1
|
Sil BK, Jamiruddin MR, Paul PK, Aekwattanaphol N, Nakpheng T, Haq MA, Buatong W, Srichana T. Ascorbic acid as serine protease inhibitor in lung cancer cell line and human serum albumin. PLoS One 2024; 19:e0303706. [PMID: 39042609 PMCID: PMC11265676 DOI: 10.1371/journal.pone.0303706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/30/2024] [Indexed: 07/25/2024] Open
Abstract
Serine proteases (SPs) are distributed among all living cells accounting for almost one-third of all proteases. Dysregulation of SPs during inflammation and/or infection can result in devastating consequences, such as skin and lung inflammation, neuroinflammation, arthritis, as well as metastasis of cancerous cells. Such activities are tightly regulated by various inhibitors known as serine protease inhibitors (SERPIN). The thermodynamic investigations previously revealed that L-ascorbic acid binds to trypsin more firmly than pepsin and the binding force of L-ascorbic acid is driven by hydrogen bonds and van der Waals forces. However, the physiochemical effects of such interaction on trypsin and/or pepsin have not yet been reported. Ascorbic acid, also known as vitamin C, is one of the essential nutrients and most common food supplements, fortificants, and preservatives. The aim of this study was to explore the inhibitory effects of ascorbic acid on serine proteases at various concentrations on the in-vitro digestion and/or hydrolysis of intercellular matrix of cell monolayer and human serum albumin (HSA). The inhibitory effects of ascorbic on trypsin are investigated by qualitative and quantitative analysis using SDS-PAGE imaging and NIH densitometric software. Upon the addition of ascorbic acid in both indicator systems, the detachment and/or dissociation of cell monolayer and the digestion of HSA were inhibited in the presence of EDTA-Trypsin. The inhibitory effect of ascorbic acid on the digestion of intercellular matrix and/or hydrolysis of HSA showed a dose-dependent trend until it reached the maximum extent of inhibition. At an equal concentration (2.5mg/mL) ascorbic acid and EDTA-Trypsin exhibited the most potent inhibitory effect on the in vitro digestion of protein either in the form of intercellular matrix in cell monolayer and/or HSA respectively. Overall, our results based on two indicator systems strongly indicate that ascorbic acid may function as a serine protease inhibitor (SERPIN) beyond other important functions.
Collapse
Affiliation(s)
- Bijon Kumar Sil
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | | | - Pijush Kumar Paul
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Nattanit Aekwattanaphol
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Titpawan Nakpheng
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Md. Ahsanul Haq
- Immunobiology, Nutrition and Toxicology Lab, Nutrition Research Division, icddr,b, Dhaka, Bangladesh
| | - Wilaiporn Buatong
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
2
|
Japanese cedar and cypress pollinosis updated: New allergens, cross-reactivity, and treatment. Allergol Int 2021; 70:281-290. [PMID: 33962864 DOI: 10.1016/j.alit.2021.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 12/19/2022] Open
Abstract
Pollen from many tree species in the Cupressaceae family is a well-known cause of seasonal allergic diseases worldwide. Japanese cedar pollinosis and Japanese cypress pollinosis, which are caused by pollen from Japanese cedar (Cryptomeria japonica) and Japanese cypress (Chamaecyparis obtusa), respectively, are the most prevalent seasonal allergic diseases in Japan. Recently, the novel major Japanese cypress allergen Cha o 3 and the homologous Japanese cedar allergen Cry j cellulase were identified, and it was shown, for the first time, that cellulase in plants is allergenic. Although the allergenic components of pollen from both species exhibit high amino acid sequence identity, their pollinosis responded differently to allergen-specific immunotherapy (ASIT) using a standardized extract of Japanese cedar pollen. Pharmacotherapy and ASIT for Japanese cedar and cypress pollinosis have advanced considerably in recent years. In particular, Japanese cedar ASIT has entered a new phase, primarily in response to the generation of updated efficacy data and the development of new formulations. In this review, we focus on both Japanese cypress and cedar pollinosis, and discuss the latest findings, newly identified causative allergens, and new treatments. To manage pollinosis symptoms during spring effectively, ASIT for both Japanese cedar and Japanese cypress pollen is considered necessary.
Collapse
|
4
|
Patel S. A critical review on serine protease: Key immune manipulator and pathology mediator. Allergol Immunopathol (Madr) 2017; 45:579-591. [PMID: 28236540 PMCID: PMC7126602 DOI: 10.1016/j.aller.2016.10.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/31/2016] [Indexed: 11/29/2022]
Abstract
Proteolytic activity is fundamental to survival, so it is not surprising that all living organisms have proteases, especially seine protease. This enzyme in its numerous isoforms and homologues, constitutes the quintessential offence and defence factors, in the form of surface proteins, secreted molecules, gut digestive enzymes, venom in specialised glands or plant latex, among other manifestations. Occurring as trypsin, chymotrypsin, elastase, collagenase, thrombin, subtilisin etc., it mediates a diverse array of functions, including pathological roles as inflammatory, coagulatory to haemorrhagic. This review emphasizes that despite the superficial differences in mechanisms, most health issues, be they infectious, allergic, metabolic, or neural have a common conduit. This enzyme, in its various glycosylated forms leads to signal misinterpretations, wreaking havoc. However, organisms are endowed with serine protease inhibitors which might restrain this ubiquitous yet deleterious enzyme. Hence, serine proteases-driven pathogenesis and antagonising role of inhibitors is the focal point of this critical review.
Collapse
|
7
|
Oseroff C, Pham J, Frazier A, Hinz D, Sidney J, Paul S, Greenbaum JA, Vita R, Peters B, Schulten V, Sette A. Immunodominance in allergic T-cell reactivity to Japanese cedar in different geographic cohorts. Ann Allergy Asthma Immunol 2016; 117:680-689.e1. [PMID: 27979027 PMCID: PMC5172395 DOI: 10.1016/j.anai.2016.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/13/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND Japanese cedar (JC) pollen is a common trigger for allergic rhinitis in Japan. Pollen proteins targeted by IgE, including Cry j 1 and Cry j 2, and isoflavone reductase (IFR) have been identified. OBJECTIVE To compare antigen-specific IgE titers and T-cell responses to JC pollen-derived extract and peptides in cohorts with high and low pollen exposure. METHODS Peripheral blood mononuclear cells from JC pollen allergic or nonallergic patients who have lived in Japan for at least 1 year and JC pollen allergic patients who have never been to Japan were tested for T-cell responses against JC pollen extract and peptide pools derived from Cry j 1, Cry j 2, or IFR. T-cell reactivity was assessed by interleukin 5 and interferon γ production by ELISPOT. RESULTS JC pollen-specific T-cell reactivity and IgE titers were significantly higher in the allergic compared with the nonallergic Japanese cohort, which was also associated with different patterns of polysensitization. Interestingly, a significant overlap was observed in the hierarchy of the T-cell epitopes in the allergic Japanese cohort compared with the allergic non-Japanese cohort. In all 3 cohorts, T-cell reactivity was dominantly directed against peptides from the major allergens Cry j 1 and 2, with few T-cell responses detected against IFR. CONCLUSION Our studies identify common denominators of T-cell reactivity in patient populations with different sensitization patterns, suggesting that generally applicable immunotherapeutic approaches might be developed irrespective of exposure modality.
Collapse
MESH Headings
- Adolescent
- Adult
- Alleles
- Allergens/immunology
- Amino Acid Sequence
- Antigens, Plant/immunology
- Cohort Studies
- Cryptomeria/adverse effects
- Epitopes, T-Lymphocyte/immunology
- Female
- HLA Antigens/genetics
- HLA Antigens/immunology
- Humans
- Immunoglobulin E/immunology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lymphocyte Activation/immunology
- Male
- Middle Aged
- Peptides/immunology
- Pollen/immunology
- Rhinitis, Allergic, Seasonal/genetics
- Rhinitis, Allergic, Seasonal/immunology
- Rhinitis, Allergic, Seasonal/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Young Adult
Collapse
Affiliation(s)
- Carla Oseroff
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - John Pham
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - April Frazier
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Denise Hinz
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Sinu Paul
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| | | | - Randi Vita
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| | | | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| |
Collapse
|
8
|
Nakano Y, Kidani Y, Goto K, Furue S, Tomita Y, Inagaki N, Tanaka H, Shichijo M. Role of Prostaglandin D2 and DP1 Receptor on Japanese Cedar Pollen-Induced Allergic Rhinitis in Mice. J Pharmacol Exp Ther 2016; 357:258-63. [PMID: 26945086 DOI: 10.1124/jpet.115.229799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/16/2015] [Indexed: 01/13/2023] Open
Abstract
Although we previously demonstrated the contribution of the DP1receptor in nasal obstruction using animals sensitized with ovalbumin in the presence of adjuvant, the contribution of the DP1receptor in sneezing is unclear. Here, we developed a mouse model of Japanese cedar (JC:Cryptomeria japonica) pollinosis to evaluate the symptoms of sneezing. To achieve this, we used JC pollen crude extract in the absence of adjuvant to sensitize mice to develop a model closer to the pathophysiology of human JC pollinosis. The immunologic and pharmacologic features of this model are highly similar to those observed in JC pollinosis in humans. Using this model, we found that DP1receptor antagonists suppressed JC pollen extract-induced sneezing and that a DP1receptor agonist induced sneezing. Moreover, JC pollen extract-induced sneezing was diminished in DP1receptor knockout mice. In conclusion, we developed a novel mouse model of allergic rhinitis that closely mimics human JC pollinosis. A strong contribution of DP1receptor signaling to sneezing was demonstrated using this model, suggesting that DP1receptor antagonists could suppress sneezing and nasal obstruction, and therefore these agents could be a new therapeutic option for allergic rhinitis.
Collapse
Affiliation(s)
- Yoshiyuki Nakano
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu (Y.N., N.I., H.T.), Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Toyonaka (Y.N., Y.K., K.G., S.F., Y.T., M.S.), and Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu (N.I., H.T.), Japan
| | - Yujiro Kidani
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu (Y.N., N.I., H.T.), Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Toyonaka (Y.N., Y.K., K.G., S.F., Y.T., M.S.), and Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu (N.I., H.T.), Japan
| | - Kumiko Goto
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu (Y.N., N.I., H.T.), Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Toyonaka (Y.N., Y.K., K.G., S.F., Y.T., M.S.), and Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu (N.I., H.T.), Japan
| | - Shingo Furue
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu (Y.N., N.I., H.T.), Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Toyonaka (Y.N., Y.K., K.G., S.F., Y.T., M.S.), and Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu (N.I., H.T.), Japan
| | - Yasuhiko Tomita
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu (Y.N., N.I., H.T.), Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Toyonaka (Y.N., Y.K., K.G., S.F., Y.T., M.S.), and Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu (N.I., H.T.), Japan
| | - Naoki Inagaki
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu (Y.N., N.I., H.T.), Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Toyonaka (Y.N., Y.K., K.G., S.F., Y.T., M.S.), and Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu (N.I., H.T.), Japan
| | - Hiroyuki Tanaka
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu (Y.N., N.I., H.T.), Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Toyonaka (Y.N., Y.K., K.G., S.F., Y.T., M.S.), and Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu (N.I., H.T.), Japan
| | - Michitaka Shichijo
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu (Y.N., N.I., H.T.), Discovery Research Laboratory for Innovative Frontier Medicines, Shionogi & Co., Ltd., Toyonaka (Y.N., Y.K., K.G., S.F., Y.T., M.S.), and Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu (N.I., H.T.), Japan
| |
Collapse
|
9
|
Fujimura T, Kawamoto S. Spectrum of allergens for Japanese cedar pollinosis and impact of component-resolved diagnosis on allergen-specific immunotherapy. Allergol Int 2015; 64:312-20. [PMID: 26433527 DOI: 10.1016/j.alit.2015.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 05/25/2015] [Accepted: 05/29/2015] [Indexed: 12/26/2022] Open
Abstract
The high prevalence of Japanese cedar pollinosis in Japan is associated with a negative impact on the quality of life of patients, as well as significant loss of productivity among the workforce in early spring, thus representing a serious social problem. Furthermore, the prevalence is increasing, and has risen by more than 10% in this decade. Cry j 1 and Cry j 2 were identified as the major allergens in Japanese cedar pollen (JCP), and in 2004, the existence of other major and minor allergens were revealed by a combination of two-dimensional electrophoresis and immunoblotting analysis. Allergenome analysis identified a chitinase, a lipid transfer protein, a serine protease, and an aspartic protease as novel IgE-reactive allergens in patients with JCP allergy. Thaumatin-like protein (Cry j 3) was shown to be homologous to Jun a 3, a major allergen from mountain cedar pollen. Isoflavone reductase-like protein was also characterized in a study of a JCP cDNA library. The characterization of component allergens is required to clarify the sensitizer or cross-reactive elicitor allergens for component-resolved diagnosis (CRD). Increasing evidence from numerous clinical trials indicates that CRD can be used to design effective allergen-specific immunotherapy. In this review, we summarize the eight characterized JCP allergens and discuss the impact of CRD and characterization of novel allergens on allergen-specific immunotherapy.
Collapse
MESH Headings
- Allergens/immunology
- Antigens, Plant/immunology
- Cross Reactions/immunology
- Cryptomeria/adverse effects
- Desensitization, Immunologic
- Humans
- Immunization
- Immunoglobulin E/immunology
- Japan
- Pollen/immunology
- Precision Medicine
- Prevalence
- Rhinitis, Allergic, Seasonal/diagnosis
- Rhinitis, Allergic, Seasonal/epidemiology
- Rhinitis, Allergic, Seasonal/immunology
- Rhinitis, Allergic, Seasonal/therapy
Collapse
Affiliation(s)
- Takashi Fujimura
- RIKEN-TORII Joint Research Team, RIKEN Center for Integrative Medical Sciences, RIKEN (The Institute of Physical and Chemical Research), Kanagawa, Japan.
| | - Seiji Kawamoto
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan.
| |
Collapse
|