1
|
Du N, Xie Y, Geng D, Li J, Xu H, Wang Y, Gou J, Tan X, Xu X, Shi L, Chen Y, Chen F, Zhou Z, Liu G, Kuang L. Restoration of mitochondrial energy metabolism by electroconvulsive therapy in adolescent and juvenile mice. Front Psychiatry 2025; 16:1555144. [PMID: 40276069 PMCID: PMC12018324 DOI: 10.3389/fpsyt.2025.1555144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/19/2025] [Indexed: 04/26/2025] Open
Abstract
Background Adolescent depression is an increasingly serious public health issue, and traditional treatment methods often have side effects or limited efficacy. Electroconvulsive therapy (ECT), a widely used treatment for severe depression, has recently gained attention for its potential in treating adolescent depression. Previous studies suggest that mitochondrial dysfunction is closely related to the onset of depression. Therefore, investigating the mechanism by which ECT alleviates depressive symptoms through the improvement of mitochondrial energy metabolism is of great significance. Methods This study employed the chronic unpredictable mild stress (CUMS) mouse model to assess the effects of ECT on depression-like behaviors through the sucrose preference test, open field test, and tail suspension test. Additionally, mitochondrial energy metabolism markers, including ATP levels, oxygen consumption rate (OCR), lactate, and pyruvate, were measured in both mouse and human plasma to evaluate the effects of ECT on mitochondrial function. Results The results showed that ECT significantly improved depression-like and anxiety-like behaviors in mice, as evidenced by the reversal of abnormal behaviors in the sucrose preference test, open field test, and tail suspension test. Analysis of plasma mitochondrial energy metabolism markers revealed that ECT significantly increased ATP levels, restored OCR, reduced lactate accumulation, and increased pyruvate levels. These findings suggest that ECT alleviates depressive symptoms by restoring mitochondrial energy metabolism and improving brain energy supply. Conclusion This study systematically explored the potential mechanism by which ECT alleviates adolescent depression through the improvement of mitochondrial energy metabolism. The results indicate that ECT not only effectively alleviates depressive symptoms but also provides new insights and experimental evidence for the treatment of adolescent depression through mitochondrial function restoration. Future research could further investigate how to combine drug treatments to enhance mitochondrial function, improve ECT efficacy, and evaluate the effects of ECT in different depression subtypes, providing guidance for personalized clinical treatment.
Collapse
Affiliation(s)
- Ning Du
- Center for Mental Health, University-Town Hospital of Chongqing Medical University, Chongqing, China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Xie
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
- Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Dandan Geng
- Psychiatric Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Psychiatry, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jingran Li
- Center for Mental Health, University-Town Hospital of Chongqing Medical University, Chongqing, China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Heyan Xu
- Psychiatric Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Psychiatry, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuna Wang
- Psychiatric Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Psychiatry, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jijia Gou
- Center for Mental Health, University-Town Hospital of Chongqing Medical University, Chongqing, China
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Xiwen Tan
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
- Department of Psychiatry, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoming Xu
- Psychiatric Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Psychiatry, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Shi
- Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yujia Chen
- Psychiatric Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Psychiatry, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fengming Chen
- Sleep Medicine Center, Shiyan Hospital of Traditional Chinese Medicine, Shiyan, Hubei, China
| | - Zixuan Zhou
- Department of Psychiatry, The First Clinical College of Chongqing Medical University, Chongqing, China
| | - Gang Liu
- Department of Emergency and Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Li Kuang
- Psychiatric Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Psychiatry, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
De Jager JE, Boesjes R, Roelandt GHJ, Koliaki I, Sommer IEC, Schoevers RA, Nuninga JO. Shared effects of electroconvulsive shocks and ketamine on neuroplasticity: A systematic review of animal models of depression. Neurosci Biobehav Rev 2024; 164:105796. [PMID: 38981574 DOI: 10.1016/j.neubiorev.2024.105796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Electroconvulsive shocks (ECS) and ketamine are antidepressant treatments with a relatively fast onset of therapeutic effects compared to conventional medication and psychotherapy. While the exact neurobiological mechanisms underlying the antidepressant response of ECS and ketamine are unknown, both interventions are associated with neuroplasticity. Restoration of neuroplasticity may be a shared mechanism underlying the antidepressant efficacy of these interventions. In this systematic review, literature of animal models of depression is summarized to examine the possible role of neuroplasticity in ECS and ketamine on a molecular, neuronal, synaptic and functional level, and specifically to what extent these mechanisms are shared between both interventions. The results highlight that hippocampal neurogenesis and brain-derived neurotrophic factor (BDNF) levels are consistently increased after ECS and ketamine. Moreover, both interventions positively affect glutamatergic neurotransmission, astrocyte and neuronal morphology, synaptic density, vasculature and functional plasticity. However, a small number of studies investigated these processes after ECS. Understanding the shared fundamental mechanisms of fast-acting antidepressants can contribute to the development of novel therapeutic approaches for patients with severe depression.
Collapse
Affiliation(s)
- Jesca E De Jager
- Department of Biomedical Sciences, Brain Center, University Medical Center, Groningen, the Netherlands.
| | - Rutger Boesjes
- University Centre of Psychiatry, University Medical Center Groningen, the Netherlands
| | - Gijs H J Roelandt
- University Centre of Psychiatry, University Medical Center Groningen, the Netherlands
| | - Ilektra Koliaki
- University Centre of Psychiatry, University Medical Center Groningen, the Netherlands
| | - Iris E C Sommer
- Department of Biomedical Sciences, Brain Center, University Medical Center, Groningen, the Netherlands
| | - Robert A Schoevers
- University Centre of Psychiatry, University Medical Center Groningen, the Netherlands
| | - Jasper O Nuninga
- Department of Biomedical Sciences, Brain Center, University Medical Center, Groningen, the Netherlands; University Medical Centre Utrecht, Department of Psychiatry, the Netherlands
| |
Collapse
|
3
|
Denier N, Grieder M, Jann K, Breit S, Mertse N, Walther S, Soravia LM, Meyer A, Federspiel A, Wiest R, Bracht T. Analyzing fractal dimension in electroconvulsive therapy: Unraveling complexity in structural and functional neuroimaging. Neuroimage 2024; 297:120671. [PMID: 38901774 DOI: 10.1016/j.neuroimage.2024.120671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Numerous studies show that electroconvulsive therapy (ECT) induces hippocampal neuroplasticity, but findings are inconsistent regarding its clinical relevance. This study aims to investigate ECT-induced plasticity of anterior and posterior hippocampi using mathematical complexity measures in neuroimaging, namely Higuchi's fractal dimension (HFD) for fMRI time series and the fractal dimension of cortical morphology (FD-CM). Furthermore, we explore the potential of these complexity measures to predict ECT treatment response. METHODS Twenty patients with a current depressive episode (16 with major depressive disorder and 4 with bipolar disorder) underwent MRI-scans before and after an ECT-series. Twenty healthy controls matched for age and sex were also scanned twice for comparison purposes. Resting-state fMRI data were processed, and HFD was computed for anterior and posterior hippocampi. Group-by-time effects for HFD in anterior and posterior hippocampi were calculated and correlations between HFD changes and improvement in depression severity were examined. For FD-CM analyses, we preprocessed structural MRI with CAT12's surface-based methods. We explored group-by-time effects for FD-CM and the predictive value of baseline HFD and FD-CM for treatment outcome. RESULTS Patients exhibited a significant increase in bilateral hippocampal HFD from baseline to follow-up scans. Right anterior hippocampal HFD increase was associated with reductions in depression severity. We found no group differences and group-by-time effects in FD-CM. After applying a whole-brain regression analysis, we found that baseline FD-CM in the left temporal pole predicted reduction of overall depression severity after ECT. Baseline hippocampal HFD did not predict treatment outcome. CONCLUSION This study suggests that HFD and FD-CM are promising imaging markers to investigate ECT-induced neuroplasticity associated with treatment response.
Collapse
Affiliation(s)
- Niklaus Denier
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland.
| | - Matthias Grieder
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Kay Jann
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Sigrid Breit
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Nicolas Mertse
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Leila M Soravia
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Agnes Meyer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Andrea Federspiel
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland; Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland; Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Tobias Bracht
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| |
Collapse
|
4
|
Ünal GÖ, Erkılınç G, Öztürk KH, Doguç DK, Özmen Ö. The beneficial effects of vortioxetine on BDNF, CREB, S100B, β amyloid, and glutamate NR2b receptors in chronic unpredictable mild stress model of depression. Psychopharmacology (Berl) 2023; 240:2499-2513. [PMID: 37555927 DOI: 10.1007/s00213-023-06445-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Depression, one of the most significant mental disorders, is still poorly understood in terms of its pathogenetic mechanisms despite its well-recognized association with stress. OBJECTIVES The current study's goal was to ascertain how the novel antidepressant drug vortioxetine (VOR) affected the BDNF (brain-derived neurotrophic factor), S100, amyloid β (Aβ), CREB (cAMP response element-binding protein), and NR2B, as well as its impact on depression-like behaviors, and tissue damage in an experimental rodent model of depression caused by chronic unpredictable stress. METHODS We employed twenty-eight Wistar albino male rats, and we randomly divided them into four groups, each consisting of 7 rats: control, CUMS (chronic unpredictable mild stress), CUMS+vortioxetine (CUMS+VOR), and CUMS+fluoxetine (CUMS+FLU). Sucrose preference and forced swimming tests (SPT and FST, respectively), PCR, ELISA, and histopathological and immunohistochemical evaluation were made on brains. RESULTS The behaviors of reduced immobility in the FST and increased sucrose preference were observed in the CUMS group and they improved in the groups treated with VOR and FLU. Compared with the control group, the group exposed to CUMS showed increased Aβ and decreased BDNF, CREB, and S-100 expressions, as well as neuronal degeneration (p<0.001). VOR and FLU treatment ameliorate the findings. CONCLUSIONS This study demonstrated significant ameliorative effects of VOR in an experimental model of chronic unpredictable depression to reduce brain tissue damage and depression-like behaviors in rats. Effects of CUMS on the brain and possible effects of VOR.
Collapse
Affiliation(s)
- Gülin Özdamar Ünal
- Faculty of Medicine, Department of Psychiatry, Suleyman Demirel University, Isparta, Turkey
| | - Gamze Erkılınç
- Department of Pathology, Urla State Hospital, İzmir, Turkey
| | - Kuyaş Hekimler Öztürk
- Faculty of Medicine, Department of Medical Genetics, Suleyman Demirel University, Isparta, Turkey
| | - Duygu Kumbul Doguç
- Faculty of Medicine, Department of Biochemistry, Suleyman Demirel University, Isparta, Turkey
| | - Özlem Özmen
- Faculty of Veterinary Medicine, Department of Pathology, Burdur Mehmet Akif Ersoy University, Burdur, Turkey.
| |
Collapse
|
5
|
Vaux A, Robinson K, Saglam B, Cheuk N, Kilpatrick T, Evans A, Monif M. Autoimmune Encephalitis in Long-Standing Schizophrenia: A Case Report. Front Neurol 2022; 12:810926. [PMID: 35222231 PMCID: PMC8873086 DOI: 10.3389/fneur.2021.810926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/27/2021] [Indexed: 01/17/2023] Open
Abstract
Anti-N-methyl-D-aspartate (NMDA) receptor antibody (anti-NMDAR Ab)-mediated encephalitis is an autoimmune disorder involving the production of antibodies against NMDARs in the central nervous system that leads to neurological or psychiatric dysfunction. Initially described as a paraneoplastic syndrome in young women with teratomas, increased testing has found it to be a heterogeneous condition that affects both the sexes with varying clinical manifestations, severity, and aetiology. This case report describes a 67-year-old man with a 40-year history of relapsing, severe, treatment-refractory schizophrenia. Due to the worsening of his condition during a prolonged inpatient admission for presumed relapse of psychosis, a revisit of the original diagnosis was considered with extensive investigations performed including an autoimmune panel. This revealed anti-NMDAR Abs in both the serum and cerebrospinal fluid on two occasions. Following treatment with intravenous immunoglobulin and methylprednisolone, he demonstrated rapid symptom improvement. This is a rare case of a long-standing psychiatric presentation with a preexisting diagnosis of schizophrenia subsequently found to have anti-NMDAR Ab-mediated encephalitis. Whether the case is one of initial NMDAR encephalitis vs. overlap syndrome is unknown. Most importantly, this case highlights the need for vigilance and balanced consideration for treatment in cases of long-standing psychiatric presentation where the case remains treatment refractory to antipsychotics or when atypical features including seizures and autonomic dysfunction or focal neurology are observed.
Collapse
Affiliation(s)
- Amy Vaux
- Department of Neurology, Royal Melbourne Hospital, Melbourne, VIC, Australia
- *Correspondence: Amy Vaux
| | - Karen Robinson
- Department of Neurology, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Burcu Saglam
- Department of Psychiatry, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Nathan Cheuk
- Department of Neurology, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Trevor Kilpatrick
- Department of Neurology, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Andrew Evans
- Department of Neurology, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Mastura Monif
- Department of Neurology, Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Maffioletti E, Carvalho Silva R, Bortolomasi M, Baune BT, Gennarelli M, Minelli A. Molecular Biomarkers of Electroconvulsive Therapy Effects and Clinical Response: Understanding the Present to Shape the Future. Brain Sci 2021; 11:brainsci11091120. [PMID: 34573142 PMCID: PMC8471796 DOI: 10.3390/brainsci11091120] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/28/2022] Open
Abstract
Electroconvulsive therapy (ECT) represents an effective intervention for treatment-resistant depression (TRD). One priority of this research field is the clarification of ECT response mechanisms and the identification of biomarkers predicting its outcomes. We propose an overview of the molecular studies on ECT, concerning its course and outcome prediction, including also animal studies on electroconvulsive seizures (ECS), an experimental analogue of ECT. Most of these investigations underlie biological systems related to major depressive disorder (MDD), such as the neurotrophic and inflammatory/immune ones, indicating effects of ECT on these processes. Studies about neurotrophins, like the brain-derived neurotrophic factor (BDNF) and the vascular endothelial growth factor (VEGF), have shown evidence concerning ECT neurotrophic effects. The inflammatory/immune system has also been studied, suggesting an acute stress reaction following an ECT session. However, at the end of the treatment, ECT produces a reduction in inflammatory-associated biomarkers such as cortisol, TNF-alpha and interleukin 6. Other biological systems, including the monoaminergic and the endocrine, have been sparsely investigated. Despite some promising results, limitations exist. Most of the studies are concentrated on one or few markers and many studies are relatively old, with small sample sizes and methodological biases. Expression studies on gene transcripts and microRNAs are rare and genetic studies are sparse. To date, no conclusive evidence regarding ECT molecular markers has been reached; however, the future may be just around the corner.
Collapse
Affiliation(s)
- Elisabetta Maffioletti
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (E.M.); (R.C.S.); (M.G.)
| | - Rosana Carvalho Silva
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (E.M.); (R.C.S.); (M.G.)
| | | | - Bernhard T. Baune
- Department of Psychiatry and Psychotherapy, University of Münster, 48149 Münster, Germany;
- Department of Psychiatry, Melbourne Medical School, University of Melbourne, Parkville, VIC 3010, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (E.M.); (R.C.S.); (M.G.)
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
| | - Alessandra Minelli
- Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy; (E.M.); (R.C.S.); (M.G.)
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy
- Correspondence: ; Tel.: +39-030-3717255; Fax: +39-030-3701157
| |
Collapse
|
7
|
Zhang W, Xiong BR, Zhang LQ, Huang X, Yuan X, Tian YK, Tian XB. The Role of the GABAergic System in Diseases of the Central Nervous System. Neuroscience 2021; 470:88-99. [PMID: 34242730 DOI: 10.1016/j.neuroscience.2021.06.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022]
Abstract
It is well known that the central nervous system (CNS) is a complex neuronal network and its function depends on the balance between excitatory and inhibitory neurons. Disruption of the excitatory/inhibitory (E/I) balance is the main cause for the majority of the CNS diseases. In this review, we will discuss roles of the inhibitory system in the CNS diseases. The GABAergic system as the main inhibitory system, is essential for the appropriate functioning of the CNS, especially as it is engaged in the formation of learning and memory. Many researchers have reported that the GABAergic system is involved in regulating synaptic plasticity, cognition and long-term potentiation. Some clinical manifestations (such as cognitive dysfunctions, attention deficits, etc.) have also been shown to emerge after abnormalities in the GABAergic system accompanied with concomitant diseases, that include Alzheimer's disease (AD), Parkinson's disease (PD), Autism spectrum disorder (ASD), Schizophrenia, etc. The GABAergic system consists of GABA, GABA transporters, GABAergic receptors and GABAergic neurons. Changes in any of these components may contribute to the dysfunctions of the CNS. In this review, we will synthesize studies which demonstrate how the GABAergic system participates in the pathogenesis of the CNS disorders, which may provide a new idea that might be used to treat the CNS diseases.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Bing-Rui Xiong
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, East Lake Road, 430071 Wuhan, Hubei, China
| | - Long-Qing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Xian Huang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Xiaoman Yuan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Yu-Ke Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China
| | - Xue-Bi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China.
| |
Collapse
|
8
|
Kucuker MU, Almorsy AG, Sonmez AI, Ligezka AN, Doruk Camsari D, Lewis CP, Croarkin PE. A Systematic Review of Neuromodulation Treatment Effects on Suicidality. Front Hum Neurosci 2021; 15:660926. [PMID: 34248523 PMCID: PMC8267816 DOI: 10.3389/fnhum.2021.660926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022] Open
Abstract
Introduction: Neuromodulation is an important group of therapeutic modalities for neuropsychiatric disorders. Prior studies have focused on efficacy and adverse events associated with neuromodulation. Less is known regarding the influence of neuromodulation treatments on suicidality. This systematic review sought to examine the effects of various neuromodulation techniques on suicidality. Methods: A systematic review of the literature from 1940 to 2020 following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guideline was conducted. Any reported suicide-related outcome, including suicidal ideation, suicide intent, suicide attempt, completed suicide in reports were considered as a putative measure of treatment effect on suicidality. Results: The review identified 129 relevant studies. An exploratory analysis of a randomized controlled trial comparing the effects of sertraline and transcranial direct-current stimulation (tDCS) for treating depression reported a decrease in suicidal ideation favoring tDCS vs. placebo and tDCS combined with sertraline vs. placebo. Several studies reported an association between repetitive transcranial magnetic stimulation and improvements in suicidal ideation. In 12 of the studies, suicidality was the primary outcome, ten of which showed a significant improvement in suicidal ideation. Electroconvulsive therapy (ECT) and magnetic seizure therapy was also shown to be associated with lower suicidal ideation and completed suicide rates. There were 11 studies which suicidality was the primary outcome and seven of these showed an improvement in suicidal ideation or suicide intent and fewer suicide attempts or completed suicides in patients treated with ECT. There was limited literature focused on the potential protective effect of vagal nerve stimulation with respect to suicidal ideation. Data were mixed regarding the potential effects of deep brain stimulation on suicidality. Conclusions: Future prospective studies of neuromodulation that focus on the primary outcome of suicidality are urgently needed. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=125599, identifier: CRD42019125599.
Collapse
Affiliation(s)
- Mehmet Utku Kucuker
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Ammar G. Almorsy
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Ayse Irem Sonmez
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Anna N. Ligezka
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States
| | - Deniz Doruk Camsari
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Charles P. Lewis
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Paul E. Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
9
|
Zhou XM, Liu CY, Liu YY, Ma QY, Zhao X, Jiang YM, Li XJ, Chen JX. Xiaoyaosan Alleviates Hippocampal Glutamate-Induced Toxicity in the CUMS Rats via NR2B and PI3K/Akt Signaling Pathway. Front Pharmacol 2021; 12:586788. [PMID: 33912031 PMCID: PMC8075411 DOI: 10.3389/fphar.2021.586788] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/04/2021] [Indexed: 01/03/2023] Open
Abstract
Purpose: It is revealed that Xiaoyaosan could reduce glutamate level in the hippocampus of depressed rats, whose metabolism leads to the pathophysiology of depression. However, the underlying mechanism remains unclear. This study aims to explore the effect of Xiaoyaosan on glutamate metabolism, and how to regulate the excitatory injury caused by glutamate. Methods: Rats were induced by chronic unpredictable mild stress, then divided into control, vehicle (distilled water), Xiaoyaosan, fluoxetine, vehicle (DMSO), Xiaoyaosan + Ly294002 and Ly294002 groups. Ly294002 was microinjected into the lateral ventricular catheterization at 5 mM. Xiaoyaosan (2.224 g/kg) and fluoxetine (2.0 mg/kg) were orally administered for three weeks. The open field test (OFT), forced swimming test (FST), and sucrose preference test (SPT) were used to assess depressive behavior. The glutamate and corticosterone (CORT) levels were detected by ELISA. Western blot, immunochemistry or immunofluorescence were used to detect the expressions of NR2B, MAP2, PI3K and P-AKT/Akt in the hippocampal CA1 region. The mRNA level of MAP2, NR2B and PI3K were detected by RT-qPCR. Results: Compared to the rats in control group, body weight and food intake of CUMS rats was decreased. CUMS rats also showed depression-like behavior as well as down regulate the NR2B and PI3K/Akt signaling pathway. Xiaoyaosan treatments could increase food intake and body weight as well as improved time spent in the central area, total distance traveled in the OFT. Xiaoyaosan could also decrease the immobility time as well as increase the sucrose preference in SPT. Moreover, xiaoyaosan decreased the level of glutamate in the hippocampal CA1 region and serum CORT in CUMS rats. Furthermore, xiaoyaosan improved the expression of MAP2 as well as increased the expression of NR2B, PI3K and the P-AKT/AKT ratio in the hippocampal CA1 region in the CUMS rats. Conclusion: Xiaoyaosan treatment can exert the antidepressant effect by rescuing hippocampal neurons loss induced by the glutamate-mediated excitotoxicity in CUMS rats. The underlying pathway maybe through NR2B and PI3K/Akt signaling pathways. These results may suggest the potential of Xiaoyaosan in preventing the development of depression.
Collapse
Affiliation(s)
- Xue-Ming Zhou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China,School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Haerbin, China
| | - Chen-Yue Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yue-Yun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qing-Yu Ma
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xin Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - You-Ming Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Juan Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China,*Correspondence: Xiao-Juan Li, ; Jia-Xu Chen,
| | - Jia-Xu Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China,Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China,*Correspondence: Xiao-Juan Li, ; Jia-Xu Chen,
| |
Collapse
|
10
|
Lv Q, Hu Q, Zhang W, Huang X, Zhu M, Geng R, Cheng X, Bao C, Wang Y, Zhang C, He Y, Li Z, Yi Z. Disturbance of Oxidative Stress Parameters in Treatment-Resistant Bipolar Disorder and Their Association With Electroconvulsive Therapy Response. Int J Neuropsychopharmacol 2020; 23:207-216. [PMID: 31967315 PMCID: PMC7177162 DOI: 10.1093/ijnp/pyaa003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 12/17/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Electroconvulsive therapy (ECT) is an effective option for treatment-resistant bipolar disorder (trBD). However, the mechanisms of its effect are unknown. Oxidative stress is thought to be involved in the underpinnings of BD. Our study is the first, to our knowledge, to report the association between notable oxidative stress parameters (superoxide dismutase [SOD], glutathione peroxidase [GSH-Px], catalase [CAT], and malondialdehyde [MDA]) levels and ECT response in trBD patients. METHODS A total 28 trBD patients and 49 controls were recruited. Six-week ECT and naturalistic follow-up were conducted. SOD, GSH-Px, CAT, and MDA levels were measured by enzyme-linked immunosorbent assay, and the 17-item Hamilton Depression Rating Scale and Young Mania Rating Scale were administered at baseline and the end of the 6th week. MANCOVA, ANCOVA, 2 × 2 ANCOVA, and a multiple regression model were conducted. RESULTS SOD levels were lower in both trBD mania and depression (P = .001; P = .001), while GSH-Px (P = .01; P = .001) and MDA (P = .001; P = .001) were higher in both trBD mania and depression compared with controls. CAT levels were positively associated with 17-item Hamilton Depression Rating Scale scores in trBD depression (radjusted = 0.83, P = .005). MDA levels in trBD decreased after 6 weeks of ECT (P = .001). Interestingly, MDA levels decreased in responders (P = .001) but not in nonresponders (P > .05). CONCLUSIONS Our study indicates that decreased SOD could be a trait rather than a state in trBD. Oxidative stress levels are associated with illness severity and ECT response. This suggests that the mechanism of oxidative stress plays a crucial role in the pathophysiology of trBD.
Collapse
Affiliation(s)
- Qinyu Lv
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiongyue Hu
- Qingdao Mental Health Center, Qingdao, China
| | | | - Xinxin Huang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minghuan Zhu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruijie Geng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyan Cheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenxi Bao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingyi Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongguang He
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zezhi Li
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenghui Yi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Chen JL, Zhou X, Liu BL, Wei XH, Ding HL, Lin ZJ, Zhan HL, Yang F, Li WB, Xie JC, Su MZ, Liu XG, Zhou XF. Normalization of magnesium deficiency attenuated mechanical allodynia, depressive-like behaviors, and memory deficits associated with cyclophosphamide-induced cystitis by inhibiting TNF-α/NF-κB signaling in female rats. J Neuroinflammation 2020; 17:99. [PMID: 32241292 PMCID: PMC7118907 DOI: 10.1186/s12974-020-01786-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/25/2020] [Indexed: 01/01/2023] Open
Abstract
Background Bladder-related pain symptoms in patients with bladder pain syndrome/interstitial cystitis (BPS/IC) are often accompanied by depression and memory deficits. Magnesium deficiency contributes to neuroinflammation and is associated with pain, depression, and memory deficits. Neuroinflammation is involved in the mechanical allodynia of cyclophosphamide (CYP)-induced cystitis. Magnesium-L-Threonate (L-TAMS) supplementation can attenuate neuroinflammation. This study aimed to determine whether and how L-TAMS influences mechanical allodynia and accompanying depressive symptoms and memory deficits in CYP-induced cystitis. Methods Injection of CYP (50 mg/kg, intraperitoneally, every 3 days for 3 doses) was used to establish a rat model of BPS/IC. L-TAMS was administered in drinking water (604 mg·kg−1·day−1). Mechanical allodynia in the lower abdomen was assessed with von Frey filaments using the up-down method. Forced swim test (FST) and sucrose preference test (SPT) were used to measure depressive-like behaviors. Novel object recognition test (NORT) was used to detect short-term memory function. Concentrations of Mg2+ in serum and cerebrospinal fluid (CSF) were measured by calmagite chronometry. Western blot and immunofluorescence staining measured the expression of tumor necrosis factor-α/nuclear factor-κB (TNF-α/NF-κB), interleukin-1β (IL-1β), and N-methyl-d-aspartate receptor type 2B subunit (NR2B) of the N-methyl-d-aspartate receptor in the L6–S1 spinal dorsal horn (SDH) and hippocampus. Results Free Mg2+ was reduced in the serum and CSF of the CYP-induced cystitis rats on days 8, 12, and 20 after the first CYP injection. Magnesium deficiency in the serum and CSF correlated with the mechanical withdrawal threshold, depressive-like behaviors, and short-term memory deficits (STMD). Oral application of L-TAMS prevented magnesium deficiency and attenuated mechanical allodynia (n = 14) and normalized depressive-like behaviors (n = 10) and STMD (n = 10). The upregulation of TNF-α/NF-κB signaling and IL-1β in the L6–S1 SDH or hippocampus was reversed by L-TAMS. The change in NR2B expression in the SDH and hippocampus in the cystitis model was normalized by L-TAMS. Conclusions Normalization of magnesium deficiency by L-TAMS attenuated mechanical allodynia, depressive-like behaviors, and STMD in the CYP-induced cystitis model via inhibition of TNF-α/NF-κВ signaling and normalization of NR2B expression. Our study provides evidence that L-TAMS may have therapeutic value for treating pain and comorbid depression or memory deficits in BPS/IC patients.
Collapse
Affiliation(s)
- Jia-Liang Chen
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, 600 W Tianhe Rd, Guangzhou, 510630, China
| | - Xin Zhou
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Bo-Long Liu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, 600 W Tianhe Rd, Guangzhou, 510630, China
| | - Xu-Hong Wei
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, China
| | - Hong-Lu Ding
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, 600 W Tianhe Rd, Guangzhou, 510630, China
| | - Zhi-Jun Lin
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, 600 W Tianhe Rd, Guangzhou, 510630, China
| | - Hai-Lun Zhan
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, 600 W Tianhe Rd, Guangzhou, 510630, China
| | - Fei Yang
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, 600 W Tianhe Rd, Guangzhou, 510630, China
| | - Wen-Biao Li
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, 600 W Tianhe Rd, Guangzhou, 510630, China
| | - Jun-Cong Xie
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, 600 W Tianhe Rd, Guangzhou, 510630, China
| | - Min-Zhi Su
- Department of Rehabilitation, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-sen University, 2693 Kaichuang Rd, Guangzhou, 510700, China
| | - Xian-Guo Liu
- Pain Research Center and Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Rd. 2, Guangzhou, 510080, China. .,Guangdong Provincial Key Laboratory of Brain Function and Disease, 74 Zhongshan Rd. 2, Guangzhou, 510080, China.
| | - Xiang-Fu Zhou
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, 600 W Tianhe Rd, Guangzhou, 510630, China.
| |
Collapse
|
12
|
Kjær K, Jørgensen MB, Hageman I, Miskowiak KW, Wörtwein G. The effect of erythropoietin on electroconvulsive stimulation induced cognitive impairment in rats. Behav Brain Res 2020; 382:112484. [PMID: 31954736 DOI: 10.1016/j.bbr.2020.112484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 01/01/2023]
Abstract
Electroconvulsive therapy (ECT) is the most effective and fast-acting treatment for severe depression but associated with troublesome cognitive side-effects. Systemically administered erythropoietin (EPO) crosses the blood-brain-barrier and is a promising treatment for cognitive dysfunction in a wide array of neuropsychiatric and neurological disorders. In this study we trained rats to locate a submerged platform in a water maze and then subjected them to electroconvulsive stimulations (ECS, the rodent equivalent to ECT) and EPO treatment. We then analysed their ability to remember and relearn the location of the platform. In addition, we examined "wall-clinging" (thigmotaxis), a behavioural indicator of stress. ECS caused significant deficit in a probe trial administered after three weeks (nine stimulations) as well as one week (six stimulations) of treatment, indicative of induction of retrograde amnesia. ECS had no effect on relearning of the water maze task or performance in a subsequent probe trial. EPO treatment did not ameliorate the ECS-induced retrograde amnesia, but after nine ECS stimulations the animals that had received EPO relearned the position of the hidden platform faster than the animals that had not. We also found EPO to decrease "wall-clinging" behaviour, suggesting an effect of EPO on the stress response in rats. Thus, we establish the Morris Water Maze as a suitable model for ECS-induced memory loss in rats and provide some evidence for potential beneficial effects of EPO.
Collapse
Affiliation(s)
- Kristian Kjær
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Rigshospitalet, 2100, Copenhagen, Denmark
| | | | - Ida Hageman
- Department O, Psychiatric Centre Copenhagen, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Kamilla Woznica Miskowiak
- Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Rigshospitalet, 2100 Copenhagen, Denmark; Department of Psychology, University of Copenhagen, 1353, Copenhagen, Denmark
| | - Gitta Wörtwein
- Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Rigshospitalet, 2100, Copenhagen, Denmark; Department of Public Health, University of Copenhagen, 1014, Copenhagen, Denmark.
| |
Collapse
|
13
|
Dong J, Min S, Qiu H, Chen Q, Ren L. Intermittent administration of low dose ketamine can shorten the course of electroconvulsive therapy for depression and reduce complications: A randomized controlled trial. Psychiatry Res 2019; 281:112573. [PMID: 31586838 DOI: 10.1016/j.psychres.2019.112573] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 01/03/2023]
Abstract
This study aimed to investigate the efficacy and safety of intermittent low-dose ketamine on improving the efficacy of ECT. Patients diagnosed with Major Depressive Disorder (MDD) (n = 134) were randomized into 3 groups: routine ECT group (group E, n = 45); repeated ketamine-assisted ECT group (group RK, n = 43), and intermittent ketamine-assisted ECT group (group IK, n = 46). Patients in group RK were given ketamine at the dose of 0.3 mg/kg for each ECT treatment, patients in group IK were given ketamine once a week during ECT course. The depressive symptoms were assessed using the Hamilton Depression Rating Scale (HAM-D) at baseline, the end of ECT course, after 1 and 3 months, followed by an analysis of the psychiatric complications. Results indicated that ketamine-assisted ECT achieved a higher remission rate (P < 0.05), and no difference was observed between repeated and intermittent ketamine administrations. The total incidence rate of psychiatric complications in group RK (20.93%) was higher than that in group E (0%) and group IK (4.35%). In conclusion, intermittent administration of low dose ketamine in ECT significantly improved the effects of ECT and decreased psychiatric complications compared with repeated ketamine addition.
Collapse
Affiliation(s)
- Jun Dong
- The Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Su Min
- The Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Haitang Qiu
- The Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qibing Chen
- The Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Ren
- The Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Crespi BJ. Comparative psychopharmacology of autism and psychotic-affective disorders suggests new targets for treatment. Evol Med Public Health 2019; 2019:149-168. [PMID: 31548888 PMCID: PMC6748779 DOI: 10.1093/emph/eoz022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/07/2019] [Indexed: 12/13/2022] Open
Abstract
The first treatments showing effectiveness for some psychiatric disorders, such as lithium for bipolar disorder and chlorpromazine for schizophrenia, were discovered by accident. Currently, psychiatric drug design is seen as a scientific enterprise, limited though it remains by the complexity of brain development and function. Relatively few novel and effective drugs have, however, been developed for many years. The purpose of this article is to demonstrate how evolutionary biology can provide a useful framework for psychiatric drug development. The framework is based on a diametrical nature of autism, compared with psychotic-affective disorders (mainly schizophrenia, bipolar disorder and depression). This paradigm follows from two inferences: (i) risks and phenotypes of human psychiatric disorders derive from phenotypes that have evolved along the human lineage and (ii) biological variation is bidirectional (e.g. higher vs lower, faster vs slower, etc.), such that dysregulation of psychological traits varies in two opposite ways. In this context, the author review the evidence salient to the hypothesis that autism and psychotic-affective disorders represent diametrical disorders in terms of current, proposed and potential psychopharmacological treatments. Studies of brain-derived neurotrophic factor, the PI3K pathway, the NMDA receptor, kynurenic acid metabolism, agmatine metabolism, levels of the endocannabinoid anandamide, antidepressants, anticonvulsants, antipsychotics, and other treatments, demonstrate evidence of diametric effects in autism spectrum disorders and phenotypes compared with psychotic-affective disorders and phenotypes. These findings yield insights into treatment mechanisms and the development of new pharmacological therapies, as well as providing an explanation for the longstanding puzzle of antagonism between epilepsy and psychosis. Lay Summary: Consideration of autism and schizophrenia as caused by opposite alterations to brain development and function leads to novel suggestions for pharmacological treatments.
Collapse
Affiliation(s)
- Bernard J Crespi
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
15
|
Cucurbitacin IIa exerts antidepressant-like effects on mice exposed to chronic unpredictable mild stress. Neuroreport 2018; 28:259-267. [PMID: 28240721 DOI: 10.1097/wnr.0000000000000747] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cucurbitacin IIa (CuIIa) is the major active component of the Helmseya amabilis root and is known to have antiviral and anti-inflammatory effects. In this study, we examined the antidepressant-like effects of CuIIa in a mouse model of chronic unpredictable mild stress (CUMS) and investigated the possible underlying mechanisms. To evaluate the antidepressant-like effects of CuIIa on depression-like behaviors, mice were subjected to the open-field test, the elevated plus-maze test, the forced-swimming test, and the tail-suspension test. We found that CuIIa treatment reversed the CUMS-induced behavioral abnormalities. Western blot analyses showed that CUMS significantly decreased brain-derived neurotrophic factor (BDNF) levels, cAMP-response element binding protein (CREB), and calcium/calmodulin-dependent protein kinase II (CaMKII) phosphorylation, and N-methyl-D-aspartate receptor subtype GluN2B and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor GluA1 expression in the amygdala; in addition, the expression of gamma-aminobutyric acid receptor A subunit α2 was upregulated in CUMS mice. These CUMS-induced changes were all normalized by CuIIa treatment and administration of the BDNF antagonist ANA-12 can block the antidepressant effect of CuIIa. Our findings suggest that the antidepressant-like effects of CuIIa may be exerted by regulation of the CaMKIIα-CREB-BDNF pathway and the balance between excitatory and inhibitory synaptic transmission in the amygdala.
Collapse
|
16
|
Singh A, Kar SK. How Electroconvulsive Therapy Works?: Understanding the Neurobiological Mechanisms. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2017; 15:210-221. [PMID: 28783929 PMCID: PMC5565084 DOI: 10.9758/cpn.2017.15.3.210] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/06/2016] [Accepted: 12/21/2016] [Indexed: 12/29/2022]
Abstract
Electroconvulsive therapy (ECT) is a time tested treatment modality for the management of various psychiatric disorders. There have been a lot of modifications in the techniques of delivering ECT over decades. Despite lots of criticisms encountered, ECT has still been used commonly in clinical practice due to its safety and efficacy. Research evidences found multiple neuro-biological mechanisms for the therapeutic effect of ECT. ECT brings about various neuro-physiological as well as neuro-chemical changes in the macro- and micro-environment of the brain. Diverse changes involving expression of genes, functional connectivity, neurochemicals, permeability of blood-brain-barrier, alteration in immune system has been suggested to be responsible for the therapeutic effects of ECT. This article reviews different neurobiological mechanisms responsible for the therapeutic efficacy of ECT.
Collapse
Affiliation(s)
- Amit Singh
- Department of Psychiatry, King George’s Medical University, Lucknow, U.P,
India
| | - Sujita Kumar Kar
- Department of Psychiatry, King George’s Medical University, Lucknow, U.P,
India
| |
Collapse
|
17
|
Huang YJ, Lane HY, Lin CH. New Treatment Strategies of Depression: Based on Mechanisms Related to Neuroplasticity. Neural Plast 2017; 2017:4605971. [PMID: 28491480 PMCID: PMC5405587 DOI: 10.1155/2017/4605971] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/10/2017] [Accepted: 03/23/2017] [Indexed: 12/22/2022] Open
Abstract
Major depressive disorder is a severe and complex mental disorder. Impaired neurotransmission and disrupted signalling pathways may influence neuroplasticity, which is involved in the brain dysfunction in depression. Traditional neurobiological theories of depression, such as monoamine hypothesis, cannot fully explain the whole picture of depressive disorders. In this review, we discussed new treatment directions of depression, including modulation of glutamatergic system and noninvasive brain stimulation. Dysfunction of glutamatergic neurotransmission plays an important role in the pathophysiology of depression. Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, has rapid and lasting antidepressive effects in previous studies. In addition to ketamine, other glutamatergic modulators, such as sarcosine, also show potential antidepressant effect in animal models or clinical trials. Noninvasive brain stimulation is another new treatment strategy beyond pharmacotherapy. Growing evidence has demonstrated that superficial brain stimulations, such as transcranial magnetic stimulation, transcranial direct current stimulation, cranial electrotherapy stimulation, and magnetic seizure therapy, can improve depressive symptoms. The antidepressive effect of these brain stimulations may be through modulating neuroplasticity. In conclusion, drugs that modulate neurotransmission via NMDA receptor and noninvasive brain stimulation may provide new directions of treatment for depression. Furthermore, exploring the underlying mechanisms will help in developing novel therapies for depression in the future.
Collapse
Affiliation(s)
- Yu-Jhen Huang
- Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Hsien-Yuan Lane
- Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| | - Chieh-Hsin Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for General Education, Cheng Shiu University, Kaohsiung, Taiwan
| |
Collapse
|
18
|
Gao X, Zhuang FZ, Qin SJ, Zhou L, Wang Y, Shen QF, Li M, Villarreal M, Benefield L, Gu SL, Ma TF. Dexmedetomidine protects against learning and memory impairments caused by electroconvulsive shock in depressed rats: Involvement of the NMDA receptor subunit 2B (NR2B)-ERK signaling pathway. Psychiatry Res 2016; 243:446-52. [PMID: 27455425 DOI: 10.1016/j.psychres.2016.07.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/25/2016] [Accepted: 07/10/2016] [Indexed: 01/09/2023]
Abstract
Cognitive impairment is a common adverse effect of electroconvulsive therapy (ECT) during treatment for severe depression. Dexmedetomidine (DEX), a sedative-anesthetic drug, is used to treat post-ECT agitation. However, it is not known if DEX can protect against ECT-induced cognitive impairments. To address this, we used chronic unpredictable mild stress (CUMS) to establish a model of depression for ECT treatment. Our Morris water maze and sucrose preference test results suggest that DEX alleviates ECT-induced learning and memory impairments without altering the antidepressant efficacy of ECT. To further investigate the underlying mechanisms of DEX, hippocampal expression of NR2B, p-ERK/ERK, p-CREB/CREB, and BDNF were quantified by western blotting. These results show that DEX suppresses over-activation of NR2B and enhances phosphorylation of ERK1/2 in the hippocampus of ECT-treated depressed rats. Furthermore, DEX had no significant effect on ECT-induced increases in p-CREB and BDNF. Overall, our findings suggest that DEX ameliorates ECT-induced learning and memory impairments in depressed rats via the NR2B-ERK signaling cascade. Moreover, CREB/BDNF seems not appear to participate in the cognitive protective mechanisms of DEX during ECT treatment.
Collapse
Affiliation(s)
- Xin Gao
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Fu-Zhi Zhuang
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Shou-Jun Qin
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Li Zhou
- Department of Anaesthesiology, The Affiliated Hospital of Xuzhou Medical University, Key Laboratory for Anesthesiology of Jiangsu Province, Xuzhou 221004, Jiangsu, China
| | - Yun Wang
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Qing-Feng Shen
- Department of Geriatric Psychiatry, The East People's Hospital of Xuzhou, Xuzhou 221004, Jiangsu, China
| | - Mei Li
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | | | - Lauren Benefield
- Texas A&M University'16, College Station 77841, TX, United States
| | - Shu-Ling Gu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Teng-Fei Ma
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
19
|
Ren L, Zhang F, Min S, Hao X, Qin P, Zhu X. Propofol ameliorates electroconvulsive shock-induced learning and memory impairment by regulation of synaptic metaplasticity via autophosphorylation of CaMKIIa at Thr 305 in stressed rats. Psychiatry Res 2016; 240:123-130. [PMID: 27104927 DOI: 10.1016/j.psychres.2016.03.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 02/15/2016] [Accepted: 03/16/2016] [Indexed: 01/19/2023]
Abstract
Electroconvulsive therapy (ECT) is an effective treatment for depression, but it can induce learning and memory impairment. Our previous study found propofol (γ-aminobutyric acid (GABA) receptor agonist) could ameliorate electroconvulsive shock (ECS, an analog of ECT to animals)-induced cognitive impairment, however, the underlying molecular mechanisms remain unclear. This study aimed to investigate the effects of propofol on metaplasticity and autophosphorylation of CaMKIIa in stressed rats receiving ECS. Depressive-like behavior and learning and memory function were assessed by sucrose preference test and Morris water test respectively. LTP were tested by electrophysiological experiment, the expression of CaMKIIa, p-T305-CaMKII in hippocampus and CaMKIIα in hippocampal PSD fraction were evaluated by western blot. Results suggested ECS raised the baseline fEPSP and impaired the subsequent LTP, increased the expression of p-T305-CaMKII and decreased the expression of CaMKIIα in hippocampal PSD fraction, leading to cognitive dysfunction in stressed rats. Propofol could down-regulate the baseline fEPSP and reversed the impairment of LTP partly, decreased the expression of p-T305-CaMKII and increased the expression of CaMKIIα in hippocampal PSD fraction and alleviated ECS-induced learning and memory impairment. In conclusion, propofol ameliorates ECS-induced learning and memory impairment, possibly by regulation of synaptic metaplasticity via p-T305-CaMKII.
Collapse
Affiliation(s)
- Li Ren
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Fan Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Su Min
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Xuechao Hao
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peipei Qin
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xianlin Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
20
|
Li P, Hao XC, Luo J, Lv F, Wei K, Min S. Propofol Mitigates Learning and Memory Impairment After Electroconvulsive Shock in Depressed Rats by Inhibiting Autophagy in the Hippocampus. Med Sci Monit 2016; 22:1702-8. [PMID: 27203836 PMCID: PMC4917309 DOI: 10.12659/msm.897765] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background The present study explored the effects of propofol on hippocampal autophagy and synaptophysin in depression-model rats undergoing electroconvulsive shock (ECS). Material/Methods The rat depression model was established by exposing Sprague-Dawley rats to stress for 28 consecutive days. Forty rats were assigned randomly into the depression group (group D; no treatment), the ECS group (group E), the propofol group (group P), and the propofol + ECS group (group PE). Open field tests and sucrose preference tests were applied to evaluate the depression behavior; and Morris water maze tests were used to assess the learning and memory function of the rats. Western blotting was used to detect the expression of Beclin-1 and LC3-II/I; and ELISA was applied to assess the expression of synaptophysin. Results Rats in group E and group PE scored higher in the open field and sucrose preference tests compared with those in group D. Furthermore, rats in group E also had a longer escape latency, a shorter space exploration time, and increased expression of Beclin-1, LC3-II/I, and synaptophysin. Compared with group E, rats in group PE possessed a shorter escape latency, a longer space exploration time, reduced expression of Beclin-1, LC3-II/I, and synaptophysin. Conclusions Propofol could inhibit excessive ECS-induced autophagy and synaptophysin overexpression in the hippocampus, thus protecting the learning and memory functions in depressed rats after ECS. The inhibitory effects of propofol on the overexpression of synaptophysin may result from its inhibitory effects on the excessive induction of autophagy.
Collapse
Affiliation(s)
- Ping Li
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Xue-Chao Hao
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Jie Luo
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Feng Lv
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Ke Wei
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Su Min
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| |
Collapse
|
21
|
Yu M, Zhang Y, Chen X, Zhang T. Antidepressant-like effects and possible mechanisms of amantadine on cognitive and synaptic deficits in a rat model of chronic stress. Stress 2016; 19:104-13. [PMID: 26466744 DOI: 10.3109/10253890.2015.1108302] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The aim of this study was to examine whether amantadine (AMA), as a low-affinity noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist, is able to improve cognitive deficits caused by chronic stress in rats. Male Wistar rats were divided into four groups: control, control + AMA, stress and stress + AMA groups. The chronic stress model combined chronic unpredictable stress (CUS) with isolated feeding. Animals were exposed to CUS continued for 21 days. AMA (25 mg/kg) was administrated p.o. for 20 days from the 4th day of CUS to the 23rd. Weight and sucrose consumption were measured during model establishing period. Spatial memory was evaluated using the Morris water maze (MWM) test. Following MWM testing, both long-term potentiation (LTP) and depotentiation were recorded in the hippocampal CA1 region. NR2B and postsynaptic density protein 95 (PSD-95) proteins were measured by Western-blot analysis. AMA increased weight and sucrose consumption of stressed rats. Spatial memory and reversal learning in stressed rats were impaired relative to controls, whereas AMA significantly attenuated cognitive impairment. AMA also mitigated the chronic stress-induced impairment of hippocampal synaptic plasticity, in which both the LTP and depotentiation were significantly inhibited in stressed rats. Moreover, AMA enhanced the expression of hippocampal NR2B and PSD-95 in stressed rats. The data suggest that AMA may be an effective therapeutic agent for depression-like symptoms and associated cognitive disturbances.
Collapse
Affiliation(s)
- Mei Yu
- a College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University , Tianjin , PR China
| | - Yuan Zhang
- a College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University , Tianjin , PR China
| | - Xiaoyu Chen
- a College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University , Tianjin , PR China
| | - Tao Zhang
- a College of Life Sciences and Key Laboratory of Bioactive Materials Ministry of Education, Nankai University , Tianjin , PR China
| |
Collapse
|
22
|
Hussain A, Mir TH, Dar MA, Naqashbandi JI, Hussain T, Bashir A, Shah MS, Mushtaq R, Saleem B. Systemic Lupus Erythematous Presenting as Catatonia and its Response to Electroconvulie Therapy. Indian J Psychol Med 2015; 37:456-9. [PMID: 26702183 PMCID: PMC4676217 DOI: 10.4103/0253-7176.168597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Neuropsychiatric systemic lupus erythematous (SLE) encompasses various psychiatric and neurological manifestations that develop in SLE patients, secondary to involvement of central nervous system. Neuropsychiatric SLE, presenting as catatonia is very uncommon, and treatment of this condition is not well defined. Previously the role of benzodiazepines, immunosuppression, plasma exchange, and electroconvulsive therapy (ECT) has been described in its management. Here we describe a case of neuropsychiatric lupus presenting as catatonia that did not respond to benzodiazepines or immunosuppression. The symptoms of catatonia showed improvement with ECT. Furthermore, we have discussed the pathology of the disorder and the role of ECT in the treatment of cases of catatonia associated with SLE, who do not respond to benzodiazepines.
Collapse
Affiliation(s)
- Arshad Hussain
- Department of Psychiatry, Government Medical College, Srinagar, Jammu and Kashmir, India
| | - Tajamul H Mir
- Department of Medicine, Government Medical College, Srinagar, Jammu and Kashmir, India
| | - Mansoor Ahmad Dar
- Department of Psychiatry, Government Medical College, Srinagar, Jammu and Kashmir, India
| | | | - Tajamul Hussain
- Department of Psychiatry, Government Medical College, Srinagar, Jammu and Kashmir, India
| | - Anam Bashir
- Department of Psychiatry, Government Medical College, Srinagar, Jammu and Kashmir, India
| | - Majid Shafi Shah
- Department of Psychiatry, Government Medical College, Srinagar, Jammu and Kashmir, India
| | - Raheel Mushtaq
- Department of Psychiatry, Government Medical College, Srinagar, Jammu and Kashmir, India
| | - Basharat Saleem
- Department of Anesthesia, Government Medical College, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
23
|
Liu WF, Liu C. Propofol can Protect Against the Impairment of Learning-memory Induced by Electroconvulsive Shock via Tau Protein Hyperphosphorylation in Depressed Rats. ACTA ACUST UNITED AC 2015; 30:100-7. [PMID: 26149001 DOI: 10.1016/s1001-9294(15)30020-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To explore the possible neurophysiologic mechanisms of propofol and N-methyl-D- aspartate (NMDA) receptor antagonist against learning-memory impairment of depressed rats without olfactory bulbs. METHODS Models of depressed rats without olfactory bulbs were established. For the factorial design in analysis of variance, two intervention factors were included: electroconvulsive shock groups (with and without a course of electroconvulsive shock) and drug intervention groups [intraperotoneal (ip) injection of saline, NMDA receptor antagonist MK-801 and propofol. A total of 60 adult depressed rats without olfactory bulbs were randomly divided into 6 experimental groups (n=10 per group): ip injection of 5 ml saline; ip injection of 5 ml of 10 mg/kg MK-801; ip injection of 5 ml of 10 mg/kg MK-801 and a course of electroconvulsive shock; ip injection of 5 ml of 200 mg/kg propofol; ip injection of 5 ml of 200 mg/kg propofol and a course of electroconvulsive shock; and ip injection of 5 ml saline and a course of electroconvulsive shock. The learning-memory abilities of the rats was evaluated by the Morris water maze test. The content of glutamic acid in the hippocampus was detected by high-performance liquid chromatography. The expressions of p-AT8Ser202 in the hippocampus were determined by Western blot analysis. RESULTS Propofol, MK-801 or electroconvulsive shock alone induced learning-memory impairment in depressed rats, as proven by extended evasive latency time and shortened space probe time. Glutamic acid content in the hippocampus of depressed rats was significantly up-regulated by electroconvulsive shock and down-regulated by propofol, but MK-801 had no significant effect on glutamic acid content. Levels of phosphorylated Tau protein p-AT8Ser202 in the hippocampus was up-regulated by electroconvulsive shock but was reduced by propofol and MK-801 alone. Propofol prevented learning-memory impairment and reduced glutamic acid content and p-AT8Ser202 levels induced by electroconvulsive shock. CONCLUSION Electroconvulsive shock might reduce learning-memory impairment caused by protein Tau hyperphosphorylation in depressed rats by down-regulating glutamate content.
Collapse
|
24
|
Liu G, Liu C, Zhang XN. Comparison of the neuropsychological mechanisms of 2,6-diisopropylphenol and N-methyl-D-aspartate receptor antagonist against electroconvulsive therapy-induced learning and memory impairment in depressed rats. Mol Med Rep 2015; 12:3297-3308. [PMID: 25998151 PMCID: PMC4526078 DOI: 10.3892/mmr.2015.3803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 04/14/2015] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to examine the neurophysiological mechanisms of the 2,6-diisopropylphenol and N-methyl-D-aspartate (NMDA) receptor antagonist against learning and memory impairment, induced by electroconvulsive therapy (ECT). A total of 48 adult depressed rats without olfactory bulbs were randomly divided into six experimental groups: i) saline; ii) 10 mg/kg MK‑801; iii) 10 mg/kg MK‑801 and a course of ECT; iv) 200 mg/kg 2,6‑diisopropylphenol; v) 200 mg/kg 2,6‑diisopropylphenol and a course of ECT; and vi) saline and a course of ECT. The learning and memory abilities of the rats were assessed using a Morris water maze 1 day after a course of ECT. The hippocampus was removed 1 day after assessment using the Morris water maze assessment. The content of glutamate in the hippocampus was detected using high‑performance liquid chromatography. The expression levels of p‑AT8Ser202 and GSK‑3β1H8 in the hippocampus were determined using immunohistochemical staining and western blot analysis. The results demonstrated that the 2,6‑diisopropylphenol NMDA receptor antagonist, MK‑801 and ECT induced learning and memory impairment in the depressed rats. The glutamate content was significantly upregulated by ECT, reduced by 2,6‑diisopropylphenol, and was unaffected by the NMDA receptor antagonist in the hippocampus of the depressed rats. Tau protein hyperphosphorylation in the hippocampus was upregulated by ECT, but was reduced by 2,6‑diisopropylphenol and the MK‑801 NMDA receptor antagonist. It was also demonstrated that 2,6‑diisopropylphenol prevented learning and memory impairment and reduced the hyperphosphorylation of the Tau protein, which was induced by eECT. GSK‑3β was found to be the key protein involved in this signaling pathway. The ECT reduced the learning and memory impairment, caused by hyperphosphorylation of the Tau protein, in the depressed rats by upregulating the glutamate content.
Collapse
Affiliation(s)
- Gang Liu
- Department of Anesthesiology, General Hospital of Beijing Military Area of PLA, Beijing 100700, P.R. China
| | - Chao Liu
- Department of Anesthesiology, Tianjin Chest Hospital, Tianjin 300222, P.R. China
| | - Xue-Ning Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
25
|
Zhang X, Li X, Li M, Ren J, Yun K, An Y, Lin L, Zhang H. Venlafaxine increases cell proliferation and regulates DISC1, PDE4B and NMDA receptor 2B expression in the hippocampus in chronic mild stress mice. Eur J Pharmacol 2015; 755:58-65. [PMID: 25769842 DOI: 10.1016/j.ejphar.2015.02.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/19/2015] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
Abstract
Recent evidence has identified disrupted in schizophrenia-1 (DISC1) as an important genetic risk factor for the development of many psychiatric disorders, including major depressive disorders. In addition, studies using animal models have demonstrated that chronic stress affects hippocampal structure and function. However, the functional effects of chronic stress on DISC1 remain unknown. Using a chronic mild stress (CMS) paradigm, we investigated the effects of CMS on depressive-like behaviors, hippocampal cell proliferation, and hippocampal protein expression of DISC1, phosphodiesterase 4B (PDE4B) and N-methyl-d-aspartate receptor 2B subunit (NMDA receptor 2B), which may be involved in the regulation of DISC1 and neurogenesis. We also examined the effects and possible mechanisms of the antidepressant venlafaxine in CMS mice. CMS increased the expression of DISC1 and PDE4B. Chronic treatment with venlafaxine blocked the increases in these proteins, and also reversed the CMS-induced decrease in neurogenesis and NMDA receptor 2B protein in the hippocampus. These results suggest that DISC1 may play an important role in the etiology of depression and in the action of antidepressants.
Collapse
Affiliation(s)
- Xinxin Zhang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaobai Li
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Min Li
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang 110001, China
| | - Jintao Ren
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ke Yun
- Department of Clinical Laboratory, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yan An
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang 110001, China
| | - Lei Lin
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang 110001, China
| | - Hailong Zhang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
26
|
Imashuku Y, Kanemoto K, Senda M, Matsubara M. Relationship between blood levels of propofol and recovery of memory in electroconvulsive therapy. Psychiatry Clin Neurosci 2014; 68:270-4. [PMID: 24313665 DOI: 10.1111/pcn.12122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/26/2013] [Accepted: 09/29/2013] [Indexed: 11/28/2022]
Abstract
AIM Memory impairment is a potential major adverse effect of electroconvulsive therapy (ECT). Some reports have suggested that propofol, an intravenous anesthetic widely used for general anesthesia in ECT, can minimize adverse effects on memory and cognitive function following ECT. The relation between propofol blood level during ECT and memory impairment after the procedure is unknown. We aimed to determine the relation between predicted blood level of propofol administered by target-controlled infusion during ECT and memory impairment after the procedure. METHODS Thirty-six patients who underwent a total of 260 series of ECT were enrolled as subjects. Anesthesia was induced with intravenous injection of propofol with a target-controlled infusion pump for predicting blood levels. Orientation and memory testing were performed after completion of ECT. In a subsequent analysis, subjects were divided into early memory recovery (n = 195) and late memory recovery (n = 65) groups. Likewise, for orientation testing,subjects were divided into early recovery (n = 193) and late recovery (n = 67) groups. In both groups, predicted blood propofol levels, total propofol dose, and other variables, such as number of ECT treatments, stimulus energy volume, and spike and slow wave time, were determined for comparison. RESULTS Predicted blood propofol levels and propofol total dose were significantly higher in the early memory recovery group, while no significant differences were observed for the other variables. As for orientation, there were no significant differences between the early and late orientation recovery groups. CONCLUSIONS Our data shows that the predicted blood propofol levels and the total dose influences memory impairment after the ECT.
Collapse
Affiliation(s)
- Yasuhiko Imashuku
- Department of Neuropsychiatry, Aichi Medical University, Aichi, Japan
| | | | | | | |
Collapse
|
27
|
Luo J, Min S, Wei K, Cao J, Wang B, Li P, Dong J, Liu Y. Propofol prevents electroconvulsive-shock-induced memory impairment through regulation of hippocampal synaptic plasticity in a rat model of depression. Neuropsychiatr Dis Treat 2014; 10:1847-59. [PMID: 25285008 PMCID: PMC4181737 DOI: 10.2147/ndt.s67108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Although a rapid and efficient psychiatric treatment, electroconvulsive therapy (ECT) induces memory impairment. Modified ECT requires anesthesia for safety purposes. Although traditionally found to exert amnesic effects in general anesthesia, which is an inherent part of modified ECT, some anesthetics have been found to protect against ECT-induced cognitive impairment. However, the mechanisms remain unclear. We investigated the effects of propofol (2,6-diisopropylphenol) on memory in depressed rats undergoing electroconvulsive shock (ECS), the analog of ECT in animals, under anesthesia as well as its mechanisms. METHODS Chronic unpredictable mild stresses were adopted to reproduce depression in a rodent model. Rats underwent ECS (or sham ECS) with anesthesia with propofol or normal saline. Behavior was assessed in sucrose preference, open field and Morris water maze tests. Hippocampal long-term potentiation (LTP) was measured using electrophysiological techniques. PSD-95, CREB, and p-CREB protein expression was assayed with Western blotting. RESULTS Depression induced memory damage, and downregulated LTP, PSD-95, CREB, and p-CREB; these effects were exacerbated in depressed rats by ECS; propofol did not reverse the depression-induced changes, but when administered in modified ECS, propofol improved memory and reversed the downregulation of LTP and the proteins. CONCLUSION These findings suggest that propofol prevents ECS-induced memory impairment, and modified ECS under anesthesia with propofol improves memory in depressed rats, possibly by reversing the excessive changes in hippocampal synaptic plasticity. These observations provide a novel insight into potential targets for optimizing the clinical use of ECT for psychiatric disorders.
Collapse
Affiliation(s)
- Jie Luo
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Su Min
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Ke Wei
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jun Cao
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Bin Wang
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Ping Li
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jun Dong
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yuanyuan Liu
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
28
|
Fosse R, Read J. Electroconvulsive Treatment: Hypotheses about Mechanisms of Action. Front Psychiatry 2013; 4:94. [PMID: 23986724 PMCID: PMC3753611 DOI: 10.3389/fpsyt.2013.00094] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Accepted: 08/10/2013] [Indexed: 12/11/2022] Open
Abstract
No consensus has been reached on the mode of action of electroconvulsive treatment (ECT). We suggest that two features may aid in the delineation of the involved mechanisms. First, when effective, ECT would be likely to affect brain functions that are typically altered in its primary recipient group, people with severe depression. Central among these are the frontal and temporal lobes, the hypothalamus-pituitary-adrenal (HPA) stress axis, and the mesocorticolimbic dopamine system. Second, the involved mechanisms should be affected for a time period that matches the average endurance of clinical effects, which is indicated to be several days to a few weeks. To identify effects upon frontal and temporal lobe functioning we reviewed human studies using EEG, PET, SPECT, and fMRI. Effects upon the HPA axis and the dopamine system were assessed by reviewing both human and animal studies. The EEG studies indicate that ECT decelerates neural activity in the frontal and temporal lobes (increased delta and theta wave activity) for weeks to months. Comparable findings are reported from PET and SPECT studies, with reduced cerebral blood flow (functional deactivation) for weeks to months after treatment. The EEG deceleration and functional deactivation following ECT are statistically associated with reduced depression scores. FMRI studies indicate that ECT flattens the pattern of activation and deactivation that is associated with cognitive task performance and alters cortical functional connectivity in the ultra slow frequency range. A common finding from human and animal studies is that ECT acutely activates both the HPA axis and the dopamine system. In considering this evidence, we hypothesize that ECT affects the brain in a similar manner as severe stress or brain trauma which activates the HPA axis and the dopamine system and may compromise frontotemporal functions.
Collapse
Affiliation(s)
- Roar Fosse
- Division of Mental Health and Addiction, Vestre Viken State Hospital Trust, Lier, Norway
| | - John Read
- Institute of Psychology, Health and Society, University of Liverpool, Liverpool, UK
| |
Collapse
|
29
|
Magnin E, Delchev Y, Chopard G, Berger E, Vandel P, Sechter D, Rumbach L, Haffen E. Transient improvement in sensorimotor conversion during post-anoxic encephalopathy with bilateral medial temporal ischemia. Neurocase 2013; 19:576-82. [PMID: 22931423 DOI: 10.1080/13554794.2012.713488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We report the case of a patient with sensorimotor conversion that improved transiently during post-anoxic medial temporal ischemia inducing anterograde and retrograde amnesia. Symptoms reappeared in parallel with mnesic recovery. This case raises a hypothesis concerning the role of hippocampi and amygdalae, which are involved in emotionally-associated memory. The amnesia may have modified the patient's "self," giving her a "distant" point of view. Another hypothesis is that cerebral anoxic stress may have "reset" the cerebral network that controls behavior. These findings give clues about the mechanisms of somatoform disorder and highlight the possibility of specific therapeutic strategies to induce cognitive reappraisal of emotionally-associated experiences.
Collapse
Affiliation(s)
- Eloi Magnin
- a Department of Neurology , University Hospital of Besançon , Besançon , France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
2, 6-Diisopropylphenol Protects Against The Impairment of Learning-memory and Reduces The Hyperphosphorylation of Protein Tau Induced by Electroconvulsive Shock in The Depression Model Rats Whose Olfactory Bulbs Were Removed*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Luo J, Min S, Wei K, Zhang J, Liu Y. Propofol interacts with stimulus intensities of electroconvulsive shock to regulate behavior and hippocampal BDNF in a rat model of depression. Psychiatry Res 2012; 198:300-6. [PMID: 22410590 DOI: 10.1016/j.psychres.2011.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 09/13/2011] [Accepted: 09/15/2011] [Indexed: 10/28/2022]
Abstract
As a psychiatric treatment, modern electroconvulsive therapy (ECT) requires anesthesia to enhance safety, but anesthetics may weaken its efficacy. Previous studies have provided inconsistent results and lack satisfactory details of the influence of anesthetics on ECT efficacy, which partially complicates the clinical selection of ECT protocols. To test our hypothesis that anesthetics interact with the intrinsic parameters of ECT to differentially regulate its therapeutic efficacy, we investigated the effects of the anesthetic propofol and the stimulus intensities of ECT on behavior and hippocampal brain-derived neurotrophic factor (BDNF) in a rodent model of depression. After treatment with chronic unpredictable mild stresses to produce the model, the depressed rats received anesthesia with propofol or normal saline, i.p., and electroconvulsive shock (ECS, an analog of ECT to animals) with different stimulus intensities. The sucrose preference and open field tests were performed to assess behavior, and BDNF level in hippocampus was measured with ELISA. We found that propofol regulated the efficacy of ECS differently at different stimulus intensities in both the behavioral and molecular levels. At medium intensities (120 and 180 mC), propofol enhanced the anti-depressant efficacy of ECS without largely compromising the recovering efficacy of ECS on spontaneous exploratory activities. The results indicated that propofol and ECS stimulus intensities interacted and resulted in different regulating efficacies at different intensities. Medium stimulus intensities were optimal for ECS efficacy under propofol anesthesia.
Collapse
Affiliation(s)
- Jie Luo
- Department of Anesthesiology, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | | | | | | | | |
Collapse
|
32
|
Lihua P, Ke W, Su M. Different regimens of intravenous sedatives or hypnotics for electroconvulsive therapy (ECT) in adult patients with depression. Cochrane Database Syst Rev 2012. [DOI: 10.1002/14651858.cd009763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
He J, Huang C, Jiang J, Lv L. Propofol exerts hippocampal neuron protective effects via up-regulation of metallothionein-3. Neurol Sci 2012; 34:165-71. [DOI: 10.1007/s10072-012-0978-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Accepted: 02/09/2012] [Indexed: 11/28/2022]
|
34
|
Yilmaz N, Demirdas A, Yilmaz M, Sutcu R, Kirbas A, Cure MC, Eren I. Effects of venlafaxine and escitalopram treatments on NMDA receptors in the rat depression model. J Membr Biol 2011; 242:145-151. [PMID: 21755298 DOI: 10.1007/s00232-011-9385-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 06/27/2011] [Indexed: 02/07/2023]
Abstract
Depression may relate to neurocognitive impairment that results from alteration of N-methyl-D: -aspartate receptor (NMDAR) levels. Venlafaxine and escitalopram are two drugs commonly used to treat depression. The drugs may affect expression of NMDARs, which mediate learning and memory formation. The aim of the study was to examine whether the effects of venlafaxine and escitalopram treatments are associated with NMDARs in a rat model of depression. Forty male Wistar albino rats were randomly divided into four groups (n = 10) as follows: control group, chronic mild stress group (CMS), venlafaxine (20 mg/kg body weight per day) + CMS, and escitalopram (10 mg/kg body weight per day) + CMS. After induction of depression, a decrease in the concentration of NR2B was observed; venlafaxine treatment prevented the reduction of NR2B expression. Escitalopram treatment did not effect the reduced levels of NR2B resulting from depression. There was no significant difference in NR2A concentration among groups. The present data support the notion that venlafaxine plays a role in maintaining NR2B receptor in experimental depression. It may be possible that treatment with escitalopram has no effect on NMDARs in experimental depression.
Collapse
Affiliation(s)
- Nigar Yilmaz
- Department of Biochemistry, Mustafa Kemal University Medical School, 31040 Hatay, Turkey.
| | | | | | | | | | | | | |
Collapse
|
35
|
Luo J, Min S, Wei K, Li P, Dong J, Liu YF. Propofol protects against impairment of learning-memory and imbalance of hippocampal Glu/GABA induced by electroconvulsive shock in depressed rats. J Anesth 2011; 25:657-65. [PMID: 21769668 DOI: 10.1007/s00540-011-1199-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 06/22/2011] [Indexed: 12/01/2022]
Abstract
PURPOSE General anesthetics are believed to induce amnesia. However, propofol can ameliorate cognitive deficits induced by electroconvulsive therapy (ECT), a treatment for mental disorders. This study aimed at investigating the possible molecular mechanism as well as the effects of propofol on learning-memory impairment in depressed rats induced by ECS (electroconvulsive shock, the analog of ECT to animals). METHODS Rats were treated with ECS (or sham ECS) pretreated with intraperitoneal injection of propofol (100 mg/kg) (or normal saline, 0.01 l/kg) after being treated with chronic unpredictable mild stresses to reproduce an animal model of depression. Sucrose preference test, open field test, and Morris water maze were used to assess behavioral changes. Hippocampal glutamate (Glu) and γ-aminobutyric acid (GABA) levels were measured with liquid chromatography, and glutamic acid decarboxylase 65 (GAD65) was assayed immunohistochemically. Additionally, rats undergoing ECS that were pretreated with pentobarbital sodium (45 mg/kg) were included for behavioral tests and electroencephalogram recording for comparison with rats undergoing ECS that were pretreated with propofol or normal saline. RESULTS ECS rats pretreated with propofol or pentobarbital sodium exhibited similar decreased seizure durations as compared with ECS rats pretreated with normal saline. ECS pretreated with normal saline aggravated learning-memory deficits whereas ECS pretreated with propofol or pentobarbital sodium did not. Rats undergoing ECS pretreated with propofol showed better memory than those undergoing ECS after pretreatment with pentobarbital sodium. ECS pretreated with normal saline downregulated the ratio of Glu/GABA and upregulated GAD65 expression; all these molecular changes were nearly normalized to the level of control group by ECS pretreated with propofol. There were no significant differences of depressive behaviors between groups treated with ECS. CONCLUSIONS The data suggest that propofol alleviated ECS-induced learning-memory impairment without interfering with the antidepressant efficacy of ECS, possibly by inhibiting excessive expression of GAD65 and maintaining the balance between glutamatergic and GABAergic amino acids neurotransmitters in the hippocampus.
Collapse
Affiliation(s)
- Jie Luo
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | | | | | | | | | | |
Collapse
|
36
|
Effects of venlafaxine and escitalopram treatments on NMDA receptors in the rat depression model. J Membr Biol 2011. [PMID: 21755298 DOI: 10.1007/s00232-011-9385-3.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Depression may relate to neurocognitive impairment that results from alteration of N-methyl-D: -aspartate receptor (NMDAR) levels. Venlafaxine and escitalopram are two drugs commonly used to treat depression. The drugs may affect expression of NMDARs, which mediate learning and memory formation. The aim of the study was to examine whether the effects of venlafaxine and escitalopram treatments are associated with NMDARs in a rat model of depression. Forty male Wistar albino rats were randomly divided into four groups (n = 10) as follows: control group, chronic mild stress group (CMS), venlafaxine (20 mg/kg body weight per day) + CMS, and escitalopram (10 mg/kg body weight per day) + CMS. After induction of depression, a decrease in the concentration of NR2B was observed; venlafaxine treatment prevented the reduction of NR2B expression. Escitalopram treatment did not effect the reduced levels of NR2B resulting from depression. There was no significant difference in NR2A concentration among groups. The present data support the notion that venlafaxine plays a role in maintaining NR2B receptor in experimental depression. It may be possible that treatment with escitalopram has no effect on NMDARs in experimental depression.
Collapse
|