1
|
Masala C, Porcu M, Orofino G, Defazio G, Pinna I, Solla P, Ercoli T, Suri JS, Spinato G, Saba L. Neuroimaging evaluations of olfactory, gustatory, and neurological deficits in patients with long-term sequelae of COVID-19. Brain Imaging Behav 2024; 18:1480-1490. [PMID: 39340624 DOI: 10.1007/s11682-024-00936-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
The World Health Organization indicated that around 36 million of patients in the European Region showed long COVID associated with olfactory and gustatory deficits. The precise mechanism underlying long COVID clinical manifestations is still debated. The aim of this study was to evaluate potential correlations between odor threshold, odor discrimination, odor identification, and the activation of specific brain areas in patients after COVID-19. Sixty subjects, 27 patients (15 women and 12 men) with long COVID and a mean age of 40.6 ± 13.4 years, were compared to 33 age-matched healthy controls (20 women and 13 men) with a mean age of 40.5 ± 9.8 years. Our data showed that patients with long COVID symptoms exhibited a significant decrease in odor threshold, odor discrimination, odor identification, and their sum TDI score compared to age-matched healthy controls. In addition, our results indicated significant correlations between odor discrimination and the increased activation in the right hemisphere, in the frontal pole, and in the superior frontal gyrus. This study indicated that the resting-state fMRI in combination with the objective evaluation of olfactory and gustatory function may be useful for the evaluation of patients with long COVID associated with anosmia and hyposmia.
Collapse
Affiliation(s)
- Carla Masala
- Department of Biomedical Sciences, University of Cagliari, SP8 Cittadella Universitaria Monserrato, Monserrato, Cagliari, 09042, Italy.
| | - Michele Porcu
- Department of Radiology, AOU Cagliari, University of Cagliari, SS 554 km 4.500, Cagliari, 09042, Italy
| | - Gianni Orofino
- Department of Neurology, AOU Cagliari, University of Cagliari, SS 554 km 4.500, Cagliari, 09042, Italy
| | - Giovanni Defazio
- Department of Translational Biomedicine and Neuroscience, University of Bari, Bari, 70121, Italy
| | - Ilenia Pinna
- Department of Biomedical Sciences, University of Cagliari, SP8 Cittadella Universitaria Monserrato, Monserrato, Cagliari, 09042, Italy
| | - Paolo Solla
- Neurological Unit, AOU Sassari, University of Sassari, Viale S. Pietro 10, Sassari, 07100, Italy
| | - Tommaso Ercoli
- Neurological Unit, AOU Sassari, University of Sassari, Viale S. Pietro 10, Sassari, 07100, Italy
| | - Jasjit S Suri
- Department of ECE, Idaho State University, Pocatello, ID, 83209, USA
- Department of CE, Graphics Era Deemed to be University, Dehradun, 248002, India
- University Center for Research & Development, Chandigarh University, Mohali, India
- Symbiosis Institute of TechnologySymbiosis International (Deemed University), Nagpur Campus, Pune, India
- Stroke Diagnostic and Monitoring Division, AtheroPoint™, Roseville, CA, 95661, USA
| | - Giacomo Spinato
- Department of Neurosciences, Otolaryngology Unit, University of Padova, Padova, 35100, Italy
| | - Luca Saba
- Department of Radiology, AOU Cagliari, University of Cagliari, SS 554 km 4.500, Cagliari, 09042, Italy
| |
Collapse
|
2
|
Okumura M, Mukai Y, Saika R, Takahashi Y. Association of severe hyposmia and frontal lobe dysfunction in patients with Parkinson's disease. J Neurol Sci 2024; 465:123205. [PMID: 39216171 DOI: 10.1016/j.jns.2024.123205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/05/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUNDS AND OBJECTIVES Severe hyposmia (SH) is a prodromal symptom of dementia associated with Parkinson's disease (PD) caused by Lewy bodies deposited in the limbic regions that connect the frontal and temporal lobes. We aimed to clarify the association between hyposmia and frontal lobe dysfunction (FLD) among patients with PD. METHODS Patients with PD and Hoehn & Yahr stage 1-3 at on-periods without apparent dementia were screened. FLD was defined as a score of ≤14 on the Frontal Assessment Battery (FAB). SH was defined as an average recognition threshold >4 in the T&T Olfactometer. For each subscore, a recognition score of ≥4 was defined as SH. We examined whether SH and its subscores were associated with FLD and evaluated which FAB subscore might be lower in PD patients with SH using Poisson regression analysis with a robust variance estimator. RESULTS We included 189 patients (median age, 68 years; 107 [57 %] male). FLD was observed in 53 (28 %) patients. Multivariable analysis showed that SH (PR 1.789, 95 % confidence intervals (CI) 1.115-2.872, p = 0.016) was associated with FLD. Regarding odor domains, only SH for fruity smells was associated with FLD (PR 1.970, 95 % CI 1.306-2.972, p = 0.001). Patients with SH had a higher subscore only for FAB-1 (similarity [conceptualization], p = 0.030), indicating linguistically mediated executive dysfunction. CONCLUSION In patients with PD, SH is associated with FLD, especially with linguistically mediated executive dysfunction. Particularly, SH for fruity smells may be a sensitive indicator of FLD.
Collapse
Affiliation(s)
- Motohiro Okumura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan.
| | - Yohei Mukai
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Reiko Saika
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8551, Japan
| |
Collapse
|
3
|
Sharma AA, Nenert R, Goodman AM, Szaflarski JP. Brain temperature and free water increases after mild COVID-19 infection. Sci Rep 2024; 14:7450. [PMID: 38548815 PMCID: PMC10978935 DOI: 10.1038/s41598-024-57561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/19/2024] [Indexed: 04/01/2024] Open
Abstract
The pathophysiology underlying the post-acute sequelae of COVID-19 remains understudied and poorly understood, particularly in healthy adults with a history of mild infection. Chronic neuroinflammation may underlie these enduring symptoms, but studying neuroinflammatory phenomena in vivo is challenging, especially without a comparable pre-COVID-19 dataset. In this study, we present a unique dataset of 10 otherwise healthy individuals scanned before and after experiencing mild COVID-19. Two emerging MR-based methods were used to map pre- to post-COVID-19 brain temperature and free water changes. Post-COVID-19 brain temperature and free water increases, which are indirect biomarkers of neuroinflammation, were found in structures functionally associated with olfactory, cognitive, and memory processing. The largest pre- to post-COVID brain temperature increase was observed in the left olfactory tubercle (p = 0.007, 95% CI [0.48, 3.01]), with a mean increase of 1.75 °C. Notably, the olfactory tubercle is also the region of the primary olfactory cortex where participants with chronic olfactory dysfunction showed the most pronounced increases as compared to those without lingering olfactory dysfunction (adjusted pFDR = 0.0189, 95% CI [1.42, 5.27]). These preliminary insights suggest a potential link between neuroinflammation and chronic cognitive and olfactory dysfunction following mild COVID-19, although further investigations are needed to improve our understanding of what underlies these phenomena.
Collapse
Affiliation(s)
- Ayushe A Sharma
- Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham (UAB), 1719 6th Avenue South, CIRC 312, Birmingham, AL, 35294-0021, USA.
- Department of Neurobiology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
| | - Rodolphe Nenert
- Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham (UAB), 1719 6th Avenue South, CIRC 312, Birmingham, AL, 35294-0021, USA
| | - Adam M Goodman
- Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham (UAB), 1719 6th Avenue South, CIRC 312, Birmingham, AL, 35294-0021, USA
| | - Jerzy P Szaflarski
- Department of Neurology, UAB Epilepsy Center, University of Alabama at Birmingham (UAB), 1719 6th Avenue South, CIRC 312, Birmingham, AL, 35294-0021, USA.
- Department of Neurobiology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
- Department of Neurosurgery, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
- University of Alabama at Birmingham Epilepsy Center (UABEC), Birmingham, AL, USA.
| |
Collapse
|
4
|
Tai APL, Leung MK, Lau BWM, Ngai SPC, Lau WKW. Olfactory dysfunction: A plausible source of COVID-19-induced neuropsychiatric symptoms. Front Neurosci 2023; 17:1156914. [PMID: 37021130 PMCID: PMC10067586 DOI: 10.3389/fnins.2023.1156914] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Olfactory dysfunction and neuropsychiatric symptoms are commonly reported by patients of coronavirus disease 2019 (COVID-19), a respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Evidence from recent research suggests linkages between altered or loss of smell and neuropsychiatric symptoms after infection with the coronavirus. Systemic inflammation and ischemic injury are believed to be the major cause of COVID-19-related CNS manifestation. Yet, some evidence suggest a neurotropic property of SARS-CoV-2. This mini-review article summarizes the neural correlates of olfaction and discusses the potential of trans-neuronal transmission of SARS-CoV-2 or its particles within the olfactory connections in the brain. The impact of the dysfunction in the olfactory network on the neuropsychiatric symptoms associated with COVID-19 will also be discussed.
Collapse
Affiliation(s)
- Alan Pui-Lun Tai
- Department of Special Education and Counselling, The Education University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Integrated Centre for Wellbeing, The Education University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Bioanalytical Laboratory for Educational Sciences, The Education University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Mei-Kei Leung
- Department of Counselling and Psychology, Hong Kong Shue Yan University, Hong Kong, Hong Kong SAR, China
| | - Benson Wui-Man Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Shirley Pui-Ching Ngai
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Way Kwok-Wai Lau
- Department of Special Education and Counselling, The Education University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Integrated Centre for Wellbeing, The Education University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Bioanalytical Laboratory for Educational Sciences, The Education University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Farruggia MC, Pellegrino R, Scheinost D. Functional Connectivity of the Chemosenses: A Review. Front Syst Neurosci 2022; 16:865929. [PMID: 35813269 PMCID: PMC9257046 DOI: 10.3389/fnsys.2022.865929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/05/2022] [Indexed: 01/01/2023] Open
Abstract
Functional connectivity approaches have long been used in cognitive neuroscience to establish pathways of communication between and among brain regions. However, the use of these analyses to better understand how the brain processes chemosensory information remains nascent. In this review, we conduct a literature search of all functional connectivity papers of olfaction, gustation, and chemesthesis, with 103 articles discovered in total. These publications largely use approaches of seed-based functional connectivity and psychophysiological interactions, as well as effective connectivity approaches such as Granger Causality, Dynamic Causal Modeling, and Structural Equation Modeling. Regardless of modality, studies largely focus on elucidating neural correlates of stimulus qualities such as identity, pleasantness, and intensity, with task-based paradigms most frequently implemented. We call for further "model free" or data-driven approaches in predictive modeling to craft brain-behavior relationships that are free from a priori hypotheses and not solely based on potentially irreproducible literature. Moreover, we note a relative dearth of resting-state literature, which could be used to better understand chemosensory networks with less influence from motion artifacts induced via gustatory or olfactory paradigms. Finally, we note a lack of genomics data, which could clarify individual and heritable differences in chemosensory perception.
Collapse
Affiliation(s)
- Michael C. Farruggia
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States,*Correspondence: Michael C. Farruggia,
| | | | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States,Child Study Center, Yale School of Medicine, New Haven, CT, United States,Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, CT, United States,Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States,Wu Tsai Institute, Yale University, New Haven, CT, United States
| |
Collapse
|
6
|
Sevoz-Couche C, Laborde S. Heart rate variability and slow-paced breathing:when coherence meets resonance. Neurosci Biobehav Rev 2022; 135:104576. [DOI: 10.1016/j.neubiorev.2022.104576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/08/2023]
|
7
|
Zhou G, Olofsson JK, Koubeissi MZ, Menelaou G, Rosenow J, Schuele SU, Xu P, Voss JL, Lane G, Zelano C. Human hippocampal connectivity is stronger in olfaction than other sensory systems. Prog Neurobiol 2021; 201:102027. [PMID: 33640412 DOI: 10.1016/j.pneurobio.2021.102027] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/20/2021] [Accepted: 02/21/2021] [Indexed: 12/17/2022]
Abstract
During mammalian evolution, primate neocortex expanded, shifting hippocampal functional networks away from primary sensory cortices, towards association cortices. Reflecting this rerouting, human resting hippocampal functional networks preferentially include higher association cortices, while those in rodents retained primary sensory cortices. Research on human visual, auditory and somatosensory systems shows evidence of this rerouting. Olfaction, however, is unique among sensory systems in its relative structural conservation throughout mammalian evolution, and it is unknown whether human primary olfactory cortex was subject to the same rerouting. We combined functional neuroimaging and intracranial electrophysiology to directly compare hippocampal functional networks across human sensory systems. We show that human primary olfactory cortex-including the anterior olfactory nucleus, olfactory tubercle and piriform cortex-has stronger functional connectivity with hippocampal networks at rest, compared to other sensory systems. This suggests that unlike other sensory systems, olfactory-hippocampal connectivity may have been retained in mammalian evolution. We further show that olfactory-hippocampal connectivity oscillates with nasal breathing. Our findings suggest olfaction might provide insight into how memory and cognition depend on hippocampal interactions.
Collapse
Affiliation(s)
- Guangyu Zhou
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Jonas K Olofsson
- Department of Psychology, Stockholm University, Stockholm, Sweden; Emotional Brain Institute, Nathan S. Kline Institute, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | | | | | - Joshua Rosenow
- Department of Neurosurgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Stephan U Schuele
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pengfei Xu
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing, China; Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen, China; Guangdong-Hong Kong-Macao Greater Bay Area Research Institute for Neuroscience and Neurotechnologies, Kwun Tong, Hong Kong, China
| | - Joel L Voss
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gregory Lane
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christina Zelano
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
8
|
Electrical stimulation of the medial orbitofrontal cortex in humans elicits pleasant olfactory perceptions. Epilepsy Behav 2021; 114:107559. [PMID: 33243684 DOI: 10.1016/j.yebeh.2020.107559] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/23/2020] [Accepted: 10/07/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Olfactory hallucinations can be part of epileptic seizures of orbitofrontal origin. Olfactory hallucinations, however, are rare and therefore the semiology, localization and lateralization characteristics are underdetermined. In addition, many discrepancies are found in the literature regarding olfactory processing and orbitofrontal (OF) functions and olfactory function. Particularly, the questions of laterality and affective component in coding of odors in the OF cortex remain controversial. AIMS This study explored whether cortical electrical stimulation of the OF and mesiotemporal brain can trigger olfactory hallucinations with special focus on olfactory percepts in terms of laterality and hedonics. MATERIALS AND METHODS Eight patients with temporal lobe epilepsy participated in the study, at the time of invasive exploration of their epilepsy. The most distal contact of the OF and anterior hippocampus depth electrodes were stimulated (50 Hz, 0.2 ms biphasic pulse; maximal stimulation 4 mA). Patients were instructed to report any kind of sensation they might experience. Intracranial depth electrodes were localized (iElectrodes): subject-specific brain mask, subcortical segmentation and cortical parcellation based on the Destrieux atlas (FreeSurfer) were superposed to the coregistered T1-weighted MRI and CT images (SPM). The center of mass of each electrode-artifact cluster determined the electrode localization. The electrode labeling was done in patient space. To obtain the electrode coordinates in Montreal Neurological Institute (MNI) space, the images obtained previously in the patient space were first segmented and normalized (SPM). Then, the localization procedure (iElectrodes) was run again with these new normalized images in MNI space. RESULTS No hallucination was evoked by stimulation, neither of the right nor the left hippocampus (8/8 patients). Pleasant olfactory hallucinations were evoked by OF stimulation in 5/8 patients in either hemisphere. Patients named the percept as the smell of lemon or coffee for example. Among those 5 patients, electrodes were localized in the cortex of the olfactory sulcus, medial orbital sulcus or medial OF gyrus. Increasing stimulation amplitude changed the olfactory percept identification in 3 out of those 5 patients. No affective judgement or change in perceived odor intensity was reported by the patients. No hallucination was evoked by the stimulation of the white matter of the medial OF brain in 3/8 patients independently of the hemisphere stimulated. CONCLUSIONS This study demonstrated that stimulation of the cortex of the medial OF brain and not of its white matter elicits specific pleasant olfactory hallucinations independently of the hemisphere stimulated, supporting one symmetrical olfactory processing in human.
Collapse
|
9
|
Liu Y, Toet A, Krone T, van Stokkum R, Eijsman S, van Erp JBF. A network model of affective odor perception. PLoS One 2020; 15:e0236468. [PMID: 32730278 PMCID: PMC7392242 DOI: 10.1371/journal.pone.0236468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 07/07/2020] [Indexed: 01/10/2023] Open
Abstract
The affective appraisal of odors is known to depend on their intensity (I), familiarity (F), detection threshold (T), and on the baseline affective state of the observer. However, the exact nature of these relations is still largely unknown. We therefore performed an observer experiment in which participants (N = 52) smelled 40 different odors (varying widely in hedonic valence) and reported the intensity, familiarity and their affective appraisal (valence and arousal: V and A) for each odor. Also, we measured the baseline affective state (valence and arousal: BV and BA) and odor detection threshold of the participants. Analyzing the results for pleasant and unpleasant odors separately, we obtained two models through network analysis. Several relations that have previously been reported in the literature also emerge in both models (the relations between F and I, F and V, I and A; I and V, BV and T). However, there are also relations that do not emerge (between BA and V, BV and I, and T and I) or that appear with a different polarity (the relation between F and A for pleasant odors). Intensity (I) has the largest impact on the affective appraisal of unpleasant odors, while F significantly contributes to the appraisal of pleasant odors. T is only affected by BV and has no effect on other variables. This study is a first step towards an integral study of the affective appraisal of odors through network analysis. Future studies should also include other factors that are known to influence odor appraisal, such as age, gender, personality, and culture.
Collapse
Affiliation(s)
- Yingxuan Liu
- Perceptual and Cognitive Systems, TNO, Soesterberg, The Netherlands
| | - Alexander Toet
- Perceptual and Cognitive Systems, TNO, Soesterberg, The Netherlands
| | - Tanja Krone
- Risk Analysis for Products in Development RAPID, TNO, Zeist, The Netherlands
| | - Robin van Stokkum
- Risk Analysis for Products in Development RAPID, TNO, Zeist, The Netherlands
| | - Sophia Eijsman
- Perceptual and Cognitive Systems, TNO, Soesterberg, The Netherlands
| | - Jan B. F. van Erp
- Perceptual and Cognitive Systems, TNO, Soesterberg, The Netherlands
- Research Group Human Media Interaction, University of Twente, Enschede, The Netherlands
| |
Collapse
|
10
|
Momjian S, Tyrand R, Landis BN, Boëx C. Intraoperative monitoring of olfactory function: a feasibility study. J Neurosurg 2020; 132:1659-1664. [PMID: 31003213 DOI: 10.3171/2019.1.jns182731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/21/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Intraoperative neuromonitoring of the chemical senses (smell and taste) has never been performed. The objective of this study was to determine if olfactory-evoked potentials could be obtained intraoperatively under general anesthesia. METHODS A standard olfactometer was used in the surgical theater with hydrogen sulfide (4 ppm, 200 msec). Olfactory-evoked potentials were recorded in 8 patients who underwent neurosurgery for resection of cerebral lesions. These patients underwent routine target-controlled propofol and sufentanil general anesthesia. Frontal, temporal, and parietal scalp subdermal electrodes were recorded ipsilaterally and contralaterally at the site of the surgery. Evoked potentials were computed if at least 70 epochs (0.5-100 Hz) satisfying the artifact rejection criterion (threshold 45 μV) could be extracted from signals of electrodes. RESULTS Contributive recordings were obtained for 5 of 8 patients (3 patients had fewer than 70 epochs with an amplitude < 45 μV). Olfactory-evoked potentials showed N1 responses (mean 442.8 ± 40.0 msec), most readily observed in the patient who underwent midline anterior fossa neurosurgery. No component of later latencies could be recorded consistently. CONCLUSIONS The study confirms that olfactory-evoked potentials can be measured in response to olfactory stimuli under general anesthesia. This demonstrates the feasibility of recording olfactory function intraoperatively and opens the potential for neuromonitoring of olfactory function during neurosurgery.
Collapse
Affiliation(s)
- Shahan Momjian
- 1Department of Neurosurgery
- 2Faculty of Medicine, University of Geneva, Switzerland
| | - Rémi Tyrand
- 2Faculty of Medicine, University of Geneva, Switzerland
- 3Department of Neurology
| | - Basile N Landis
- 2Faculty of Medicine, University of Geneva, Switzerland
- 4Rhinology-Olfactory Unit, Department of Otorhinolaryngology Head & Neck Surgery, Geneva University Hospitals; and
| | - Colette Boëx
- 2Faculty of Medicine, University of Geneva, Switzerland
- 3Department of Neurology
| |
Collapse
|
11
|
Lee YH, Bak Y, Park CH, Chung SJ, Yoo HS, Baik K, Jung JH, Sohn YH, Shin NY, Lee PH. Patterns of olfactory functional networks in Parkinson's disease dementia and Alzheimer's dementia. Neurobiol Aging 2019; 89:63-70. [PMID: 31980278 DOI: 10.1016/j.neurobiolaging.2019.12.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/24/2019] [Accepted: 12/24/2019] [Indexed: 12/29/2022]
Abstract
Hyposmia is common in Alzheimer's dementia (AD) and Parkinson's disease dementia (PDD). We evaluated the pattern of olfactory functional connectivity (FC) in AD and PDD to uncover neural correlates that are related to olfactory dysfunction. This study enrolled 57 patients with AD and PDD and 25 control subjects. Using a seed-based approach, we compared the resting-state network from the seed-region-of-interest in the olfactory bulb, olfactory tract, piriform cortex, and orbitofrontal cortex (OFC) between groups. The PDD group showed lower FC with striatal-thalamic-frontal regions from the olfactory bulb than the AD group. The PDD group showed lower FC from left OFC with striatal-frontal regions and lower FC from right OFC with left fronto-temporal areas than the AD group. In a correlation analysis, the FC from left OFC with right insula that differed between the PDD and control groups was positively correlated with olfactory function. The present study demonstrated that this distinct olfactory functional network pattern may represent different neural mechanisms for olfactory dysfunction in AD and PDD.
Collapse
Affiliation(s)
- Yang Hyun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yunjin Bak
- Department of Radiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Chang-Hyun Park
- Department of Radiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyoungwon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Ho Jung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Na-Young Shin
- Department of Radiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
12
|
Hakim M, Battle AR, Belmer A, Bartlett SE, Johnson LR, Chehrehasa F. Pavlovian Olfactory Fear Conditioning: Its Neural Circuity and Importance for Understanding Clinical Fear-Based Disorders. Front Mol Neurosci 2019; 12:221. [PMID: 31607858 PMCID: PMC6761252 DOI: 10.3389/fnmol.2019.00221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/03/2019] [Indexed: 11/13/2022] Open
Abstract
Odors have proven to be the most resilient trigger for memories of high emotional saliency. Fear associated olfactory memories pose a detrimental threat of potentially transforming into severe mental illness such as fear and anxiety-related disorders. Many studies have deliberated on auditory, visual and general contextual fear memory (CFC) processes; however, fewer studies have investigated mechanisms of olfactory fear memory. Evidence strongly suggests that the neuroanatomical representation of olfactory fear memory differs from that of auditory and visual fear memory. The aim of this review article is to revisit the literature regarding the understanding of the neurobiological process of fear conditioning and to illustrate the circuitry of olfactory fear memory.
Collapse
Affiliation(s)
- Marziah Hakim
- School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Mater Medical Research Institute and Queensland Health, Queensland University of Technology, The University of Queensland, Woolloongabba, QLD, Australia
| | - Andrew R Battle
- School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Mater Medical Research Institute and Queensland Health, Queensland University of Technology, The University of Queensland, Woolloongabba, QLD, Australia.,The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Arnauld Belmer
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Mater Medical Research Institute and Queensland Health, Queensland University of Technology, The University of Queensland, Woolloongabba, QLD, Australia
| | - Selena E Bartlett
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Mater Medical Research Institute and Queensland Health, Queensland University of Technology, The University of Queensland, Woolloongabba, QLD, Australia.,School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Luke R Johnson
- School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia.,Mater Medical Research Institute and Queensland Health, Queensland University of Technology, The University of Queensland, Woolloongabba, QLD, Australia.,Division of Psychology, School of Medicine, University of Tasmania, Launceston, TAS, Australia.,Center for the Study of Traumatic Stress, School of Medicine, College of Health and Medicine, Uniformed Services University, Bethesda, MD, United States
| | - Fatemeh Chehrehasa
- School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Mater Medical Research Institute and Queensland Health, Queensland University of Technology, The University of Queensland, Woolloongabba, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| |
Collapse
|
13
|
Han P, Zang Y, Akshita J, Hummel T. Magnetic Resonance Imaging of Human Olfactory Dysfunction. Brain Topogr 2019; 32:987-997. [PMID: 31529172 DOI: 10.1007/s10548-019-00729-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022]
Abstract
Olfactory dysfunctions affect a larger portion of population (up to 15% with partial olfactory loss, and 5% with complete olfactory loss) as compared to other sensory dysfunctions (e.g. auditory or visual) and have a negative impact on the life quality. The impairment of olfactory functions may happen at each stage of the olfactory system, from epithelium to cortex. Non-invasive neuroimaging techniques such as the magnetic resonance imaging (MRI) have advanced the understanding of the advent and progress of olfactory dysfunctions in humans. The current review summarizes recent MRI studies on human olfactory dysfunction to present an updated and comprehensive picture of the structural and functional alterations in the central olfactory system as a consequence of olfactory loss and regain. Furthermore, the review also highlights recent progress on optimizing the olfactory functional MRI as well as new approaches for data processing that are promising for future clinical practice.
Collapse
Affiliation(s)
- Pengfei Han
- Faculty of Psychology, Southwest University, Chongqing, China. .,Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing, China. .,Department of Otorhinolaryngology, Interdisciplinary Center Smell and Taste, TU Dresden, Dresden, Germany.
| | - Yunpeng Zang
- Department of Otorhinolaryngology, Interdisciplinary Center Smell and Taste, TU Dresden, Dresden, Germany
| | - Joshi Akshita
- Department of Otorhinolaryngology, Interdisciplinary Center Smell and Taste, TU Dresden, Dresden, Germany
| | - Thomas Hummel
- Department of Otorhinolaryngology, Interdisciplinary Center Smell and Taste, TU Dresden, Dresden, Germany
| |
Collapse
|
14
|
Sattin D, Bruzzone MG, Ferraro S, Nigri A, Leonardi M, Guido D, Coma Research Center, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy. Olfactory discrimination in disorders of consciousness: A new sniff protocol. Brain Behav 2019; 9:e01273. [PMID: 31251479 PMCID: PMC6710199 DOI: 10.1002/brb3.1273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/20/2019] [Accepted: 02/26/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The identification of salient stimuli useful for rehabilitation purposes is important in patients with disorders of consciousness (DOC): among these, olfactory stimuli might play an important role due to the functional coupling between olfactory and emotional processing. However, a high percentage of post brain injury patients present anosmia. AIMS OF THE STUDY The aim of this pilot research is to present an innovative approach to test olfactory functions at the bedside using four selected odors in patients with DOC. METHODS Sixteen patients with DOC were tested with two assessment techniques the new olfactory discrimination protocol (ODP) and a functional magnetic resonance imaging paradigm to evaluate olfactory neural process. The Frequentist and Bayesian methods were used to analyze reliability properties of the new tool. RESULTS Analysis showed a good agreement between assessment techniques and a substantial test-retest reliability of the ODP. Cohen's Ks were equal to 0.814 (95% CI = 0.471, 1) and 0.607 (0.118; 1) respectively, using the Frequentist approach, while they were 0.762 (95% HPD = 0.470; 0.966) and 0.650 (0.320; 0.913) with the Bayesian approach in the 11 patients analyzed. CONCLUSIONS Despite the limits of this preliminary research, the ODP can be useful for clinicians for the preliminary assessment of the olfactory discrimination in patients with DOC.
Collapse
Affiliation(s)
- Davide Sattin
- Neurology, Public Health and Disability Unit, Coma Research CenterFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Maria Grazia Bruzzone
- Neuroradiology DepartmentFondazione IRCCS Istituto Neurologico “Carlo Besta”MilanItaly
| | - Stefania Ferraro
- Neuroradiology DepartmentFondazione IRCCS Istituto Neurologico “Carlo Besta”MilanItaly
| | - Anna Nigri
- Neuroradiology DepartmentFondazione IRCCS Istituto Neurologico “Carlo Besta”MilanItaly
| | - Matilde Leonardi
- Neurology, Public Health and Disability Unit, Coma Research CenterFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Davide Guido
- Neurology, Public Health and Disability Unit, Coma Research CenterFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | | |
Collapse
|
15
|
Zhou G, Lane G, Cooper SL, Kahnt T, Zelano C. Characterizing functional pathways of the human olfactory system. eLife 2019; 8:47177. [PMID: 31339489 PMCID: PMC6656430 DOI: 10.7554/elife.47177] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/09/2019] [Indexed: 11/23/2022] Open
Abstract
The central processing pathways of the human olfactory system are not fully understood. The olfactory bulb projects directly to a number of cortical brain structures, but the distinct networks formed by projections from each of these structures to the rest of the brain have not been well-defined. Here, we used functional magnetic resonance imaging and k-means clustering to parcellate human primary olfactory cortex into clusters based on whole-brain functional connectivity patterns. Resulting clusters accurately corresponded to anterior olfactory nucleus, olfactory tubercle, and frontal and temporal piriform cortices, suggesting dissociable whole-brain networks formed by the subregions of primary olfactory cortex. This result was replicated in an independent data set. We then characterized the unique functional connectivity profiles of each subregion, producing a map of the large-scale processing pathways of the human olfactory system. These results provide insight into the functional and anatomical organization of the human olfactory system.
Collapse
Affiliation(s)
- Guangyu Zhou
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Gregory Lane
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Shiloh L Cooper
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Thorsten Kahnt
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, United States.,Department of Psychology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, United States
| | - Christina Zelano
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| |
Collapse
|
16
|
Neurobiological Effects of Binge Drinking Help in Its Detection and Differential Diagnosis from Alcohol Dependence. DISEASE MARKERS 2018; 2018:5623683. [PMID: 30069273 PMCID: PMC6057287 DOI: 10.1155/2018/5623683] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/12/2018] [Indexed: 02/07/2023]
Abstract
The prevalence of binge drinking in the general population is 3-4 times higher than that of alcohol dependence. Neuroimaging studies show that binge drinking in adolescence impairs brain development and white matter integrity. Regions with reduced functional activity include the limbic system, ventral diencephalon, frontal lobe, and middle and inferior temporal lobes, whereas the right superior frontal and parietal lobes are typically hyperactivated. The observed activation of the frontoparietal areas might reflect the alternative memory system operating, whereas the reduced occipito-hippocampal response is associated with impaired visual and linguistic processing/learning. Some other findings from literature research include a decrease of N-acetylaspartate (NAA) in the frontal lobe and its increase in the parietal lobes, as well as the reduced components of event-related potentials, reflecting deficit in attention, working memory, inhibition, and executive functioning. Animal studies show that even a single day of binge drinking results in a neurodegeneration and reactive gliosis in the limbic cortex as well as in gene expression dysregulation and histone acetylation. Another biological evidence on binge drinking effect include inflammatory response, oxidative stress, formation of toxic ceramides, activation of caspase 3, and secretion of corticoliberin. Some of the binge drinking-induced cognitive abnormalities can be reversible after three weeks of abstinence. Although binge drinkers have a similar pattern of neuropsychological deficits with chronic alcohol consumers (mainly memory deficits), binge drinkers have prominent impairment of inhibitory control, which may be a marker of binge pattern of alcohol drinking. The optimal therapeutic strategies should target the inhibitory control processes to facilitate discontinuation of alcohol consumption and to block its possible progression to the alcohol dependence syndrome.
Collapse
|
17
|
Meyer-Bäse A, Roberts RG, Illan IA, Meyer-Bäse U, Lobbes M, Stadlbauer A, Pinker-Domenig K. Dynamical Graph Theory Networks Methods for the Analysis of Sparse Functional Connectivity Networks and for Determining Pinning Observability in Brain Networks. Front Comput Neurosci 2017; 11:87. [PMID: 29051730 PMCID: PMC5633615 DOI: 10.3389/fncom.2017.00087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 09/11/2017] [Indexed: 11/13/2022] Open
Abstract
Neuroimaging in combination with graph theory has been successful in analyzing the functional connectome. However almost all analysis are performed based on static graph theory. The derived quantitative graph measures can only describe a snap shot of the disease over time. Neurodegenerative disease evolution is poorly understood and treatment strategies are consequently only of limited efficiency. Fusing modern dynamic graph network theory techniques and modeling strategies at different time scales with pinning observability of complex brain networks will lay the foundation for a transformational paradigm in neurodegnerative diseases research regarding disease evolution at the patient level, treatment response evaluation and revealing some central mechanism in a network that drives alterations in these diseases. We model and analyze brain networks as two-time scale sparse dynamic graph networks with hubs (clusters) representing the fast sub-system and the interconnections between hubs the slow sub-system. Alterations in brain function as seen in dementia can be dynamically modeled by determining the clusters in which disturbance inputs have entered and the impact they have on the large-scale dementia dynamic system. Observing a small fraction of specific nodes in dementia networks such that the others can be recovered is accomplished by the novel concept of pinning observability. In addition, how to control this complex network seems to be crucial in understanding the progressive abnormal neural circuits in many neurodegenerative diseases. Detecting the controlling regions in the networks, which serve as key nodes to control the aberrant dynamics of the networks to a desired state and thus influence the progressive abnormal behavior, will have a huge impact in understanding and developing therapeutic solutions and also will provide useful information about the trajectory of the disease. In this paper, we present the theoretical framework and derive the necessary conditions for (1) area aggregation and time-scale modeling in brain networks and for (2) pinning observability of nodes in dynamic graph networks. Simulation examples are given to illustrate the theoretical concepts.
Collapse
Affiliation(s)
- Anke Meyer-Bäse
- Department of Scientific Computing, Florida State University, Tallahassee, FL, United States.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Rodney G Roberts
- Department of Electrical and Computer Engineering, Florida State University, Tallahassee, FL, United States
| | - Ignacio A Illan
- Department of Scientific Computing, Florida State University, Tallahassee, FL, United States.,Department of Signal Theory and Communications, University of Granada, Granada, Spain
| | - Uwe Meyer-Bäse
- Department of Electrical and Computer Engineering, Florida State University, Tallahassee, FL, United States
| | - Marc Lobbes
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Andreas Stadlbauer
- Department of Neurosurgery, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Katja Pinker-Domenig
- Department of Scientific Computing, Florida State University, Tallahassee, FL, United States.,Memorial Sloan-Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
18
|
Sadrian B, Wilson DA. Optogenetic Stimulation of Lateral Amygdala Input to Posterior Piriform Cortex Modulates Single-Unit and Ensemble Odor Processing. Front Neural Circuits 2015; 9:81. [PMID: 26733819 PMCID: PMC4685079 DOI: 10.3389/fncir.2015.00081] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/30/2015] [Indexed: 11/13/2022] Open
Abstract
Olfactory information is synthesized within the olfactory cortex to provide not only an odor percept, but also a contextual significance that supports appropriate behavioral response to specific odor cues. The piriform cortex serves as a communication hub within this circuit by sharing reciprocal connectivity with higher processing regions, such as the lateral entorhinal cortex and amygdala. The functional significance of these descending inputs on piriform cortical processing of odorants is currently not well understood. We have employed optogenetic methods to selectively stimulate lateral and basolateral amygdala (BLA) afferent fibers innervating the posterior piriform cortex (pPCX) to quantify BLA modulation of pPCX odor-evoked activity. Single unit odor-evoked activity of anesthetized BLA-infected animals was significantly modulated compared with control animal recordings, with individual cells displaying either enhancement or suppression of odor-driven spiking. In addition, BLA activation induced a decorrelation of odor-evoked pPCX ensemble activity relative to odor alone. Together these results indicate a modulatory role in pPCX odor processing for the BLA complex. This interaction could contribute to learned changes in PCX activity following associative conditioning, as well as support alternate patterns of odor processing that are state-dependent.
Collapse
Affiliation(s)
- Benjamin Sadrian
- Department of Child and Adolescent Psychiatry, NYU School of Medicine, NYU Langone Medical Center, New YorkNY, USA; The Emotional Brain Institute, The Nathan S. Kline Institute for Psychiatric Research, OrangeburgNY, USA
| | - Donald A Wilson
- Department of Child and Adolescent Psychiatry, NYU School of Medicine, NYU Langone Medical Center, New YorkNY, USA; The Emotional Brain Institute, The Nathan S. Kline Institute for Psychiatric Research, OrangeburgNY, USA
| |
Collapse
|
19
|
Human amygdala activations during nasal chemoreception. Neuropsychologia 2015; 78:171-94. [PMID: 26459095 DOI: 10.1016/j.neuropsychologia.2015.10.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 08/25/2015] [Accepted: 10/06/2015] [Indexed: 02/07/2023]
Abstract
This review serves as a comprehensive discussion of chemosensory stimulation of the amygdala in healthy humans. Following an introduction of the neuroanatomy of chemosensory processing in primary and secondary olfactory structures, functional resonance magnetic imaging and positron imaging tomography studies are systematically categorized based on valence of stimuli, stimulus concentration, and paradigm-dependent amygdala activation. The amygdala shows patterns of lateralization due to stimulus valence. Main findings include pleasant odors being associated with bilateral or left amygdala activation, and unpleasant odors being associated with activation of the right amygdala, suggesting a crucial role of the right amygdala in evolutionary preservation. Potentially threatening social stimuli, however, might be processed apart from the olfactory system and tend to activate the left amygdala. Amygdala response to chemosensory stimuli correlated with simultaneous activation in the orbitofrontal cortex (OFC), piriform cortex (PC), and insula, suggesting a close-knit network of these areas during stimulus processing.
Collapse
|
20
|
Involvement of Subcortical Brain Structures During Olfactory Stimulation in Multiple Chemical Sensitivity. Brain Topogr 2015; 29:243-52. [DOI: 10.1007/s10548-015-0453-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/26/2015] [Indexed: 10/23/2022]
|
21
|
Abstract
It is commonly agreed upon a strong link between emotion and olfaction. Odor-evoked memories are experienced as more emotional compared with verbal, visual, and tactile stimuli. Moreover, the emotional quality of odor cues increases memory performance, but contrary to this, odors are poor retrieval cues for verbal labels. To examine the relation between the emotional quality of an odor and its likelihood of identification, this study evaluates how normative emotion ratings based on the 3-dimensional affective space model (that includes valence, arousal, and dominance), using the Self-Assessment Manikin by Bradley and Lang (Bradley MM, Lang PJ. 1994. Measuring emotion: the Self-Assessment Manikin and the Semantic Differential. J Behav Ther Exp Psychiatry. 25(1):49-59.) and the Positive and Negative Affect Schedule (Watson D, Clark LA, Tellegen A. 1988. Development and validation of brief measures of positive and negative affect: the PANAS scales. J Pers Soc Psychol. 54(6):1063-1070.) predict the identification of odors in a multiple choice condition. The best fitting logistic regression model includes squared valence and dominance and thus, points to a significant role of specific emotional features of odors as a main clue for odor identification.
Collapse
Affiliation(s)
- Anne-Kathrin Bestgen
- Department of Psychology, Ruhr-University, Universitätsstraße 150, GAFO 04/423, 44801 Bochum, Germany and
| | - Patrick Schulze
- Department of Psychology, Ruhr-University, Universitätsstraße 150, GAFO 04/423, 44801 Bochum, Germany and Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, 44789 Bochum, Germany
| | - Lars Kuchinke
- Department of Psychology, Ruhr-University, Universitätsstraße 150, GAFO 04/423, 44801 Bochum, Germany and
| |
Collapse
|
22
|
Vaughan DN, Jackson GD. The piriform cortex and human focal epilepsy. Front Neurol 2014; 5:259. [PMID: 25538678 PMCID: PMC4259123 DOI: 10.3389/fneur.2014.00259] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 11/22/2014] [Indexed: 11/28/2022] Open
Abstract
It is surprising that the piriform cortex, when compared to the hippocampus, has been given relatively little significance in human epilepsy. Like the hippocampus, it has a phylogenetically preserved three-layered cortex that is vulnerable to excitotoxic injury, has broad connections to both limbic and cortical areas, and is highly epileptogenic – being critical to the kindling process. The well-known phenomenon of early olfactory auras in temporal lobe epilepsy highlights its clinical relevance in human beings. Perhaps because it is anatomically indistinct and difficult to approach surgically, as it clasps the middle cerebral artery, it has, until now, been understandably neglected. In this review, we emphasize how its unique anatomical and functional properties, as primary olfactory cortex, predispose it to involvement in focal epilepsy. From recent convergent findings in human neuroimaging, clinical epileptology, and experimental animal models, we make the case that the piriform cortex is likely to play a facilitating and amplifying role in human focal epileptogenesis, and may influence progression to epileptic intractability.
Collapse
Affiliation(s)
- David N Vaughan
- Florey Institute of Neuroscience and Mental Health , Heidelberg, VIC , Australia ; Department of Neurology, Austin Health , Heidelberg, VIC , Australia
| | - Graeme D Jackson
- Florey Institute of Neuroscience and Mental Health , Heidelberg, VIC , Australia ; Department of Neurology, Austin Health , Heidelberg, VIC , Australia ; Department of Medicine, University of Melbourne , Melbourne, VIC , Australia
| |
Collapse
|
23
|
|
24
|
Meunier D, Fonlupt P, Saive AL, Plailly J, Ravel N, Royet JP. Modular structure of functional networks in olfactory memory. Neuroimage 2014; 95:264-75. [DOI: 10.1016/j.neuroimage.2014.03.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 02/25/2014] [Accepted: 03/15/2014] [Indexed: 01/01/2023] Open
|
25
|
Connectivity of amygdala, piriform and orbitofrontal. Neuroreport 2014. [DOI: 10.1097/01.wnr.0000446591.83382.e1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Minati L, Sigala N. Effective connectivity reveals strategy differences in an expert calculator. PLoS One 2013; 8:e73746. [PMID: 24086291 PMCID: PMC3781167 DOI: 10.1371/journal.pone.0073746] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/24/2013] [Indexed: 11/22/2022] Open
Abstract
Mathematical reasoning is a core component of cognition and the study of experts defines the upper limits of human cognitive abilities, which is why we are fascinated by peak performers, such as chess masters and mental calculators. Here, we investigated the neural bases of calendrical skills, i.e. the ability to rapidly identify the weekday of a particular date, in a gifted mental calculator who does not fall in the autistic spectrum, using functional MRI. Graph-based mapping of effective connectivity, but not univariate analysis, revealed distinct anatomical location of "cortical hubs" supporting the processing of well-practiced close dates and less-practiced remote dates: the former engaged predominantly occipital and medial temporal areas, whereas the latter were associated mainly with prefrontal, orbitofrontal and anterior cingulate connectivity. These results point to the effect of extensive practice on the development of expertise and long term working memory, and demonstrate the role of frontal networks in supporting performance on less practiced calculations, which incur additional processing demands. Through the example of calendrical skills, our results demonstrate that the ability to perform complex calculations is initially supported by extensive attentional and strategic resources, which, as expertise develops, are gradually replaced by access to long term working memory for familiar material.
Collapse
Affiliation(s)
- Ludovico Minati
- Brighton and Sussex Medical School, University of Sussex, East Sussex, United Kingdom
- Scientific Department, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milano, Italy
| | - Natasha Sigala
- Brighton and Sussex Medical School, University of Sussex, East Sussex, United Kingdom
- Sackler Centre for Consciousness Science, University of Sussex, East Sussex, United Kingdom
| |
Collapse
|
27
|
|