates relative to control. Neuronal/neuritic profiles with enhanced PSAP IR partially colocalized with pTau, but invariably with Amylo-Glo labelled tangles. The neuronal somata with enhanced PASP IR also showed diminished IR for casein kinase 1 delta (Ck1δ), a marker of granulovacuolar degeneration; and diminished IR for sortilin, which is normally expressed in membrane and intracellular protein sorting/trafficking organelles. In old 3xTg-AD mice with β-amyloid and pTau pathologies developed in the brain, PSAP IR in the cerebral sections exhibited no difference relative to wildtype mice. These findings indicate that PSAP upregulation is involved in the course of tangle formation especially in the human brain during aging and in AD pathogenesis.
Collapse
Affiliation(s)
- Chen Yang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Zhong-Ping Sun
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
- Department of Biology, College of Arts and Sciences, University of Texas of the Permian Basin, Odessa, TX, USA
| | - Juan Jiang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
- Department of Biology, College of Arts and Sciences, University of Texas of the Permian Basin, Odessa, TX, USA
| | - Xiao-Lu Cai
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
- Department of Biology, College of Arts and Sciences, University of Texas of the Permian Basin, Odessa, TX, USA
| | - Yan Wang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Hui Wang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Chong Che
- GeneScience Pharmaceuticals Co., Ltd, Changchun High-Tech Development Zone, Changchun, Jilin Province, China
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, Hunan Province, China
| | - Ai-Hua Pan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Yan Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, Second Xiangya Hospital Central South University, Changsha, Hunan Province, China
| | - Xiao-Ping Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, Second Xiangya Hospital Central South University, Changsha, Hunan Province, China
| | - Mei-Zhen Cui
- Department of Biology, College of Arts and Sciences, University of Texas of the Permian Basin, Odessa, TX, USA
| | - Xue-Min Xu
- Department of Biology, College of Arts and Sciences, University of Texas of the Permian Basin, Odessa, TX, USA
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Qi-Lei Zhang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
2
|
Jorge-Oliva M, van Weering JRT, Scheper W. Structurally and Morphologically Distinct Pathological Tau Assemblies Differentially Affect GVB Accumulation. Int J Mol Sci 2023; 24:10865. [PMID: 37446051 DOI: 10.3390/ijms241310865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Tau aggregation is central to the pathogenesis of a large group of neurodegenerative diseases termed tauopathies, but it is still unclear in which way neurons respond to tau pathology and how tau accumulation leads to neurodegeneration. A striking neuron-specific response to tau pathology is presented by granulovacuolar degeneration bodies (GVBs), lysosomal structures that accumulate specific cargo in a dense core. Here we employed different tau aggregation models in primary neurons to investigate which properties of pathological tau assemblies affect GVB accumulation using a combination of confocal microscopy, transmission electron microscopy, and quantitative automated high-content microscopy. Employing GFP-tagged and untagged tau variants that spontaneously form intraneuronal aggregates, we induced pathological tau assemblies with a distinct subcellular localization, morphology, and ultrastructure depending on the presence or absence of the GFP tag. The quantification of the GVB load in the different models showed that an increased GVB accumulation is associated with the untagged tau aggregation model, characterized by shorter and more randomly distributed tau filaments in the neuronal soma. Our data indicate that tau aggregate structure and/or subcellular localization may be key determinants of GVB accumulation.
Collapse
Affiliation(s)
- Marta Jorge-Oliva
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience-Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Jan R T van Weering
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience-Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit, Amsterdam Neuroscience-Neurodegeneration, 1081 HZ Amsterdam, The Netherlands
| | - Wiep Scheper
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience-Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam UMC Location Vrije Universiteit, Amsterdam Neuroscience-Neurodegeneration, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
3
|
De Marchi F, Franjkic T, Schito P, Russo T, Nimac J, Chami AA, Mele A, Vidatic L, Kriz J, Julien JP, Apic G, Russell RB, Rogelj B, Cannon JR, Baralle M, Agosta F, Hecimovic S, Mazzini L, Buratti E, Munitic I. Emerging Trends in the Field of Inflammation and Proteinopathy in ALS/FTD Spectrum Disorder. Biomedicines 2023; 11:1599. [PMID: 37371694 PMCID: PMC10295684 DOI: 10.3390/biomedicines11061599] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Proteinopathy and neuroinflammation are two main hallmarks of neurodegenerative diseases. They also represent rare common events in an exceptionally broad landscape of genetic, environmental, neuropathologic, and clinical heterogeneity present in patients. Here, we aim to recount the emerging trends in amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD) spectrum disorder. Our review will predominantly focus on neuroinflammation and systemic immune imbalance in ALS and FTD, which have recently been highlighted as novel therapeutic targets. A common mechanism of most ALS and ~50% of FTD patients is dysregulation of TAR DNA-binding protein 43 (TDP-43), an RNA/DNA-binding protein, which becomes depleted from the nucleus and forms cytoplasmic aggregates in neurons and glia. This, in turn, via both gain and loss of function events, alters a variety of TDP-43-mediated cellular events. Experimental attempts to target TDP-43 aggregates or manipulate crosstalk in the context of inflammation will be discussed. Targeting inflammation, and the immune system in general, is of particular interest because of the high plasticity of immune cells compared to neurons.
Collapse
Affiliation(s)
- Fabiola De Marchi
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, 28100 Novara, Italy; (F.D.M.); (A.M.)
| | - Toni Franjkic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia;
- Metisox, Cambridge CB24 9NL, UK;
| | - Paride Schito
- Department of Neurology & Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (P.S.); (T.R.)
| | - Tommaso Russo
- Department of Neurology & Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (P.S.); (T.R.)
| | - Jerneja Nimac
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia; (J.N.); (B.R.)
- Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Anna A. Chami
- CERVO Research Centre, Laval University, Quebec City, QC G1J 2G3, Canada; (A.A.C.); (J.K.); (J.-P.J.)
| | - Angelica Mele
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, 28100 Novara, Italy; (F.D.M.); (A.M.)
| | - Lea Vidatic
- Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (L.V.); (S.H.)
| | - Jasna Kriz
- CERVO Research Centre, Laval University, Quebec City, QC G1J 2G3, Canada; (A.A.C.); (J.K.); (J.-P.J.)
| | - Jean-Pierre Julien
- CERVO Research Centre, Laval University, Quebec City, QC G1J 2G3, Canada; (A.A.C.); (J.K.); (J.-P.J.)
| | | | | | - Boris Rogelj
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia; (J.N.); (B.R.)
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Jason R. Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | | | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Silva Hecimovic
- Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (L.V.); (S.H.)
| | - Letizia Mazzini
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, 28100 Novara, Italy; (F.D.M.); (A.M.)
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - Ivana Munitic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia;
| |
Collapse
|
4
|
Liu J, Guo ZN, Yan XL, Yang Y, Huang S. Brain Pathogenesis and Potential Therapeutic Strategies in Myotonic Dystrophy Type 1. Front Aging Neurosci 2021; 13:755392. [PMID: 34867280 PMCID: PMC8634727 DOI: 10.3389/fnagi.2021.755392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy that affects multiple systems including the muscle and heart. The mutant CTG expansion at the 3'-UTR of the DMPK gene causes the expression of toxic RNA that aggregate as nuclear foci. The foci then interfere with RNA-binding proteins, affecting hundreds of mis-spliced effector genes, leading to aberrant alternative splicing and loss of effector gene product functions, ultimately resulting in systemic disorders. In recent years, increasing clinical, imaging, and pathological evidence have indicated that DM1, though to a lesser extent, could also be recognized as true brain diseases, with more and more researchers dedicating to develop novel therapeutic tools dealing with it. In this review, we summarize the current advances in the pathogenesis and pathology of central nervous system (CNS) deficits in DM1, intervention measures currently being investigated are also highlighted, aiming to promote novel and cutting-edge therapeutic investigations.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Xiu-Li Yan
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Shuo Huang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
5
|
Andrés-Benito P, Carmona M, Pirla MJ, Torrejón-Escribano B, Del Rio JA, Ferrer I. Dysregulated Protein Phosphorylation as Main Contributor of Granulovacuolar Degeneration at the First Stages of Neurofibrillary Tangles Pathology. Neuroscience 2021; 518:119-140. [PMID: 34757172 DOI: 10.1016/j.neuroscience.2021.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 02/08/2023]
Abstract
The hippocampus of cases with neurofibrillary tangles (NFT) pathology classified as stages I-II, III-IV, and V-VI without comorbidities, and middle-aged (MA) individuals with no NFT pathology, were examined to learn about the composition of granulovacuolar degeneration (GVD). Our results confirm the presence of CK1-δ, p38-P Thr180/Tyr182, SAPK/JNK-P Thr183/Thr185, GSK-3α/β-P Tyr279/Tyr216, and GSK-3β Ser9 in the cytoplasmic granules in a subset of neurons of the CA1 and CA2 subfields of the hippocampus. Also, we identify the presence of PKA α/β-P Thr197, SRC-P Tyr416, PAK1-P Ser199/Ser204, CAMK2A-P Tyr197, and PKCG-P Thr655 in cytoplasmic granules in cases with NFT pathology, but not in MA cases. Our results also confirm the presence of β-catenin-P Ser45/Thr41, IREα-P Ser274, eIF2α-P Ser51, TDP-43-P Ser403-404 (but absent TDP-43), and ubiquitin in cytoplasmic granules. Other components of the cytoplasmic granules are MAP2-P Thr1620/1623, MAP1B-P Thr1265, ADD1-P Ser726, and ADD1/ADD1-P Ser726/Ser713, in addition to several tau species including 3Rtau, 4Rtau, and tau-P Ser262. The analysis of GVD at progressive stages of NFT pathology reveals the early appearance of phosphorylated kinases and proteins in cytoplasmic granules at stages I-II, before the appearance of pre-tangles and NFTs. Most of these granules are not surrounded by LAMP1-positive membranes. Markers of impaired ubiquitin-protesome system, abnormal reticulum stress response, and altered endocytic and autophagic pathways occur in a subpopulation of neurons containing cytoplasmic granules, and they appear later. These observations suggest early phosphorylation of kinases leading to their activation, and resulting in the abnormal phosphorylation of various substrates, including tau, as a main alteration at the first stages of GVD.
Collapse
Affiliation(s)
- Pol Andrés-Benito
- Department of Pathology and Experimental Therapeutics, University of Barcelona, CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Bellvitge University Hospital/Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain.
| | - Margarita Carmona
- Department of Pathology and Experimental Therapeutics, University of Barcelona, CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Bellvitge University Hospital/Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain.
| | - Mónica Jordán Pirla
- Department of Pathology and Experimental Therapeutics, University of Barcelona, CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Bellvitge University Hospital/Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain.
| | - Benjamín Torrejón-Escribano
- Advanced Light Microscopy Unit (Campus de Bellvitge), Scientific and Technical Facility (CCiTUB), University of Barcelona, Hospitalet de Llobregat, Spain.
| | - José Antonio Del Rio
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Science Park Barcelona (PCB), Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain.
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Bellvitge University Hospital/Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
6
|
Hondius DC, Koopmans F, Leistner C, Pita-Illobre D, Peferoen-Baert RM, Marbus F, Paliukhovich I, Li KW, Rozemuller AJM, Hoozemans JJM, Smit AB. The proteome of granulovacuolar degeneration and neurofibrillary tangles in Alzheimer's disease. Acta Neuropathol 2021; 141:341-358. [PMID: 33492460 PMCID: PMC7882576 DOI: 10.1007/s00401-020-02261-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022]
Abstract
Granulovacuolar degeneration (GVD) is a common feature in Alzheimer's disease (AD). The occurrence of GVD is closely associated with that of neurofibrillary tangles (NFTs) and GVD is even considered to be a pre-NFT stage in the disease process of AD. Currently, the composition of GVD bodies, the mechanisms associated with GVD and how GVD exactly relates to NFTs is not well understood. By combining immunohistochemistry (IHC) and laser microdissection (LMD) we isolated neurons with GVD and those bearing tangles separately from human post-mortem AD hippocampus (n = 12) using their typical markers casein kinase (CK)1δ and phosphorylated tau (AT8). Control neurons were isolated from cognitively healthy cases (n = 12). 3000 neurons per sample were used for proteome analysis by label free LC-MS/MS. In total 2596 proteins were quantified across samples and a significant change in abundance of 115 proteins in GVD and 197 in tangle bearing neurons was observed compared to control neurons. With IHC the presence of PPIA, TOMM34, HSP70, CHMP1A, TPPP and VXN was confirmed in GVD containing neurons. We found multiple proteins localizing specifically to the GVD bodies, with VXN and TOMM34 being the most prominent new protein markers for GVD bodies. In general, protein groups related to protein folding, proteasomal function, the endolysosomal pathway, microtubule and cytoskeletal related function, RNA processing and glycolysis were found to be changed in GVD neurons. In addition to these protein groups, tangle bearing neurons show a decrease in ribosomal proteins, as well as in various proteins related to protein folding. This study, for the first time, provides a comprehensive human based quantitative assessment of protein abundances in GVD and tangle bearing neurons. In line with previous functional data showing that tau pathology induces GVD, our data support the model that GVD is part of a pre-NFT stage representing a phase in which proteostasis and cellular homeostasis is disrupted. Elucidating the molecular mechanisms and cellular processes affected in GVD and its relation to the presence of tau pathology is highly relevant for the identification of new drug targets for therapy.
Collapse
Affiliation(s)
- David C Hondius
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, PO Box 7057, Amsterdam, 1007 MB, The Netherlands.
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands.
| | - Frank Koopmans
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Conny Leistner
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Débora Pita-Illobre
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Regina M Peferoen-Baert
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, PO Box 7057, Amsterdam, 1007 MB, The Netherlands
| | - Fenna Marbus
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, PO Box 7057, Amsterdam, 1007 MB, The Netherlands
| | - Iryna Paliukhovich
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, PO Box 7057, Amsterdam, 1007 MB, The Netherlands
| | - Jeroen J M Hoozemans
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, PO Box 7057, Amsterdam, 1007 MB, The Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Weijs R, Okkersen K, van Engelen B, Küsters B, Lammens M, Aronica E, Raaphorst J, van Cappellen van Walsum AM. Human brain pathology in myotonic dystrophy type 1: A systematic review. Neuropathology 2021; 41:3-20. [PMID: 33599033 PMCID: PMC7986875 DOI: 10.1111/neup.12721] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/01/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022]
Abstract
Brain involvement in myotonic dystrophy type 1 (DM1) is characterized by heterogeneous cognitive, behavioral, and affective symptoms and imaging alterations indicative of widespread grey and white matter involvement. The aim of the present study was to systematically review the literature on brain pathology in DM1. We conducted a structured search in EMBASE (index period 1974–2017) and MEDLINE (index period 1887–2017) on December 11, 2017, using free text and index search terms related to myotonic dystrophy type 1 and brain structures or regions. Eligible studies were full‐text studies reporting on microscopic brain pathology of DM1 patients without potentially interfering comorbidity. We discussed the findings based on the anatomical region and the nature of the anomaly. Neuropathological findings in DM1 can be classified as follows: (1) protein and nucleotide deposits; (2) changes in neurons and glial cells; and (3) white matter alterations. Most findings are unspecific to DM1 and may occur with physiological aging, albeit to a lesser degree. There are similarities and contrasts with Alzheimer's disease; both show the appearance of neurofibrillary tangles in the limbic system without plaque occurrence. Likewise, there is myelin loss and gliosis, and there are dilated perivascular spaces in the white matter resemblant of cerebral small vessel disease. However, we did not find evidence of lacunar infarction or microbleeding. The various neuropathological findings in DM1 are reflective of the heterogeneous clinical and neuroimaging features of the disease. The strength of conclusions from this study's findings is bounded by limited numbers of participants in studies, methodological constraints, and lack of assessed associations between histopathology and clinical or neuroimaging findings.
Collapse
Affiliation(s)
- Ralf Weijs
- Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands.,Department of Neurology, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Kees Okkersen
- Department of Neurology, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Baziel van Engelen
- Department of Neurology, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Benno Küsters
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Martin Lammens
- Department of Pathological Anatomy, University of Antwerp, Antwerp, Belgium
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of Neurology and Pathology, Amsterdam Neuroscience Institute, Amsterdam, the Netherlands
| | - Joost Raaphorst
- Amsterdam UMC, University of Amsterdam, Department of Neurology and Pathology, Amsterdam Neuroscience Institute, Amsterdam, the Netherlands
| | - Anne-Marie van Cappellen van Walsum
- Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| |
Collapse
|
8
|
Wiersma VI, Hoozemans JJM, Scheper W. Untangling the origin and function of granulovacuolar degeneration bodies in neurodegenerative proteinopathies. Acta Neuropathol Commun 2020; 8:153. [PMID: 32883341 PMCID: PMC7469111 DOI: 10.1186/s40478-020-00996-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022] Open
Abstract
In the brains of tauopathy patients, tau pathology coincides with the presence of granulovacuolar degeneration bodies (GVBs) both at the regional and cellular level. Recently, it was shown that intracellular tau pathology causes GVB formation in experimental models thus explaining the strong correlation between these neuropathological hallmarks in the human brain. These novel models of GVB formation provide opportunities for future research into GVB biology, but also urge reevaluation of previous post-mortem observations. Here, we review neuropathological data on GVBs in tauopathies and other neurodegenerative proteinopathies. We discuss the possibility that intracellular aggregates composed of proteins other than tau are also able to induce GVB formation. Furthermore, the potential mechanisms of GVB formation and the downstream functional implications hereof are outlined in view of the current available data. In addition, we provide guidelines for the identification of GVBs in tissue and cell models that will help to facilitate and streamline research towards the elucidation of the role of these enigmatic and understudied structures in neurodegeneration.
Collapse
|
9
|
Myotonic Dystrophy: an RNA Toxic Gain of Function Tauopathy? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:207-216. [PMID: 32096040 DOI: 10.1007/978-981-32-9358-8_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Myotonic dystrophies (DM) are rare inherited neuromuscular disorders linked to microsatellite unstable expansions in non-coding regions of ubiquitously expressed genes. The DMPK and ZNF9/CNBP genes which mutations are responsible for DM1 and DM2 respectively. DM are multisystemic disorders with brain affection and cognitive deficits. Brain lesions consisting of neurofibrillary tangles are often observed in DM1 and DM2 brain. Neurofibrillary tangles (NFT) made of aggregates of hyper and abnormally phosphorylated isoforms of Tau proteins are neuropathological lesions common to more than 20 neurological disorders globally referred to as Tauopathies. Although NFT are observed in DM1 and DM2 brain, the question of whether DM1 and DM2 are Tauopathies remains a matter of debate. In the present review, several pathophysiological processes including, missplicing, nucleocytoplasmic transport disruption, RAN translation which are common mechanisms implicated in neurodegenerative diseases will be described. Together, these processes including the missplicing of Tau are providing evidence that DM1 and DM2 are not solely muscular diseases but that their brain affection component share many similarities with Tauopathies and other neurodegenerative diseases. Understanding DM1 and DM2 pathophysiology is therefore valuable to more globally understand other neurodegenerative diseases such as Tauopathies but also frontotemporal lobar neurodegeneration and amyotrophic lateral sclerosis.
Collapse
|
10
|
Grand Moursel L, Munting LP, van der Graaf LM, van Duinen SG, Goumans MJTH, Ueberham U, Natté R, van Buchem MA, van Roon-Mom WMC, van der Weerd L. TGFβ pathway deregulation and abnormal phospho-SMAD2/3 staining in hereditary cerebral hemorrhage with amyloidosis-Dutch type. Brain Pathol 2017; 28:495-506. [PMID: 28557134 PMCID: PMC8028662 DOI: 10.1111/bpa.12533] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/19/2017] [Indexed: 12/20/2022] Open
Abstract
Hereditary cerebral hemorrhage with amyloidosis‐Dutch type (HCHWA‐D) is an early onset hereditary form of cerebral amyloid angiopathy (CAA) pathology, caused by the E22Q mutation in the amyloid β (Aβ) peptide. Transforming growth factor β1 (TGFβ1) is a key player in vascular fibrosis and in the formation of angiopathic vessels in transgenic mice. Therefore, we investigated whether the TGFβ pathway is involved in HCHWA‐D pathogenesis in human postmortem brain tissue from frontal and occipital lobes. Components of the TGFβ pathway were analyzed with quantitative RT‐PCR. TGFβ1 and TGFβ Receptor 2 (TGFBR2) gene expression levels were significantly increased in HCHWA‐D in comparison to the controls, in both frontal and occipital lobes. TGFβ‐induced pro‐fibrotic target genes were also upregulated. We further assessed pathway activation by detecting phospho‐SMAD2/3 (pSMAD2/3), a direct TGFβ down‐stream signaling mediator, using immunohistochemistry. We found abnormal pSMAD2/3 granular deposits specifically on HCHWA‐D angiopathic frontal and occipital vessels. We graded pSMAD2/3 accumulation in angiopathic vessels and found a positive correlation with the CAA load independent of the brain area. We also observed pSMAD2/3 granules in a halo surrounding occipital vessels, which was specific for HCHWA‐D. The result of this study indicates an upregulation of TGFβ1 in HCHWA‐D, as was found previously in AD with CAA pathology. We discuss the possible origins and implications of the TGFβ pathway deregulation in the microvasculature in HCHWA‐D. These findings identify the TGFβ pathway as a potential biomarker of disease progression and a possible target of therapeutic intervention in HCHWA‐D.
Collapse
Affiliation(s)
- Laure Grand Moursel
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.,Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Leon P Munting
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.,Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Linda M van der Graaf
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.,Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sjoerd G van Duinen
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marie-Jose T H Goumans
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Uwe Ueberham
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany
| | - Remco Natté
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Mark A van Buchem
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Louise van der Weerd
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.,Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
11
|
The origins of rimmed vacuoles and granulovacuolar degeneration bodies are associated with the Wnt signaling pathway. Neurosci Lett 2017; 638:55-59. [DOI: 10.1016/j.neulet.2016.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/29/2016] [Accepted: 12/06/2016] [Indexed: 01/07/2023]
|
12
|
Granulovacuolar degeneration: a neurodegenerative change that accompanies tau pathology. Acta Neuropathol 2016; 132:339-59. [PMID: 27062260 DOI: 10.1007/s00401-016-1562-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/08/2016] [Accepted: 03/14/2016] [Indexed: 10/22/2022]
Abstract
Granule-containing vacuoles in the cytoplasm of hippocampal neurons are a neuropathological feature of Alzheimer's disease. Granulovacuolar degeneration (GVD) is not disease-specific and can be observed in other neurodegenerative disorders and even in the brains of non-demented elderly people. However, several studies have reported much higher numbers of neurons undergoing GVD in the hippocampus of Alzheimer's disease cases. Recently, a neuropathological staging system for GVD has facilitated neuropathological assessment. Data obtained by electron microscopy and immunolabeling suggest that GVD inclusions are a special form of autophagic vacuole. GVD frequently occurs together with pathological changes of the microtubule-associated protein tau, but to date, the relationship between the two lesions remains elusive. Originally identified in hematoxylin- and silver-stained sections, immunolabeling has shown that the granules are composed of a variety of proteins, including those related to tau pathology, autophagy, diverse signal transduction pathways, cell stress and apoptosis. Several of these proteins serve as markers of GVD. Most researchers and authors have interpreted the sequestration of proteins into GVD inclusions as either a cellular defense mechanism or one that leads to the impairment of important cellular functions. This review provides a detailed overview of the various aspects of GVD and focuses on the relationship between tau pathology and GVD.
Collapse
|
13
|
Cacabelos D, Ayala V, Granado-Serrano AB, Jové M, Torres P, Boada J, Cabré R, Ramírez-Núñez O, Gonzalo H, Soler-Cantero A, Serrano JCE, Bellmunt MJ, Romero MP, Motilva MJ, Nonaka T, Hasegawa M, Ferrer I, Pamplona R, Portero-Otín M. Interplay between TDP-43 and docosahexaenoic acid-related processes in amyotrophic lateral sclerosis. Neurobiol Dis 2016; 88:148-60. [PMID: 26805387 DOI: 10.1016/j.nbd.2016.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 12/09/2015] [Accepted: 01/09/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Docosahexaenoic acid (DHA), a key lipid in nervous system homeostasis, is depleted in the spinal cord of sporadic amyotrophic lateral sclerosis (sALS) patients. However, the basis for such loss was unknown. METHODS DHA synthetic machinery was evaluated in spinal cord samples from ALS patients and controls by immunohistochemistry and western blot. Further, lipid composition was measured in organotypic spinal cord cultures by gas chromatography and liquid chromatography coupled to mass spectrometry. In these samples, mitochondrial respiratory functions were measured by high resolution respirometry. Finally, Neuro2-A and stem cell-derived human neurons were used for evaluating mechanistic relationships between TDP-43 aggregation, oxidative stress and cellular changes in DHA-related proteins. RESULTS ALS is associated to changes in the spinal cord distribution of DHA synthesis enzymatic machinery comparing ten ALS cases and eight controls. We found increased levels of desaturases (ca 95% increase, p<0.001), but decreased amounts of DHA-related β-oxidation enzymes in ALS samples (40% decrease, p<0.05). Further, drebrin, a DHA-dependent synaptic protein, is depleted in spinal cord samples from ALS patients (around 40% loss, p<0.05). In contrast, chronic excitotoxicity in spinal cord increases DHA acid amount, with both enhanced concentrations of neuroprotective docosahexaenoic acid-derived resolvin D, and higher lipid peroxidation-derived molecules such as 8-iso-prostaglandin-F2-α (8-iso-PGF2α) levels. Since α-tocopherol improved mitochondrial respiratory function and motor neuron survival in these conditions, it is suggested that oxidative stress could boost motor neuron loss. Cell culture and metabolic flux experiments, showing enhanced expression of desaturases (FADS2) and β-oxidation enzymes after H2O2 challenge suggest that DHA production can be an initial response to oxidative stress, driven by TDP-43 aggregation and drebrin loss. Interestingly, these changes were dependent on cell type used, since human neurons exhibited losses of FADS2 and drebrin after oxidative stress. These features (drebrin loss and FADS2 alterations) were also produced by transfection by aggregation prone C-terminal fragments of TDP-43. CONCLUSIONS sALS is associated with tissue-specific DHA-dependent synthetic machinery alteration. Furthermore, excitotoxicity sinergizes with oxidative stress to increase DHA levels, which could act as a response over stress, involving the expression of DHA synthetic enzymes. Later on, this allostatic overload could exacerbate cell stress by contributing to TDP-43 aggregation. This, at its turn, could blunt this protective response, overall leading to DHA depletion and neuronal dysfunction.
Collapse
Affiliation(s)
- Daniel Cacabelos
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Victòria Ayala
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Ana Belén Granado-Serrano
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Mariona Jové
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Pascual Torres
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Jordi Boada
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Rosanna Cabré
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Omar Ramírez-Núñez
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Hugo Gonzalo
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Aranzazu Soler-Cantero
- Departament de Tecnologia d'Aliments, XaRTA-TPV, Escola Tècnica Superior d' Enginyeria Agrària, UdL, Avda Rovira Roure, 85, 25008 Lleida, Spain.
| | - José Carlos Enrique Serrano
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Maria Josep Bellmunt
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - María Paz Romero
- Departament de Tecnologia d'Aliments, XaRTA-TPV, Escola Tècnica Superior d' Enginyeria Agrària, UdL, Avda Rovira Roure, 85, 25008 Lleida, Spain.
| | - María José Motilva
- Departament de Tecnologia d'Aliments, XaRTA-TPV, Escola Tècnica Superior d' Enginyeria Agrària, UdL, Avda Rovira Roure, 85, 25008 Lleida, Spain.
| | - Takashi Nonaka
- Department of Neuropathology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Masato Hasegawa
- Departament de Tecnologia d'Aliments, XaRTA-TPV, Escola Tècnica Superior d' Enginyeria Agrària, UdL, Avda Rovira Roure, 85, 25008 Lleida, Spain.
| | - Isidre Ferrer
- Institut de Neuropatologia, Hospital Universitari de Bellvitge - IDIBELL, Universitat de Barcelona, Spain; CIBERNED (Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas), Instituto Carlos III, Spanish Ministry of Health, Spain. L'Hospitalet de Llobregat, c/La Feixa Llarga, S/N 08908 Hospitalet de Llobregat, Barcelona, Spain.
| | - Reinald Pamplona
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| | - Manuel Portero-Otín
- Departament de Medicina Experimental, Facultat de Medicina, IRBLLEIDA-UDL, Avda Rovira Roure, 44, 25008 Lleida, Spain.
| |
Collapse
|
14
|
Nishikawa T, Takahashi T, Nakamori M, Hosomi N, Maruyama H, Miyazaki Y, Izumi Y, Matsumoto M. The identification of raft-derived tau-associated vesicles that are incorporated into immature tangles and paired helical filaments. Neuropathol Appl Neurobiol 2015; 42:639-653. [PMID: 26501932 DOI: 10.1111/nan.12288] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/07/2015] [Accepted: 10/26/2015] [Indexed: 12/14/2022]
Abstract
AIMS Neurofibrillary tangles (NFTs), a cardinal pathological feature of neurodegenerative disorders, such as Alzheimer's disease (AD) are primarily composed of hyper-phosphorylated tau protein. Recently, several other molecules, including flotillin-1, phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] and cyclin-dependent kinase 5 (CDK5), have also been revealed as constituents of NFTs. Flotillin-1 and PtdIns(4,5)P2 are considered markers of raft microdomains, whereas CDK5 is a tau kinase. Therefore, we hypothesized that NFTs have a relationship with raft domains and the tau phosphorylation that occurs within NFTs. METHODS We investigated six cases of AD, six cases of other neurodegenerative diseases with NFTs and three control cases. We analysed the PtdIns(4,5)P2-immunopositive material in detail, using super-resolution microscopy and electron microscopy to elucidate its pattern of expression. We also investigated the spatial relationship between the PtdIns(4,5)P2-immunopositive material and tau kinases through double immunofluorescence analysis. RESULTS Pretangles contained either paired helical filaments (PHFs) or PtdIns(4,5)P2-immunopositive small vesicles (approximately 1 μm in diameter) with nearly identical topology to granulovacuolar degeneration (GVD) bodies. Various combinations of these vesicles and GVD bodies, the latter of which are pathological hallmarks observed within the neurons of AD patients, were found concurrently in neurons. These vesicles and GVD bodies were both immunopositive not only for PtdIns(4,5)P2, but also for several tau kinases such as glycogen synthase kinase-3β and spleen tyrosine kinase. CONCLUSIONS These observations suggest that clusters of raft-derived vesicles that resemble GVD bodies are substructures of pretangles other than PHFs. These tau kinase-bearing vesicles are likely involved in the modification of tau protein and in NFT formation.
Collapse
Affiliation(s)
- T Nishikawa
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - T Takahashi
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - M Nakamori
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - N Hosomi
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - H Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Y Miyazaki
- Department of Clinical Neuroscience, Institute of Health Biosciences, Graduate School of Medicine, University of Tokushima, Tokushima, Japan
| | - Y Izumi
- Department of Clinical Neuroscience, Institute of Health Biosciences, Graduate School of Medicine, University of Tokushima, Tokushima, Japan
| | - M Matsumoto
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
15
|
Nishikawa T, Takahashi T, Nakamori M, Yamazaki Y, Kurashige T, Nagano Y, Nishida Y, Izumi Y, Matsumoto M. Phosphatidylinositol-4,5-bisphosphate is enriched in granulovacuolar degeneration bodies and neurofibrillary tangles. Neuropathol Appl Neurobiol 2015; 40:489-501. [PMID: 23631697 PMCID: PMC4298759 DOI: 10.1111/nan.12056] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 04/24/2013] [Indexed: 11/29/2022]
Abstract
Aims Among the pathological findings in Alzheimer’s disease (AD), the temporal and spatial profiles of granulovacuolar degeneration (GVD) bodies are characteristic in that they seem to be related to those of neurofibrillary tangles (NFTs), suggesting a common mechanism underlying the pathogenesis of these structures. Flotillin-1, a marker of lipid rafts, accumulates in lysosomes of tangle-bearing neurones in AD patients. In addition, recent reports have shown that GVD bodies accumulate at the nexus of the autophagic and endocytic pathways. The aim of this study was to elucidate the distribution of the lipid component of lipid rafts, phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2], in AD and other neurodegenerative disorders. Methods We compared PtdIns(4,5)P2 immunoreactivity in the hippocampus, entorhinal cortex and neocortex of five AD cases, 17 cases of other neurodegenerative disorders and four controls. In addition, we performed double staining using markers of GVD, NFTs and lipid rafts for further characterization. Results Immunohistochemical analysis revealed that PtdIns(4,5)P2 was selectively enriched in GVD bodies and NFTs. Although immunoreactivity for PtdIns(4,5)P2 was also evident in NFTs composed of hyperphosphorylated tau, PtdIns(4,5)P2 was segregated from phosphorylated tau within NFTs by double immunofluorescence staining. In contrast, PtdIns(4,5)P2 colocalized with the lipid raft markers flotillin-1 and annexin 2, within GVD bodies and NFTs. Conclusions These results suggest that lipid raft components including PtdIns(4,5)P2 play a role in the formation of both GVD bodies and NFTs.
Collapse
Affiliation(s)
- Tomokazu Nishikawa
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lund H, Gustafsson E, Svensson A, Nilsson M, Berg M, Sunnemark D, von Euler G. MARK4 and MARK3 associate with early tau phosphorylation in Alzheimer's disease granulovacuolar degeneration bodies. Acta Neuropathol Commun 2014; 2:22. [PMID: 24533944 PMCID: PMC4046661 DOI: 10.1186/2051-5960-2-22] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/11/2014] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The progression of Alzheimer's disease (AD) is associated with an increase of phosphorylated tau in the brain. One of the earliest phosphorylated sites on tau is Ser262 that is preferentially phosphorylated by microtubule affinity regulating kinase (MARK), of which four isoforms exist. Herein we investigated the expression of MARK1-4 in the hippocampus of non-demented elderly (NDE) and AD cases. RESULTS In situ hybridization revealed a uniform, neuronal distribution of all four isoform mRNAs in NDE and AD. Immunohistochemical analyses using isoform-selective antibodies demonstrated that MARK4 in a phosphorylated form colocalizes with p-tau Ser262 in granulovacuolar degeneration bodies (GVDs) that progressively accumulate in AD. In contrast MARK4 is largely absent in the neuronal cytoplasm. MARK3 was localized to a subset of the GVD-containing neurons and also had a weak general cytoplasmic neuronal staining in both NDE and AD. These results suggest that in AD, phosphorylated MARK3 and MARK4 are sequestered and proteolysed in GVDs. MARK1 and MARK2 were absent in GVDs and exhibited relatively uniform neuronal expressions with no apparent differences between NDE and AD. CONCLUSION We found that the phosphorylated and fragmented forms of MARK4 and to some extent MARK3 are present in GVDs in AD, and that this expression is highly correlated with phosphorylation of tau at Ser262. This may represent a cellular defense mechanism to remove activated MARK and p-tau Ser262 from the cytosol, thereby reducing the phosphorylating effect on tau Ser262 that appears to be a critical step for subsequent neurodegeneration.
Collapse
|
17
|
Caillet-Boudin ML, Fernandez-Gomez FJ, Tran H, Dhaenens CM, Buee L, Sergeant N. Brain pathology in myotonic dystrophy: when tauopathy meets spliceopathy and RNAopathy. Front Mol Neurosci 2014; 6:57. [PMID: 24409116 PMCID: PMC3885824 DOI: 10.3389/fnmol.2013.00057] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/20/2013] [Indexed: 01/18/2023] Open
Abstract
Myotonic dystrophy (DM) of type 1 and 2 (DM1 and DM2) are inherited autosomal dominant diseases caused by dynamic and unstable expanded microsatellite sequences (CTG and CCTG, respectively) in the non-coding regions of the genes DMPK and ZNF9, respectively. These mutations result in the intranuclear accumulation of mutated transcripts and the mis-splicing of numerous transcripts. This so-called RNA gain of toxic function is the main feature of an emerging group of pathologies known as RNAopathies. Interestingly, in addition to these RNA inclusions, called foci, the presence of neurofibrillary tangles (NFT) in patient brains also distinguishes DM as a tauopathy. Tauopathies are a group of nearly 30 neurodegenerative diseases that are characterized by intraneuronal protein aggregates of the microtubule-associated protein Tau (MAPT) in patient brains. Furthermore, a number of neurodegenerative diseases involve the dysregulation of splicing regulating factors and have been characterized as spliceopathies. Thus, myotonic dystrophies are pathologies resulting from the interplay among RNAopathy, spliceopathy, and tauopathy. This review will describe how these processes contribute to neurodegeneration. We will first focus on the tauopathy associated with DM1, including clinical symptoms, brain histology, and molecular mechanisms. We will also discuss the features of DM1 that are shared by other tauopathies and, consequently, might participate in the development of a tauopathy. Moreover, we will discuss the determinants common to both RNAopathies and spliceopathies that could interfere with tau-related neurodegeneration.
Collapse
Affiliation(s)
- Marie-Laure Caillet-Boudin
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| | - Francisco-Jose Fernandez-Gomez
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| | - Hélène Tran
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| | - Claire-Marie Dhaenens
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| | - Luc Buee
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| | - Nicolas Sergeant
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| |
Collapse
|
18
|
Nakamori M, Takahashi T, Nishikawa T, Yamazaki Y, Kurashige T, Maruyama H, Arihiro K, Matsumoto M. Molecular markers for granulovacuolar degeneration are present in rimmed vacuoles. PLoS One 2013; 8:e80995. [PMID: 24312256 PMCID: PMC3842945 DOI: 10.1371/journal.pone.0080995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/08/2013] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Rimmed vacuoles (RVs) are round-oval cytoplasmic inclusions, detected in muscle cells of patients with myopathies, such as inclusion body myositis (IBM) and distal myopathy with RVs (DMRV). Granulovacuolar degeneration (GVD) bodies are spherical vacuoles containing argentophilic and hematoxyphilic granules, and are one of the pathological hallmarks commonly found in hippocampal pyramidal neurons of patients with aging-related neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease. These diseases are common in the elderly and share some pathological features. Therefore, we hypothesized that mechanisms of vacuolar formation in RVs and GVD bodies are common despite their role in two differing pathologies. We explored the components of RVs by immunohistochemistry, using antibodies for GVD markers. METHODS Subjects included one AD case, eight cases of sporadic IBM, and three cases of DMRV. We compared immunoreactivity and staining patterns for GVD markers. These markers included: (1) tau-modifying proteins (caspase 3, cyclin-dependent kinase 5 [CDK5], casein kinase 1δ [CK1δ], and c-jun N-terminal kinase [JNK]), (2) lipid raft-associated materials (annexin 2, leucine-rich repeat kinase 2 [LRRK2], and flotillin-1), and (3) other markers (charged multi-vesicular body protein 2B [CHMP2B] and phosphorylated transactive response DNA binding protein-43 [pTDP43]) in both GVD bodies and RVs. Furthermore, we performed double staining of each GVD marker with pTDP43 to verify the co-localization. RESULTS GVD markers, including lipid raft-associated proteins and tau kinases, were detected in RVs. CHMP2B, pTDP43, caspase 3, LRRK2, annexin 2 and flotillin-1 were detected on the rim and were diffusely distributed in the cytoplasm of RV-positive fibers. CDK5, CK1δ and JNK were detected only on the rim. In double staining experiments, all GVD markers colocalized with pTDP43 in RVs. CONCLUSIONS These results suggest that RVs of muscle cells and GVD bodies of neurons share a number of molecules, such as raft-related proteins and tau-modifying proteins.
Collapse
Affiliation(s)
- Masahiro Nakamori
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tetsuya Takahashi
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- * E-mail:
| | - Tomokazu Nishikawa
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yu Yamazaki
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takashi Kurashige
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Koji Arihiro
- Department of Anatomical Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masayasu Matsumoto
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|