1
|
Marano G, Rossi S, Sfratta G, Traversi G, Lisci FM, Anesini MB, Pola R, Gasbarrini A, Gaetani E, Mazza M. Gut Microbiota: A New Challenge in Mood Disorder Research. Life (Basel) 2025; 15:593. [PMID: 40283148 PMCID: PMC12028401 DOI: 10.3390/life15040593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
The gut microbiome has emerged as a novel and intriguing focus in mood disorder research. Emerging evidence demonstrates the significant role of the gut microbiome in influencing mental health, suggesting a bidirectional communication between the gut and the brain. This review examines the latest findings on the gut-microbiota-brain axis and elucidates how alterations in gut microbiota composition can influence this axis, leading to changes in brain function and behavior. Although dietary interventions, prebiotics, probiotics, and fecal microbiota transplantation have yielded encouraging results, significant advances are needed to establish next-generation approaches that precisely target the neurobiological mechanisms of mood disorders. Future research must focus on developing personalized treatments, facilitated by innovative therapies and technological progress, which account for individual variables such as age, sex, drug history, and lifestyle. Highlighting the potential therapeutic implications of targeting the gut microbiota, this review emphasizes the importance of integrating microbiota research into psychiatric studies to develop more effective and personalized treatment strategies for mood disorders.
Collapse
Affiliation(s)
- Giuseppe Marano
- Unit of Psychiatry, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (G.S.); (M.B.A.); (M.M.)
- Department of Neurosciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Sara Rossi
- Unit of Psychiatry, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (G.S.); (M.B.A.); (M.M.)
- Department of Neurosciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Greta Sfratta
- Unit of Psychiatry, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (G.S.); (M.B.A.); (M.M.)
- Department of Neurosciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianandrea Traversi
- Unit of Medical Genetics, Department of Laboratory Medicine, Ospedale Isola Tiberina-Gemelli Isola, 00186 Rome, Italy
| | - Francesco Maria Lisci
- Unit of Psychiatry, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (G.S.); (M.B.A.); (M.M.)
- Department of Neurosciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Benedetta Anesini
- Unit of Psychiatry, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (G.S.); (M.B.A.); (M.M.)
- Department of Neurosciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Roberto Pola
- Section of Internal Medicine and Thromboembolic Diseases, Department of Internal Medicine, Fondazione Poli-Clinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Antonio Gasbarrini
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Eleonora Gaetani
- Department of Translational Medicine and Surgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Unit of Internal Medicine, Cristo Re Hospital, 00167 Rome, Italy
| | - Marianna Mazza
- Unit of Psychiatry, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (G.S.); (M.B.A.); (M.M.)
- Department of Neurosciences, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
2
|
Oberman LM, Francis SM, Lisanby SH. The use of noninvasive brain stimulation techniques in autism spectrum disorder. Autism Res 2024; 17:17-26. [PMID: 37873560 PMCID: PMC10841888 DOI: 10.1002/aur.3041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/15/2023] [Indexed: 10/25/2023]
Abstract
Noninvasive brain stimulation (NIBS) techniques, including repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), have recently emerged as alternative, nonpharmacological interventions for a variety of psychiatric, neurological, and neurodevelopmental conditions. NIBS is beginning to be applied in both research and clinical settings for the treatment of core and associated symptoms of autism spectrum disorder (ASD) including social communication deficits, restricted and repetitive behaviors, irritability, hyperactivity, depression and impairments in executive functioning and sensorimotor integration. Though there is much promise for these targeted device-based interventions, in other disorders (including adult major depressive disorder (MDD) and obsessive compulsive disorder (OCD) where rTMS is FDA cleared), data on the safety and efficacy of these interventions in individuals with ASD is limited especially in younger children when neurodevelopmental interventions typically begin. Most studies are open-label, small scale, and/or focused on a restricted subgroup of individuals with ASD. There is a need for larger, randomized controlled trials that incorporate neuroimaging in order to develop predictive biomarkers of treatment response and optimize treatment parameters. We contend that until such studies are conducted, we do not have adequate estimates of the safety and efficacy of NIBS interventions in children across the spectrum. Thus, broad off-label use of these techniques in this population is not supported by currently available evidence. Here we discuss the existing data on the use of NIBS to treat symptoms related to ASD and discuss future directions for the field.
Collapse
Affiliation(s)
- Lindsay M Oberman
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Sunday M Francis
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarah H Lisanby
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Rajkumar RP. Immune-inflammatory markers of response to repetitive transcranial magnetic stimulation in depression: A scoping review. Asian J Psychiatr 2024; 91:103852. [PMID: 38070319 DOI: 10.1016/j.ajp.2023.103852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is a safe, effective and non-invasive form of neuromodulatory therapy in patients with major depressive disorder (MDD). MDD is associated with increased peripheral and brain inflammation. The current paper aims to provide an overview of research examining the relationship between immune and inflammatory markers and response to rTMS in MDD. METHODS A scoping review method was adopted in keeping with the PRISMA-ScR guidelines. Twelve relevant studies were retrieved from the PubMed and Scopus databases and rated for study quality using a modified version of the BIOCROSS tool. RESULTS Response to rTMS in MDD was associated with basal and post-treatment levels of the inflammatory markers amyloid A, antithrombin III, oxidised phosphatidylcholine, and the microRNA miR-146a-5p. Inconsistent results were observed for the cytokines interleukin-1β, interleukin-2 and tumour necrosis factor-α. Increased baseline levels of interleukin-6 and C-reactive protein were linked to a poorer response to rTMS. DISCUSSION These results suggest that rTMS may have effects on immune-inflammatory pathways that are distinct from those of antidepressants and electroconvulsive therapy. Because of certain methodological limitations in the included studies, these results should be interpreted with caution.
Collapse
Affiliation(s)
- Ravi Philip Rajkumar
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India.
| |
Collapse
|
4
|
Marano G, Mazza M, Lisci FM, Ciliberto M, Traversi G, Kotzalidis GD, De Berardis D, Laterza L, Sani G, Gasbarrini A, Gaetani E. The Microbiota-Gut-Brain Axis: Psychoneuroimmunological Insights. Nutrients 2023; 15:1496. [PMID: 36986226 PMCID: PMC10059722 DOI: 10.3390/nu15061496] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/18/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
There is growing interest in the role that the intestinal microbiota and the related autoimmune processes may have in the genesis and presentation of some psychiatric diseases. An alteration in the communication of the microbiota-gut-brain axis, which constitutes a communicative model between the central nervous system (CNS) and the gastro-enteric tract, has been identified as one of the possible causes of some psychiatric diseases. The purpose of this narrative review is to describe evidence supporting a role of the gut microbiota in psychiatric diseases and the impact of diet on microbiota and mental health. Change in the composition of the gut microbiota could determine an increase in the permeability of the intestinal barrier, leading to a cytokine storm. This could trigger a systemic inflammatory activation and immune response: this series of events could have repercussions on the release of some neurotransmitters, altering the activity of the hypothalamic-pituitary-adrenal axis, and reducing the presence of trophic brain factors. Although gut microbiota and psychiatric disorders seem to be connected, more effort is needed to understand the potential causative mechanisms underlying the interactions between these systems.
Collapse
Affiliation(s)
- Giuseppe Marano
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marianna Mazza
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesco Maria Lisci
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Michele Ciliberto
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gianandrea Traversi
- Unit of Medical Genetics, Department of Laboratory Medicine, Fatebenefratelli Isola Tiberina-Gemelli Isola, 00168 Rome, Italy
| | - Georgios Demetrios Kotzalidis
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Sant’Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy
| | | | - Lucrezia Laterza
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gabriele Sani
- Department of Geriatrics, Neuroscience and Orthopedics, Institute of Psychiatry and Psychology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Eleonora Gaetani
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
5
|
Murgaš M, Unterholzner J, Stöhrmann P, Philippe C, Godbersen GM, Nics L, Reed MB, Vraka C, Vanicek T, Wadsak W, Kranz GS, Hahn A, Mitterhauser M, Hacker M, Kasper S, Lanzenberger R, Baldinger-Melich P. Effects of bilateral sequential theta-burst stimulation on 5-HT 1A receptors in the dorsolateral prefrontal cortex in treatment-resistant depression: a proof-of-concept trial. Transl Psychiatry 2023; 13:33. [PMID: 36725835 PMCID: PMC9892572 DOI: 10.1038/s41398-023-02319-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 02/03/2023] Open
Abstract
Theta-burst stimulation (TBS) represents a brain stimulation technique effective for treatment-resistant depression (TRD) as underlined by meta-analyses. While the methodology undergoes constant refinement, bilateral stimulation of the dorsolateral prefrontal cortex (DLPFC) appears promising to restore left DLPFC hypoactivity and right hyperactivity found in depression. The post-synaptic inhibitory serotonin-1A (5-HT1A) receptor, also occurring in the DLPFC, might be involved in this mechanism of action. To test this hypothesis, we performed PET-imaging using the tracer [carbonyl-11C]WAY-100635 including arterial blood sampling before and after a three-week treatment with TBS in 11 TRD patients compared to sham stimulation (n = 8 and n = 3, respectively). Treatment groups were randomly assigned, and TBS protocol consisted of excitatory intermittent TBS to the left and inhibitory continuous TBS to the right DLPFC. A linear mixed model including group, hemisphere, time, and Hamilton Rating Scale for Depression (HAMD) score revealed a 3-way interaction effect of group, time, and HAMD on specific distribution volume (VS) of 5-HT1A receptor. While post-hoc comparisons showed no significant changes of 5-HT1A receptor VS in either group, higher 5-HT1A receptor VS after treatment correlated with greater difference in HAMD (r = -0.62). The results of this proof-of-concept trial hint towards potential effects of TBS on the distribution of the 5-HT1A receptor. Due to the small sample size, all results must, however, be regarded with caution.
Collapse
Affiliation(s)
- Matej Murgaš
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Jakob Unterholzner
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Peter Stöhrmann
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Cécile Philippe
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Godber M Godbersen
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Lukas Nics
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Murray B Reed
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Chrysoula Vraka
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Vanicek
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Georg S Kranz
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Vienna, Austria
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Markus Mitterhauser
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
- Department of Chemistry, Institute of Inorganic Chemistry, University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Vienna, Austria.
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria.
| | - Pia Baldinger-Melich
- Department of Psychiatry and Psychotherapy, Clinical Division of General Psychiatry, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Hadden LM, Penny H, Jones AL, Partridge AM, Lancaster TM, Allen C. Pre-frontal stimulation does not reliably increase reward responsiveness. Cortex 2023; 159:268-285. [PMID: 36669446 PMCID: PMC10823575 DOI: 10.1016/j.cortex.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/17/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022]
Abstract
Depression is the leading cause of disability worldwide and its effects can be fatal, with over 800,000 people dying by suicide each year. Neuromodulatory treatments such as transcranial magnetic stimulation (TMS) are being used to treat depression. Despite its endorsement by two regulatory bodies: NICE (2016) and the FDA (2008), there are major questions about the treatment efficacy and biological mechanisms of TMS. Ahn et al.'s (2013) justified the use of TMS in a clinical context in an important study indicating that excitatory TMS increases reward responsiveness. A pseudo-replication of this study by Duprat et al., (2016) also found a similar effect of active TMS, but only with the addition of an exploratory covariate to the analyses-trait reward responsiveness. Here we replicate Ahn et al.'s (2013) key study, and to test the reliability of the effects, and their dependency on trait reward responsiveness as described by Duprat et al., (2016). Using excitatory and sham TMS, we tested volunteers using the probabilistic learning task to measure their reward responsiveness both before and after stimulation. We also examined affect (positive, negative) following stimulation. Irrespective of TMS, the task was shown to be sensitive to reward responsiveness. However, we did not show TMS to be effective in increasing reward responsiveness and we did not replicate Ahn et al., (2013) or Duprat et al., (2016)'s key findings for TMS efficacy, where we provide evidence favouring the null. Moreover, exploratory analyses suggested following active stimulation, positive affect was reduced. Given our findings, we question the basic effects, which support the use of TMS for depression, particularly considering potential deleterious effects of reduced positive affect in patients with depression.
Collapse
Affiliation(s)
- L M Hadden
- Cardiff University, School of Psychology, Tower Building, Park Place, Cardiff, CF10 3AT, UK
| | - H Penny
- Cardiff University, School of Psychology, Tower Building, Park Place, Cardiff, CF10 3AT, UK; Aneurin Bevan University Health Board, St Cadoc's Hospital, Lodge Road, Caerleon, NP18 3XQ, UK
| | - A L Jones
- School of Psychology, Faculty of Medicine, Health, and Life Sciences, Singleton Park, Swansea University, SA2 8PP, UK
| | - A M Partridge
- University of Sheffield, Research Services, New Spring House, 231 Glossop Road, Sheffield, S10 2GW, UK
| | - T M Lancaster
- Cardiff University, School of Psychology, Tower Building, Park Place, Cardiff, CF10 3AT, UK; University of Bath, Department of Psychology, Claverton Down, BA2 7AY, UK
| | - C Allen
- Cardiff University, School of Psychology, Tower Building, Park Place, Cardiff, CF10 3AT, UK; Department of Psychology, Durham University, Durham, DH1 3LE, UK.
| |
Collapse
|
7
|
Gonterman F. A Systematic Review Assessing Patient-Related Predictors of Response to Transcranial Magnetic Stimulation in Major Depressive Disorder. Neuropsychiatr Dis Treat 2023; 19:565-577. [PMID: 36919097 PMCID: PMC10008378 DOI: 10.2147/ndt.s388164] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Objective The safety and efficacy of transcranial magnetic stimulation (TMS) in the acute treatment of major depressive disorder (MDD) is well established. However, it is not well understood which patient-related factors are associated with a more robust antidepressant response. Identifying predictive factors for therapeutic response to TMS treatment in depression will guide clinicians in patient selection. Methods By systematic review of clinical trial data, the current study aims to identify and analyze reported patient-specific predictors of response to an acute course of TMS treatment for MDD. PubMed was searched for randomized controlled trials of TMS for patients with depression. Studies were appraised for risk of bias using components recommended by the Cochrane Collaboration and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Results TMS data were available from 375 studies, 18 of which were included in this review. Treatment response is inversely associated with treatment refractoriness and age. Conclusion Inadequate sample size and large heterogeneity in study parameters among clinical trials limit any strong conclusions from being drawn; nonetheless, despite these limitations, there is mounting evidence, which points to age and treatment refractoriness as candidate variables for predicting clinical outcome. Implications of these findings for treatment of MDD are discussed.
Collapse
Affiliation(s)
- Fernando Gonterman
- Department of Population Health Science & Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Counseling & Clinical Psychology, Teachers College Columbia University, New York, NY, USA
| |
Collapse
|
8
|
Pimenta DC, Lima D, Slawka E, Pacheco-Barrios K, Fregni F. Editorial: Bench to Bedside - the translation of intracortical inhibition marker to clinical practice. PRINCIPLES AND PRACTICE OF CLINICAL RESEARCH (2015) 2022; 8:92-97. [PMID: 37449292 PMCID: PMC10343941 DOI: 10.21801/ppcrj.2022.83.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Affiliation(s)
- Danielle Carolina Pimenta
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Daniel Lima
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Eric Slawka
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Gianlorenco ACL, de Melo PS, Marduy A, Kim AY, Kim CK, Choi H, Song JJ, Fregni F. Electroencephalographic Patterns in taVNS: A Systematic Review. Biomedicines 2022; 10:2208. [PMID: 36140309 PMCID: PMC9496216 DOI: 10.3390/biomedicines10092208] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) is a newer delivery system using a non-invasive stimulation device placed at the ear. taVNS research is focused on clinical trials showing potential therapeutic benefits, however the neurophysiological effects of this stimulation on brain activity are still unclear. We propose a systematic review that aims to describe the effects of taVNS on EEG measures and identify taVNS parameters that can potentially lead to consistent EEG-mediated biomarkers for this therapy. A systematic literature review was carried out following the Preferred Reporting Items for Systematic Reviews and Meta-Analyzes (PRISMA) and the Cochrane handbook for systematic reviews. Clinical trials examining EEG parameters were considered, including absolute and relative power, coherence, degree of symmetry, evoked potentials, and peak frequency of all bands. According to our criteria, 18 studies (from 122 articles) were included. Our findings show a general trend towards increased EEG power spectrum activity in lower frequencies, and changes on early components of the ERP related to inhibitory tasks. This review suggests that quantitative electroencephalography can be used to assess the effects of taVNS on brain activity, however more studies are needed to systematically establish the specific effects and metrics that would reflect the non-invasive stimulation through the auricular branch of the vagus nerve.
Collapse
Affiliation(s)
- Anna Carolyna L. Gianlorenco
- Department of Physical Therapy, Federal University of Sao Carlos, Sao Carlos 13565-090, Brazil
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Paulo S. de Melo
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
- Medicine, Escola Bahiana de Medicina e Saúde Pública, Salvador 40290-000, Brazil
| | - Anna Marduy
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
- União Metropolitana de Ensino e Cultura (UNIME) Salvador, Salvador 42700-000, Brazil
| | - Angela Yun Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Medical Center, Seoul 08308, Korea
| | - Chi Kyung Kim
- Department of Neurology, Korea University Guro Hospital, Seoul 08308, Korea
| | - Hyuk Choi
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul 08308, Korea
- Neurive Co., Ltd., Gimhae 08308, Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Medical Center, Seoul 08308, Korea
- Neurive Co., Ltd., Gimhae 08308, Korea
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| |
Collapse
|
10
|
Kan RLD, Mak ADP, Chan SKW, Zhang BBB, Fong KNK, Kranz GS. Protocol for a prospective open-label clinical trial to investigate the utility of concurrent TBS/fNIRS for antidepressant treatment optimisation. BMJ Open 2022; 12:e053896. [PMID: 35144953 PMCID: PMC8845219 DOI: 10.1136/bmjopen-2021-053896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Repetitive transcranial magnetic stimulation (rTMS) with theta burst stimulation (i.e. TBS) of the dorsolateral prefrontal cortex (DLPFC) is an innovative treatment for major depressive disorder (MDD). However, fewer than 50% of patients show sufficient response to this treatment; markers for response prediction are urgently needed. Research shows considerable individual variability in the brain responses to rTMS. However, whether differences in individual DLPFC modulation by rTMS can be used as a predictive marker for treatment response remains to be investigated. Here, we present a research programme that will exploit the combination of functional near-infrared spectroscopy (fNIRS) with brain stimulation. Concurrent TBS/fNIRS will allow us to systematically investigate TBS-induced modulation of blood oxygenation as a proxy for induced brain activity changes. The findings from this study will (1) elucidate the immediate effects of excitatory and inhibitory TBS on prefrontal activity in TBS treatment-naïve patients with MDD and (2) validate the potential utility of TBS-induced brain modulation at baseline for the prediction of antidepressant response to 4 weeks of daily TBS treatment. METHODS AND ANALYSIS Open-label, parallel-group experiment consisting of two parts. In part 1, 70 patients and 37 healthy controls will be subjected to concurrent TBS/fNIRS. Intermittent TBS (iTBS) and continuous TBS (cTBS) will be applied on the left and right DLPFC, respectively. fNIRS data will be acquired before, during and several minutes after stimulation. In part 2, patients who participated in part 1 will receive a 4 week iTBS treatment of the left DLPFC, performed daily for 5 days per week. Psychometric evaluation will be performed periodically and at 1 month treatment follow-up. Statistical analysis will include a conventional, as well as a machine learning approach. ETHICS AND DISSEMINATION Ethics approval was obtained from the Institutional Review Board. Findings will be disseminated through scientific journals, conferences and university courses. TRIAL REGISTRATION NUMBER NCT04526002.
Collapse
Affiliation(s)
- Rebecca L D Kan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Arthur D P Mak
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China
| | - Sherry K W Chan
- Department of Psychiatry, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| | - Bella B B Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kenneth N K Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Georg S Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Wien, Austria
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
11
|
Khoodoruth MAS, Estudillo-Guerra MA, Pacheco-Barrios K, Nyundo A, Chapa-Koloffon G, Ouanes S. Glutamatergic System in Depression and Its Role in Neuromodulatory Techniques Optimization. Front Psychiatry 2022; 13:886918. [PMID: 35492692 PMCID: PMC9047946 DOI: 10.3389/fpsyt.2022.886918] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
Depressive disorders are among the most common psychiatric conditions and contribute to significant morbidity. Even though the use of antidepressants revolutionized the management of depression and had a tremendous positive impact on the patient's outcome, a significant proportion of patients with major depressive disorder (MDD) show no or partial or response even with adequate treatment. Given the limitations of the prevailing monoamine hypothesis-based pharmacotherapy, glutamate and glutamatergic related pathways may offer an alternative and a complementary option for designing novel intervention strategies. Over the past few decades, there has been a growing interest in understanding the neurobiological underpinnings of glutamatergic dysfunctions in the pathogenesis of depressive disorders and the development of new pharmacological and non-pharmacological treatment options. There is a growing body of evidence for the efficacy of neuromodulation techniques, including transcranial magnetic stimulation, transcutaneous direct current stimulation, transcranial alternating current stimulation, and photo-biomodulation on improving connectivity and neuroplasticity associated with depression. This review attempts to revisit the role of glutamatergic neurotransmission in the etiopathogenesis of depressive disorders and review the current neuroimaging, neurophysiological and clinical evidence of these neuromodulation techniques in the pathophysiology and treatment of depression.
Collapse
Affiliation(s)
| | - Maria Anayali Estudillo-Guerra
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Harvard Medical School, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, MA, United States.,Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | - Azan Nyundo
- Department of Psychiatry and Mental Health, School of Medicine and Dental Health, The University of Dodoma, Dodoma, Tanzania
| | | | - Sami Ouanes
- Department of Psychiatry, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
12
|
Hoirisch-Clapauch S. Mechanisms affecting brain remodeling in depression: do all roads lead to impaired fibrinolysis? Mol Psychiatry 2022; 27:525-533. [PMID: 34404914 DOI: 10.1038/s41380-021-01264-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023]
Abstract
Fibrinolysis occurs when plasminogen activators, such as tissue plasminogen activator (tPA), convert plasminogen to plasmin, which dissolves the fibrin clot. The proteolytic activity of tPA and plasmin is not restricted to fibrin degradation. In the extravascular space, these two proteases modify a variety of substrates other than fibrin, playing a crucial role in physiological and pathological tissue remodeling. In the brain, for example, tPA and plasmin mediate the conversion of brain-derived neurotrophic factor precursor (proBDNF) to mature brain-derived neurotrophic factor precursor (BDNF). Thus, the fibrinolytic system influences processes reported to be dysfunctional in depression, including neurogenesis, synaptic plasticity, and reward processing. The hypothesis that decreased fibrinolytic activity is an important element in the pathogenesis of depression is supported by the association between depression and increased levels of plasminogen activator inhibitor (PAI)-1, the main inhibitor of tPA. Also, various biochemical markers of depression induce PAI-1 synthesis, including hypercortisolism, hyperinsulinemia, hyperleptinemia, increased levels of cytokines, and hyperhomocysteinemia. Moreover, hypofibrinolysis provides a link between depression and emotional eating, binge eating, vegetarianism, and veganism. This paper discusses the role of reduced fibrinolytic activity in the bidirectional interplay between depression and its somatic manifestations and complications. It also reviews evidence that abnormal fibrinolysis links heterogeneous conditions associated with treatment-resistant depression. Understanding the role of hypofibrinolysis in depression may open new avenues for its treatment.
Collapse
|
13
|
Voetterl H, Miron JP, Mansouri F, Fox L, Hyde M, Blumberger DM, Daskalakis ZJ, Vila-Rodriguez F, Sack AT, Downar J. Investigating EEG biomarkers of clinical response to low frequency rTMS in depression. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2021. [DOI: 10.1016/j.jadr.2021.100250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
14
|
Ma H, Lin J, He J, Lo DHT, Tsang HWH. Effectiveness of TES and rTMS for the Treatment of Insomnia: Meta-Analysis and Meta-Regression of Randomized Sham-Controlled Trials. Front Psychiatry 2021; 12:744475. [PMID: 34744835 PMCID: PMC8569107 DOI: 10.3389/fpsyt.2021.744475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/03/2021] [Indexed: 02/05/2023] Open
Abstract
Objectives: Transcranial electric stimulation (TES) and repetitive transcranial magnetic stimulation (rTMS) have experienced significant development in treating insomnia. This review aims to examine the effectiveness of randomized sham-controlled trials of TES and rTMS in improving insomnia and examine potential moderators associated with the effect of the treatment. Methods: Nine electronic databases were searched for studies comparing the effects of TES/rTMS with sham group on insomnia from the inception of these databases to June 25, 2021, namely, Medline, Embase, PsycINFO, CINAHL, Cochrane Library, Web of Science, PubMed, ProQuest Dissertation and Thesis, and CNKI. Meta-analyses were conducted to examine the effect of TES and rTMS in treating insomnia. Univariate meta-regression was performed to explore potential treatment moderators that may influence the pooled results. Risk of bias was assessed by using the Cochrane Risk of Bias Tool. Results: A total of 16 TES studies and 27 rTMS studies were included in this review. The pooled results indicated that there was no significant difference between the TES group and the sham group in improving objective measures of sleep. rTMS was superior to its sham group in improving sleep efficiency, total sleep time, sleep onset latency, wake up after sleep onset, and number of awakenings (all p < 0.05). Both TES and rTMS were superior to their sham counterparts in improving sleep quality as measured by the Pittsburgh Sleep Quality Index at post-intervention. The weighted mean difference for TES and rTMS were -1.17 (95% CI: -1.98, -0.36) and -4.08 (95% CI: -4.86, -3.30), respectively. Gender, total treatment sessions, number of pulses per session, and length of treatment per session were associated with rTMS efficacy. No significant relationship was observed between TES efficacy and the stimulation parameters. Conclusions: It seems that TES and rTMS have a chance to play a decisive role in the therapy of insomnia. Possible dose-dependent and gender difference effects of rTMS are suggested.
Collapse
Affiliation(s)
- Haixia Ma
- Department of Rehabilitation, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR China
- Mental Health Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR China
| | - Jingxia Lin
- Department of Rehabilitation, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR China
- Mental Health Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR China
| | - Jiali He
- Department of Rehabilitation, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR China
| | - Dilys Hoi Ting Lo
- Department of Rehabilitation, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR China
| | - Hector W. H. Tsang
- Department of Rehabilitation, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR China
- Mental Health Research Centre, The Hong Kong Polytechnic University, Kowloon, Hong Kong, SAR China
| |
Collapse
|
15
|
See RE, Eusebio B, Agnew D, Heatwole M. Assessment of multiple salivary biomarkers during repetitive transcranial magnetic stimulation (rTMS) treatment for major depression. Psychiatry Res 2021; 302:114053. [PMID: 34144510 DOI: 10.1016/j.psychres.2021.114053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/02/2021] [Indexed: 01/04/2023]
Abstract
Steroid hormones may serve as potential biomarkers of treatment response for major depressive disorder (MDD). Here, we assessed salivary levels of cortisol, dehydroepiandrosterone (DHEA), and DHEA sulfate (DHEA-S), as well as α-amylase activity, across 30 sessions of bilateral repetitive transcranial magnetic stimulation (rTMS) of the dorsolateral prefrontal cortex in MDD patients. While rTMS significantly improved symptoms as measured by three different symptom scales, salivary biomarker levels and their ratios showed no significant changes across sessions. These results do not support the routine clinical use of these biomarkers as reliable indicators of treatment outcome during rTMS administration for MDD.
Collapse
Affiliation(s)
- Ronald E See
- Department of Psychology, Westmont College, CA, USA.
| | | | | | | |
Collapse
|
16
|
Abstract
Transcranial direct current stimulation (tDCS) is a novel treatment option for major depression which could be provided as a first-line treatment. tDCS is a non-invasive form of transcranial stimulation which changes cortical tissue excitability by applying a weak (0.5-2 mA) direct current via scalp electrodes. Anodal and cathodal stimulation leads to depolarisation and hyperpolarisation, respectively, and cumulative effects are observed with repeated sessions. The montage in depression most often involves anodal stimulation to the left dorsolateral prefrontal cortex. Rates of clinical response, remission, and improvements in depressive symptoms following a course of active tDCS are greater in comparison to a course of placebo sham-controlled tDCS. In particular, the largest treatment effects are evident in first episode and recurrent major depression, while minimal effects have been observed in treatment-resistant depression. The proposed mechanism is neuroplasticity at the cellular and molecular level. Alterations in neural responses have been found at the stimulation site as well as subcortically in prefrontal-amygdala connectivity. A possible mediating effect could be cognitive control in emotion dysregulation. Additional beneficial effects on cognitive impairments have been reported, which would address an important unmet need. The tDCS device is portable and can be used at home. Clinical trials are required to establish the efficacy, feasibility and acceptability of home-based tDCS treatment and mechanisms.
Collapse
Affiliation(s)
- Rachel Woodham
- School of Psychology, University of East London, London, UK
| | | | - Julian Mutz
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Cynthia H Y Fu
- School of Psychology, University of East London, London, UK.,Centre for Affective Disorders, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
17
|
Valiuliene G, Valiulis V, Dapsys K, Vitkeviciene A, Gerulskis G, Navakauskiene R, Germanavicius A. Brain stimulation effects on serum BDNF, VEGF, and TNFα in treatment-resistant psychiatric disorders. Eur J Neurosci 2021; 53:3791-3802. [PMID: 33861484 DOI: 10.1111/ejn.15232] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023]
Abstract
Resistance to pharmacological treatment poses a notable challenge for psychiatry. Such cases are usually treated with brain stimulation techniques, including repetitive transcranial magnetic stimulation (rTMS) and electroconvulsive therapy (ECT). Empirical evidence links treatment resistance to insufficient brain plasticity and chronic inflammation. Therefore, this study encompasses analysis of neurotrophic and inflammatory factors in psychiatric patients undergoing rTMS and ECT in order to refine the selection of patients and predict clinical outcomes. This study enrolled 25 drug-resistant depressive patients undergoing rTMS and 31 drug-resistant schizophrenia patients undergoing ECT. Clinical efficacy of brain stimulation therapies was gauged using MADRS and HAM-D scales in the depression group and PANSS scale in the schizophrenia group. Blood-derived BDNF, VEGF, and TNFα were analysed during the treatment course. For reference, 19 healthy control subjects were also enrolled. After statistical analysis, no significant differences were detected in BDNF, VEGF, and TNFα concentrations among healthy, depressive, and schizophrenic subject groups before the treatment. However, depressive patient treatment with rTMS has increased BDNF concentration, while schizophrenic patient treatment with ECT has lowered the concentration of TNFα. Our findings suggest that a lower initial TNFα concentration could be a marker for treatment success in depressed patients undergoing rTMS, whereas in schizophrenic patient group treated with ECT, a higher concentration of VEGF correlates to milder symptoms post-treatment, especially in the negative scale.
Collapse
Affiliation(s)
- Giedre Valiuliene
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Vladas Valiulis
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania.,Republican Vilnius Psychiatric Hospital, Vilnius, Lithuania
| | - Kastytis Dapsys
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania.,Republican Vilnius Psychiatric Hospital, Vilnius, Lithuania.,Life Sciences Center, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Aida Vitkeviciene
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Giedrius Gerulskis
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania.,Republican Vilnius Psychiatric Hospital, Vilnius, Lithuania
| | - Ruta Navakauskiene
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Arunas Germanavicius
- Life Sciences Center, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania.,Republican Vilnius Psychiatric Hospital, Vilnius, Lithuania.,Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
18
|
Bacterial Metabolites of Human Gut Microbiota Correlating with Depression. Int J Mol Sci 2020; 21:ijms21239234. [PMID: 33287416 PMCID: PMC7730936 DOI: 10.3390/ijms21239234] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Depression is a global threat to mental health that affects around 264 million people worldwide. Despite the considerable evolution in our understanding of the pathophysiology of depression, no reliable biomarkers that have contributed to objective diagnoses and clinical therapy currently exist. The discovery of the microbiota-gut-brain axis induced scientists to study the role of gut microbiota (GM) in the pathogenesis of depression. Over the last decade, many of studies were conducted in this field. The productions of metabolites and compounds with neuroactive and immunomodulatory properties among mechanisms such as the mediating effects of the GM on the brain, have been identified. This comprehensive review was focused on low molecular weight compounds implicated in depression as potential products of the GM. The other possible mechanisms of GM involvement in depression were presented, as well as changes in the composition of the microbiota of patients with depression. In conclusion, the therapeutic potential of functional foods and psychobiotics in relieving depression were considered. The described biomarkers associated with GM could potentially enhance the diagnostic criteria for depressive disorders in clinical practice and represent a potential future diagnostic tool based on metagenomic technologies for assessing the development of depressive disorders.
Collapse
|
19
|
Fukuda AM, Hindley LE, Kang JWD, Tirrell E, Tyrka AR, Ayala A, Carpenter LL. Peripheral vascular endothelial growth factor changes after transcranial magnetic stimulation in treatment-resistant depression. Neuroreport 2020; 31:1121-1127. [PMID: 32956213 PMCID: PMC7541741 DOI: 10.1097/wnr.0000000000001523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To determine if vascular endothelial growth factor (VEGF) changes with transcranial magnetic stimulation (TMS) in treatment-resistant major depressive disorder (MDD). METHODS Serum from a naturalistic population of 15 patients with MDD was collected at baseline and after standard TMS treatment. VEGF concentration was determined via ELISA. Inventory of Depressive Symptomatology Self Report and Patient Health Questionnaire were used as a measure of depression symptom severity, clinical response and remission. Mann-Whitney U and Kendall's Tau Correlation were used for continuous variables. RESULTS VEGF increased from pre- to post-TMS (+30.3%) in remitters whereas VEGF decreased in non-remitters (-9.87%) (P < 0.05). This same pattern was observed when comparing mean %change in VEGF between responders (+14.7%) and non-responders (-14.9%) (P = 0.054). Correlation was present between change in VEGF concentration (baseline to post) and change in Inventory of Depressive Symptomatology-Self Report at Tx30 (r = -0.371, P < 0.054), reflecting greater increases in VEGF linked to greater improvement in depressive symptoms following the standard 6-week course of TMS. CONCLUSION Patients with a successful treatment with TMS had significantly greater increase in VEGF from baseline to after treatment compared to non-responders/non-remitters and a larger increase in VEGF was associated with greater improvement in depressive symptoms after TMS. This is the first report examining VEGF levels in depressed patients receiving TMS. This study provides correlative data supporting further investigation into VEGF's role as an important mediator in the processes underpinning TMS' antidepressant effects and as a potential biomarker of clinical outcomes.
Collapse
Affiliation(s)
- Andrew M. Fukuda
- Butler Hospital TMS Clinic and Neuromodulation Research Facility, 345 Blackstone Boulevard, Providence, RI, 02906, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Box G-BH, Providence, RI, 02912, USA
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, Rhode Island 02906, USA
| | - Lauren E. Hindley
- Butler Hospital TMS Clinic and Neuromodulation Research Facility, 345 Blackstone Boulevard, Providence, RI, 02906, USA
| | - Jee Won Diane Kang
- Butler Hospital TMS Clinic and Neuromodulation Research Facility, 345 Blackstone Boulevard, Providence, RI, 02906, USA
| | - Eric Tirrell
- Butler Hospital TMS Clinic and Neuromodulation Research Facility, 345 Blackstone Boulevard, Providence, RI, 02906, USA
| | - Audrey R Tyrka
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Box G-BH, Providence, RI, 02912, USA
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, Rhode Island 02906, USA
| | - Alfred Ayala
- Division of Surgical Research/Department of Surgery, Rhode Island Hospital/Brown University School of Medicine, Providence 02903, USA
| | - Linda L. Carpenter
- Butler Hospital TMS Clinic and Neuromodulation Research Facility, 345 Blackstone Boulevard, Providence, RI, 02906, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Box G-BH, Providence, RI, 02912, USA
| |
Collapse
|
20
|
Corlier J, Wilson A, Hunter AM, Vince-Cruz N, Krantz D, Levitt J, Minzenberg MJ, Ginder N, Cook IA, Leuchter AF. Changes in Functional Connectivity Predict Outcome of Repetitive Transcranial Magnetic Stimulation Treatment of Major Depressive Disorder. Cereb Cortex 2020; 29:4958-4967. [PMID: 30953441 DOI: 10.1093/cercor/bhz035] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/28/2019] [Accepted: 02/12/2019] [Indexed: 12/15/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) treatment of major depressive disorder (MDD) is associated with changes in brain functional connectivity (FC). These changes may be related to the mechanism of action of rTMS and explain the variability in clinical outcome. We examined changes in electroencephalographic FC during the first rTMS treatment in 109 subjects treated with 10 Hz stimulation to left dorsolateral prefrontal cortex. All subjects subsequently received 30 treatments and clinical response was defined as ≥40% improvement in the inventory of depressive symptomatology-30 SR score at treatment 30. Connectivity change was assessed with coherence, envelope correlation, and a novel measure, alpha spectral correlation (αSC). Machine learning was used to develop predictive models of outcome for each connectivity measure, which were compared with prediction based upon early clinical improvement. Significant connectivity changes were associated with clinical outcome (P < 0.001). Machine learning models based on αSC yielded the most accurate prediction (area under the curve, AUC = 0.83), and performance improved when combined with early clinical improvement measures (AUC = 0.91). The initial rTMS treatment session produced robust changes in FC, which were significant predictors of clinical outcome of a full course of treatment for MDD.
Collapse
Affiliation(s)
- Juliana Corlier
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles CA 90024, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Andrew Wilson
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles CA 90024, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Aimee M Hunter
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles CA 90024, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Nikita Vince-Cruz
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles CA 90024, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - David Krantz
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles CA 90024, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Jennifer Levitt
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles CA 90024, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Michael J Minzenberg
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles CA 90024, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Nathaniel Ginder
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles CA 90024, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| | - Ian A Cook
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles CA 90024, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences at UCLA, Los Angeles, CA 90024, USA
| | - Andrew F Leuchter
- TMS Clinical and Research Program, Neuromodulation Division, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles CA 90024, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024, USA
| |
Collapse
|
21
|
Abstract
Transcranial magnetic stimulation (TMS) is a safe and effective therapeutic modality for a rapidly expanding range of neuropsychiatric indications. Among psychiatric conditions, it is presently approved by the US Food and Drug Administration for treatment-resistant unipolar major depressive disorder and obsessive-compulsive disorder, 2 highly prevalent conditions with a considerable public health impact. There is also mounting evidence for its clinical utility in numerous other neuropsychiatric conditions. Nonetheless, many mental health providers, as well as primary care and other providers, remain unfamiliar with its clinical use. In this primer, we seek to describe in nontechnical terms how the magnetic field is applied to the brain, the unmet needs that may be remediated with TMS, the present state of evidence for clinical effectiveness, particularly in major depressive disorder, the safety profile of TMS, what patients experience during TMS, and some recent developments that serve to advance the use of this still novel intervention. TMS is poised to assume an important place in the armamentarium of interventions to better serve our patients, especially those with serious, chronic conditions with high rates of resistance to more conventional treatments. Consequently, it is essential that mental health providers gain as adequate a working knowledge of device-based interventions such as TMS as they currently have of psychopharmacological and psychosocial interventions. Among other potential benefits, this information should aid the process of obtaining informed consent from patients who are candidates for these treatments.
Collapse
|
22
|
Borrione L, Bellini H, Razza LB, Avila AG, Baeken C, Brem AK, Busatto G, Carvalho AF, Chekroud A, Daskalakis ZJ, Deng ZD, Downar J, Gattaz W, Loo C, Lotufo PA, Martin MDGM, McClintock SM, O'Shea J, Padberg F, Passos IC, Salum GA, Vanderhasselt MA, Fraguas R, Benseñor I, Valiengo L, Brunoni AR. Precision non-implantable neuromodulation therapies: a perspective for the depressed brain. ACTA ACUST UNITED AC 2020; 42:403-419. [PMID: 32187319 PMCID: PMC7430385 DOI: 10.1590/1516-4446-2019-0741] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
Abstract
Current first-line treatments for major depressive disorder (MDD) include pharmacotherapy and cognitive-behavioral therapy. However, one-third of depressed patients do not achieve remission after multiple medication trials, and psychotherapy can be costly and time-consuming. Although non-implantable neuromodulation (NIN) techniques such as transcranial magnetic stimulation, transcranial direct current stimulation, electroconvulsive therapy, and magnetic seizure therapy are gaining momentum for treating MDD, the efficacy of non-convulsive techniques is still modest, whereas use of convulsive modalities is limited by their cognitive side effects. In this context, we propose that NIN techniques could benefit from a precision-oriented approach. In this review, we discuss the challenges and opportunities in implementing such a framework, focusing on enhancing NIN effects via a combination of individualized cognitive interventions, using closed-loop approaches, identifying multimodal biomarkers, using computer electric field modeling to guide targeting and quantify dosage, and using machine learning algorithms to integrate data collected at multiple biological levels and identify clinical responders. Though promising, this framework is currently limited, as previous studies have employed small samples and did not sufficiently explore pathophysiological mechanisms associated with NIN response and side effects. Moreover, cost-effectiveness analyses have not been performed. Nevertheless, further advancements in clinical trials of NIN could shift the field toward a more “precision-oriented” practice.
Collapse
Affiliation(s)
- Lucas Borrione
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Helena Bellini
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Lais Boralli Razza
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Ana G Avila
- Centro de Neuropsicologia e Intervenção Cognitivo-Comportamental, Faculdade de Psicologia e Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
| | - Chris Baeken
- Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Department of Psychiatry, University Hospital (UZ Brussel), Brussels, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Anna-Katharine Brem
- Max Planck Institute of Psychiatry, Munich, Germany.,Division of Interventional Cognitive Neurology, Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Geraldo Busatto
- Laboratório de Neuroimagem em Psiquiatria (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, USP, São Paulo, SP, Brazil
| | - Andre F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Adam Chekroud
- Spring Health, New York, NY, USA.,Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Zafiris J Daskalakis
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Zhi-De Deng
- Noninvasive Neuromodulation Unit, Experimental Therapeutic & Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.,Department of Psychiatry and Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA
| | - Jonathan Downar
- Department of Psychiatry and Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Centre for Mental Health and Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Wagner Gattaz
- Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas,
Faculdade de Medicina, USP, São Paulo, SP, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, USP, São Paulo, SP, Brazil
| | - Colleen Loo
- School of Psychiatry and Black Dog Institute, University of New South Wales, Sydney, Australia
| | - Paulo A Lotufo
- Estudo Longitudinal de Saúde do Adulto (ELSA), Centro de Pesquisa Clínica e Epidemiológica, Hospital Universitário, USP, São Paulo, SP, Brazil
| | - Maria da Graça M Martin
- Laboratório de Ressonância Magnética em Neurorradiologia (LIM-44) and Instituto de Radiologia, Hospital das Clínicas, Faculdade de Medicina, USP, São Paulo, SP, Brazil
| | - Shawn M McClintock
- Neurocognitive Research Laboratory, Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jacinta O'Shea
- Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity, Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Ives C Passos
- Laboratório de Psiquiatria Molecular e Programa de
Transtorno Bipolar, Hospital de Clínicas de Porto Alegre (HCPA), Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Giovanni A Salum
- Departamento de Psiquiatria, Seção de Afeto Negativo e Processos Sociais (SANPS), HCPA, UFRGS, Porto Alegre, RS, Brazil
| | - Marie-Anne Vanderhasselt
- Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium.,Department of Experimental Clinical and Health Psychology, Psychopathology and Affective Neuroscience Lab, Ghent University, Ghent, Belgium
| | - Renerio Fraguas
- Laboratório de Neuroimagem em Psiquiatria (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, USP, São Paulo, SP, Brazil.,Hospital Universitário, USP, São Paulo, SP, Brazil
| | - Isabela Benseñor
- Estudo Longitudinal de Saúde do Adulto (ELSA), Centro de Pesquisa Clínica e Epidemiológica, Hospital Universitário, USP, São Paulo, SP, Brazil
| | - Leandro Valiengo
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - Andre R Brunoni
- Serviço Interdisciplinar de Neuromodulação, Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP, Brazil.,Laboratório de Neurociências (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas,
Faculdade de Medicina, USP, São Paulo, SP, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, USP, São Paulo, SP, Brazil.,Hospital Universitário, USP, São Paulo, SP, Brazil
| |
Collapse
|
23
|
Mithani K, Meng Y, Abrahao A, Mikhail M, Hamani C, Giacobbe P, Lipsman N. Electroencephalography in Psychiatric Surgery: Past Use and Future Directions. Stereotact Funct Neurosurg 2019; 97:141-152. [PMID: 31412334 DOI: 10.1159/000500994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 05/08/2019] [Indexed: 11/19/2022]
Abstract
The last two decades have seen a re-emergence of surgery for intractable psychiatric disease, in large part due to increased use of deep brain stimulation. The development of more precise, image-guided, less invasive interventions has improved the safety of these procedures, even though the relative merits of modulation at various targets remain under investigation. With an increase in the number and type of interventions for modulating mood/anxiety circuits, the need for biomarkers to guide surgeries and predict treatment response is as critical as ever. Electroencephalography (EEG) has a long history in clinical neurology, cognitive neuroscience, and functional neurosurgery, but has limited prior usage in psychiatric surgery. MEDLINE, Embase, and Psyc-INFO searches on the use of EEG in guiding psychiatric surgery yielded 611 articles, which were screened for relevance and quality. We synthesized three important themes. First, considerable evidence supports EEG as a biomarker for response to various surgical and non-surgical therapies, but large-scale investigations are lacking. Second, intraoperative EEG is likely more valuable than surface EEG for guiding target selection, but comes at the cost of greater invasiveness. Finally, EEG may be a promising tool for objective functional feedback in developing "closed-loop" psychosurgeries, but more systematic investigations are required.
Collapse
Affiliation(s)
- Karim Mithani
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ying Meng
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | - Mirriam Mikhail
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Nir Lipsman
- Sunnybrook Research Institute, Toronto, Ontario, Canada,
| |
Collapse
|
24
|
Cardinal TM, Antunes LC, Brietzke AP, Parizotti CS, Carvalho F, De Souza A, da Silva Torres IL, Fregni F, Caumo W. Differential Neuroplastic Changes in Fibromyalgia and Depression Indexed by Up-Regulation of Motor Cortex Inhibition and Disinhibition of the Descending Pain System: An Exploratory Study. Front Hum Neurosci 2019; 13:138. [PMID: 31105542 PMCID: PMC6494946 DOI: 10.3389/fnhum.2019.00138] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/08/2019] [Indexed: 01/02/2023] Open
Abstract
Background: Major depressive disorder (MDD) and fibromyalgia (FM) present overlapped symptoms. Although the connection between these two disorders has not been elucidated yet, the disruption of neuroplastic processes that mediate the equilibrium in the inhibitory systems stands out as a possible mechanism. Thus, the purpose of this cross-sectional exploratory study was: (i) to compare the motor cortex inhibition indexed by transcranial magnetic stimulation (TMS) measures [short intracortical inhibition (SICI) and intracortical facilitation (ICF)], as well as the function of descending pain modulatory systems (DPMS) among FM, MDD, and healthy subjects (HS); (ii) to compare SICI, ICF, and the role of DPMS evaluated by the change on Numerical Pain Scale (NPS) during the conditioned pain modulation test (CPM-test) between FM and MDD considering the BDNF-adjusted index; (iii) to assess the relationship between the role of DPMS and the BDNF-adjusted index, despite clinical diagnosis. Patients and Methods: A cohort of 63 women, aged 18 to 75 years [FM (n = 18), MDD (n = 19), and HC (n = 29)]. Results: The MANCOVA analysis revealed that the mean of SICI was 53.40% larger in FM compared to MDD [1.03 (0.50) vs. 0.55 (0.43)] and 66.99% larger compared to HC [1.03 (0.50) vs. 0.34 (0.19)], respectively. The inhibitory potency of the DPMS assessed by the change on the NPS during CPM-test was 112.29 % lower in the FM compared to MDD [0.22 (1.37) vs. -0.87 (1.49)]. The mean of BDNF from FM compared to MDD was 35.70% higher [49.82 (16.31) vs. 14.12 (8.86)]. In FM, the Spearman's coefficient between the change in the NPS during CPM-test with the SICI was Rho = -0.49, [confidence interval (CI) 95%; -0.78 to -0.03]. The BDNF-adjusted index was positively correlated with the disinhibition of the DPMS. Conclusion: These findings support the hypothesis that in FM a deteriorated function of cortical inhibition, indexed by a higher SICI parameter, a lower function of the DPMS, together with a higher level of BDNF indicate that FM has different pathological substrates from depression. They suggest that an up-regulation phenomenon of intracortical inhibitory networks associated with a disruption of the DPMS function occurs in FM.
Collapse
Affiliation(s)
- Tiago Madeira Cardinal
- Post-graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luciana Conceição Antunes
- Department of Nutrition, Health Science Center, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Aline Patricia Brietzke
- Post-graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cristiane Schulz Parizotti
- Post-graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fabiana Carvalho
- Post-graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Andressa De Souza
- Post-graduate Program in Health and Human Development, Universidade La Salle, Canoas, Brazil
| | - Iraci Lucena da Silva Torres
- Post-graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Pharmacology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Wolnei Caumo
- Post-graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Surgery, Pain, and Anesthesia, School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Anesthesiologist, Pain and Palliative Care Service, Hospital de Clínicas de Porto Alegre, Laboratory of Pain and Neuromodulation, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
25
|
Kar SK. Predictors of Response to Repetitive Transcranial Magnetic Stimulation in Depression: A Review of Recent Updates. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2019; 17:25-33. [PMID: 30690937 PMCID: PMC6361049 DOI: 10.9758/cpn.2019.17.1.25] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/22/2018] [Accepted: 06/14/2018] [Indexed: 12/29/2022]
Abstract
Transcranial magnetic stimulation (TMS) has been increasingly used in the treatment of various neuropsychiatric disorders including depression over the past two decades. The responses to treatment with TMS are variable as found in the recent studies. Evidences suggest that various factors influence the outcome of depression treated with TMS. Understanding the predictors of response to TMS treatment in depression will guide the clinician in appropriate selection of patients for TMS treatment as well as needful modification in the TMS technique and protocol to have a better clinical outcome. This article comprehensively reviews the factors that predict the outcome of TMS treatment in depression.
Collapse
Affiliation(s)
- Sujita Kumar Kar
- Department of Psychiatry, King George's Medical University, Lucknow, India
| |
Collapse
|
26
|
Shinba T, Kariya N, Matsuda S, Matsuda H, Obara Y. Increase of frontal cerebral blood volume during transcranial magnetic stimulation in depression is related to treatment effectiveness: A pilot study with near-infrared spectroscopy. Psychiatry Clin Neurosci 2018; 72:602-610. [PMID: 29774621 DOI: 10.1111/pcn.12680] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 04/17/2018] [Accepted: 05/13/2018] [Indexed: 01/08/2023]
Abstract
AIM Alterations of cerebral blood flow have been reported in studies of depression treated by transcranial magnetic stimulation (TMS). However, the relation between these changes in activity during stimulation and the effectiveness of TMS is not known. The aim of this study was to determine whether changes in frontal cerebral blood volume measured as frontal hemoglobin concentration (fHbC) during TMS are correlated with clinical outcomes of treatment. METHODS Fifteen drug-resistant patients with depression underwent a standard treatment regimen of TMS to the left dorsolateral prefrontal cortex. We recorded fHbC during stimulation at the start and end of the TMS treatment series using near-infrared spectroscopy. Symptom severity was determined using the Montgomery-Åsberg Depression Rating Scale. RESULTS At the start of the TMS series, fHbC increased during stimulation in a majority of patients with no relation to symptom severity. However, at the end of the series, fHbC increase during stimulation was negatively correlated with the Montgomery-Åsberg Depression Rating Scale score and positively with the score reduction. Patients showing a decreasing response of fHbC during TMS at the end of the series experienced less clinical improvement. CONCLUSION These results suggest that the maintenance of frontal activation during stimulation in the course of TMS series is related to the effectiveness in the treatment of depression. Measurement of fHbC during stimulation is informative in the clinical use of TMS.
Collapse
Affiliation(s)
- Toshikazu Shinba
- Department of Psychiatry, Shizuoka Saiseikai General Hospital, Shizuoka, Japan.,Maynds Tower Mental Clinic, Tokyo, Japan
| | | | | | | | | |
Collapse
|
27
|
Chail A, Saini RK, Bhat PS, Srivastava K, Chauhan V. Transcranial magnetic stimulation: A review of its evolution and current applications. Ind Psychiatry J 2018; 27:172-180. [PMID: 31359968 PMCID: PMC6592198 DOI: 10.4103/ipj.ipj_88_18] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a recently developed noninvasive brain stimulation method for the treatment of psychiatric and neurological disorders. Although, its exact mechanism of action is still not clear, current evidence points toward its role in causing long-term inhibition and excitation of neurons in certain brain areas. As evidence steadily grows in favor of rTMS as a therapeutic tool; there is a need to develop standardized protocols for its administration. There have been no reports of any serious side effects with rTMS, though its use is restricted in those having magnetic implants or recent adverse neurological or cardiac event. Of all the psychiatric indications of rTMS, the evidence is most robust for treatment of refractory unipolar depression. This paper reviews contemporary literature highlighting the evolution of rTMS as a diagnostic and therapeutic tool, especially in the management of treatment-resistant depression.
Collapse
Affiliation(s)
- Amit Chail
- Department of Psychiatry, Armed Forces Medical College, Pune, Maharashtra, India
| | - Rajiv Kumar Saini
- Department of Psychiatry, Armed Forces Medical College, Pune, Maharashtra, India
| | - P. S. Bhat
- Department of Psychiatry, Armed Forces Medical College, Pune, Maharashtra, India
| | - Kalpana Srivastava
- Department of Psychiatry, Armed Forces Medical College, Pune, Maharashtra, India
| | - Vinay Chauhan
- Associate Professor, Armed Forces Medical College, Pune, Maharashtra, India
| |
Collapse
|
28
|
Roh HT, So WY. Cranial electrotherapy stimulation affects mood state but not levels of peripheral neurotrophic factors or hypothalamic- pituitary-adrenal axis regulation. Technol Health Care 2018; 25:403-412. [PMID: 27886020 DOI: 10.3233/thc-161275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cranial electrotherapy stimulation (CES) is reported to aid in relieving symptoms of depression and anxiety, though the mechanism underlying this effect remains unclear. Therefore, the present study aimed to evaluate changes in the hypothalamic-pituitary-adrenal (HPA) axis response and levels of neurotrophic factors, as well as changes in mood state, in patients undergoing CES therapy. Fifty healthy postmenopausal women were randomly assigned to either a Sham CES group (n = 25) or an Active CES group (n = 25). CES treatment was conducted in 20-minute sessions, three times per week for 8 weeks, using a micro current cranial electrotherapy stimulator. Blood samples were collected prior to and following the 8-week treatment period for measurement of cortisol, adrenocorticotropic hormone (ACTH), brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF) levels. Changes in mood state were also examined at the time of blood collection using the Profile of Mood States (POMS). No significant differences in cortisol, ACTH, BDNF, or NGF were observed between the two participant groups (p > 0.05) following the treatment period. However, those in the Active CES group exhibited significantly decreased Tension-Anxiety and Depression-Dejection scores on the POMS relative to pre-treatment scores (p < 0.05). Furthermore, Depression-Dejection scores following treatment were significantly lower in the Active CES group than in the Sham CES group (p < 0.05). No significant differences were observed in any other POMS scores such as Anger-Hostility, Vigor-Activity, Fatigue-Inertia, and Confusion-Bewilderment (p > 0.05). These results suggest that 8 weeks of CES treatment does not induce changes in blood levels of neurotrophic factors or HPA-axis-related hormones, though such treatment may be effective in treating symptoms of anxiety and depression.
Collapse
Affiliation(s)
- Hee-Tae Roh
- Department of Physical Education, College of Arts and Physical Education, Dong-A University, Busan, Korea
| | - Wi-Young So
- Sports and Health Care Major, College of Humanities and Arts, Korea National University of Transportation, Chungju-si, Korea
| |
Collapse
|
29
|
Pavlova EL, Menshikova AA, Semenov RV, Bocharnikova EN, Gotovtseva GN, Druzhkova TA, Gersamia AG, Gudkova AA, Guekht AB. Transcranial direct current stimulation of 20- and 30-minutes combined with sertraline for the treatment of depression. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:31-38. [PMID: 29233783 DOI: 10.1016/j.pnpbp.2017.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/04/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) can be an effective treatment for depression, however, the duration of the stimulation session, among other parameters, needs to be optimized. METHODS 69 mild to moderately depressed patients (age 37.6±10.5years, 19 men) were randomized into three groups - 30-, 20-minute or sham tDCS. 10 daily sessions of anodal/sham tDCS of the left DLPFC (0.5mA; electrode 3,5×7cm) combined with 50mg/day of sertraline were performed. Mood, cognition and BDNF level were assessed before and after the treatment. RESULTS A significant difference between groups was observed in the percent change of the Hamilton Depression Rating Scale (F(2, 66)=10.1; p<0.001). Sham group (43.4%±18.1) had a smaller improvement compared to the 30-minute (63.8%±13.4; 95% CI: 11.23-29.44; p=0.00003) and 20-minute group (53.2%±15.3; 95% CI: 0.21-19.26; p=0.045). 30-minute group had significantly greater percent improvement than 20-minute group (95% CI: 1.74-19.46; p=0.02). Responders constituted 89%, 68%, and 50% and remitters - 70%, 27%, and 35% in the 30-, 20-minute and sham groups, respectively. A significant difference in the number of responders was observed between 30-minute vs. sham group (odds ratio=8; 95% CI, 2.59-24.69; p=0.001), in remission rate - between 30-minute vs. sham (odds ratio=4.40; 95% CI, 2.02-9.57; p=0.02) and vs. 20-minute (odds ratio=6.33; 95% CI, 2.85-14.10; p=0.003) groups. Two hypomania cases and one case of blood pressure elevation were detected in the 20-minute group. Among neuropsychological tests, only the change in Digit Span Backwards test showed a significant interaction between groups (TIME*GROUP; F(2, 65)=6,6, p=0.002); a greater improvement was observed in both active groups compared to sham (p<0.05). The change in BDNF level after the treatment did not show the significant difference between groups. CONCLUSIONS tDCS of 20- or 30-minutes combined with sertraline are efficient for the treatment of mild and moderate depression; the effect of 30min stimulation exceeds the one obtained from 20min.
Collapse
Affiliation(s)
- Elena L Pavlova
- Department of Clinical Sciences Karolinska Institute, Danderyd University Hospital, Stockholm, SE-18288, Sweden.
| | - Alexandra A Menshikova
- Moscow Research and Clinical Center for Neuropsychiatry of the Healthcare Department of Moscow, Moscow, Russia
| | - Roman V Semenov
- Moscow Research and Clinical Center for Neuropsychiatry of the Healthcare Department of Moscow, Moscow, Russia
| | - Ekaterina N Bocharnikova
- Moscow Research and Clinical Center for Neuropsychiatry of the Healthcare Department of Moscow, Moscow, Russia
| | - Galina N Gotovtseva
- Moscow Research and Clinical Center for Neuropsychiatry of the Healthcare Department of Moscow, Moscow, Russia
| | - Tatiana A Druzhkova
- Moscow Research and Clinical Center for Neuropsychiatry of the Healthcare Department of Moscow, Moscow, Russia
| | - Anna G Gersamia
- Moscow Research and Clinical Center for Neuropsychiatry of the Healthcare Department of Moscow, Moscow, Russia
| | - Anna A Gudkova
- Moscow Research and Clinical Center for Neuropsychiatry of the Healthcare Department of Moscow, Moscow, Russia
| | - Alla B Guekht
- Moscow Research and Clinical Center for Neuropsychiatry of the Healthcare Department of Moscow, Moscow, Russia
| |
Collapse
|
30
|
Kaskie RE, Ferrarelli F. Investigating the neurobiology of schizophrenia and other major psychiatric disorders with Transcranial Magnetic Stimulation. Schizophr Res 2018; 192:30-38. [PMID: 28478887 DOI: 10.1016/j.schres.2017.04.045] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 11/16/2022]
Abstract
Characterizing the neurobiology of schizophrenia and other major psychiatric disorders is one of the main challenges of the current research in psychiatry. The availability of Transcranial Magnetic Stimulation (TMS) allows to directly probe virtually any cortical areas, thus providing a unique way to assess the neurophysiological properties of cortical neurons. This article presents a review of studies employing TMS in combination with Motor Evoked Potentials (TMS/MEPs) and high density Electroencephalogram (TMS/hd-EEG) in schizophrenia and other major psychiatric disorders. Studies were identified by conducting a PubMed search using the following search item: "transcranial magnetic stimulation and (Schizophrenia or OCD or MDD or ADHD)". Studies that utilized TMS/MEP and/or TMS/hd-EEG measures to characterize cortical excitability, inhibition, oscillatory activity, and/or connectivity in psychiatric patients were selected. Across disorders, patients displayed a pattern of reduced cortical inhibition, and to a lesser extent increased excitability, in the motor cortex, which was most consistently established in Schizophrenia. Furthermore, psychiatric patients showed abnormalities in a number of TMS-evoked EEG oscillations, which was most prominent in the prefrontal cortex of Schizophrenia relative to healthy comparison subjects. Overall, results from this review point to significant impairments in cortical excitability, inhibition, and oscillatory activity, especially in frontal areas, in several major psychiatric disorders. Building on these findings, future studies employing TMS-based experimental paradigms may help elucidating the neurobiology of these psychiatric disorders, and may assess the contribution of TMS-related measures in monitoring and possibly maximizing the effectiveness of treatment interventions in psychiatric populations.
Collapse
|
31
|
Rostral anterior cingulate cortex is a structural correlate of repetitive TMS treatment response in depression. Brain Stimul 2018; 11:575-581. [PMID: 29454551 DOI: 10.1016/j.brs.2018.01.029] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is an effective treatment for medication-refractory major depression, yet the mechanisms of action for this intervention are poorly understood. Here we investigate cerebral cortex thickness as a possible biomarker of rTMS treatment response. METHODS Longitudinal change in cortical thickness is evaluated relative to clinical outcomes across 48 participants in 2 cohorts undergoing left dorsolateral prefrontal cortex rTMS as a treatment for depression. RESULTS Our results reveal changes in thickness in a region of the left rostral anterior cingulate cortex that correlate with clinical response, with this region becoming thicker in patients who respond favorably to rTMS and thinner in patients with a less favorable response. Moreover, the baseline cortical thickness in this region correlates with rTMS treatment response - those patients with thinner cortex before treatment tended to have the most clinical improvement. CONCLUSIONS This study is the first analysis of longitudinal cortical thickness change with rTMS as a treatment for depression with similar results across two cohorts. These results support further investigation into the use of structural MRI as a possible biomarker of rTMS treatment response.
Collapse
|
32
|
Dalton B, Bartholdy S, Campbell IC, Schmidt U. Neurostimulation in Clinical and Sub-clinical Eating Disorders: A Systematic Update of the Literature. Curr Neuropharmacol 2018; 16:1174-1192. [PMID: 29308739 PMCID: PMC6187753 DOI: 10.2174/1570159x16666180108111532] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/17/2017] [Accepted: 01/04/2017] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Whilst psychological therapies are the main approach to treatment of eating disorders (EDs), advances in aetiological research suggest the need for the development of more targeted, brain-focused treatments. A range of neurostimulation approaches, most prominently repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS) and deep brain stimulation (DBS), are rapidly emerging as potential novel interventions. We have previously reviewed these techniques as potential treatments of EDs. AIM To provide an update of the literature examining the effects of DBS, rTMS and tDCS on eating behaviours, body weight and associated symptoms in people with EDs and relevant analogue populations. METHODS Using PRISMA guidelines, we reviewed articles in PubMed, Web of Science, and PsycINFO from 1st January 2013 until 14th August 2017, to update our earlier search. Studies assessing the effects of neurostimulation techniques on eating and weight-related outcomes in people with EDs and relevant analogue populations were included. Data from both searches were combined. RESULTS We included a total of 32 studies (526 participants); of these, 18 were newly identified by our update search. Whilst findings are somewhat mixed for bulimia nervosa, neurostimulation techniques have shown potential in the treatment of other EDs, in terms of reduction of ED and associated symptoms. Studies exploring cognitive, neural, and hormonal correlates of these techniques are also beginning to appear. CONCLUSIONS Neurostimulation approaches show promise as treatments for EDs. As yet, large wellconducted randomised controlled trials are lacking. More information is needed about treatment targets, stimulation parameters and mechanisms of action.
Collapse
Affiliation(s)
- Bethan Dalton
- Section of Eating Disorders, Department of Psychological Medicine, King`s College London, London, United Kingdom
| | - Savani Bartholdy
- Section of Eating Disorders, Department of Psychological Medicine, King`s College London, London, United Kingdom
| | - Iain C Campbell
- Section of Eating Disorders, Department of Psychological Medicine, King`s College London, London, United Kingdom
| | - Ulrike Schmidt
- Section of Eating Disorders, Department of Psychological Medicine, King`s College London, London, United Kingdom
| |
Collapse
|
33
|
Two Versus One High-Frequency Repetitive Transcranial Magnetic Stimulation Session per Day for Treatment-Resistant Depression: A Randomized Sham-Controlled Trial. J ECT 2017; 33:190-197. [PMID: 28072660 DOI: 10.1097/yct.0000000000000387] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVES High-frequency repetitive transcranial magnetic stimulation (HF-rTMS) has proven antidepressant effects, but the optimal frequency of sessions remains unclear. METHODS We conducted a 3-week, sham-controlled trial to assess the antidepressant efficacy of 1 active HF-rTMS session per day (A1 group) compared with 2 per day (A2 group) and equivalent sham sessions (once a day, S1 group; twice a day, S2 group) in patients with treatment-resistant major depression with a subsequent 2-week follow-up period. One hundred seventy-seven patients were screened, of whom 105 met eligibility criteria and 98 consented and were randomized. The HF-rTMS (20 Hz) was targeted to the left prefrontal cortex in sessions of approximately 40 trains (2 seconds each) at 100% resting motor threshold with an intertrain interval of 1 minute. Treatment response was defined as a 50% or greater decrease in the Hamilton Depression Rating Scale (HDRS) score and/or Clinician Global Impressions-Severity of Illness (CGI-S) score of 3 or less. Remission was defined as HDRS score less than 8 and/or CGI-S score of 2 or less. RESULTS Practically none of the subjects in either sham groups achieved remission. Increased odds of remission were present for CGI-S by stimulating twice rather than once per day (odds ratio [OR] = 1.5, P = 0.018), whereas there was a marginal result for HDRS (OR = 3.9, P = 0.066). Patients who had lower baseline HDRS (OR = 0.75, P = 0.014) and CGI-S scores (OR = 0.18, P = 0.001) were more likely to achieve remission. CONCLUSIONS Twice per day active HF-rTMS might be more effective than once per day active HF-rTMS or sham stimulation.
Collapse
|
34
|
Oliveira-Maia AJ, Press D, Pascual-Leone A. Modulation of motor cortex excitability predicts antidepressant response to prefrontal cortex repetitive transcranial magnetic stimulation. Brain Stimul 2017; 10:787-794. [PMID: 28438543 PMCID: PMC5576557 DOI: 10.1016/j.brs.2017.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/23/2017] [Accepted: 03/29/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) targeting the left dorsolateral prefrontal cortex (DLPFC) is a treatment option for patients with medication-resistant major depressive disorder (MDD). However, antidepressant response is variable and there are currently no response predictors with sufficient accuracy for clinical use. OBJECTIVE We report on results of an observational open-label study to determine whether the modulatory effect of 10 Hz motor cortex (MC) rTMS is predictive of the antidepressant effect of 10 Hz DLPFC rTMS. METHODS Fifty-one medication-resistant MDD patients were enrolled for a 10-day treatment course of DLPFC rTMS and antidepressant response was assessed according to post-treatment reduction of the 17-item Hamilton Rating Scale for Depression score. Prior to treatment, we assessed the modulation of motor evoked potential (MEP) amplitude by MC rTMS. MEP's were induced with single TMS pulses and measured using surface electromyography. MEP modulation was calculated as the change of mean MEP amplitude after MC rTMS. RESULTS MEP modulation proved to be a robust predictor of reduction of clinician-rated depression severity following the course of DLPFC rTMS: larger MC rTMS-induced increase of corticospinal excitability anticipated a better antidepressant response. This was found both in univariate analyses (Spearman regression: rho = 0.43, p < 0.005) and a multivariable linear regression model (β = 0.25, p < 0.0001) controlling for baseline depression severity, age and resting motor threshold. CONCLUSIONS These findings suggest that MC rTMS-induced modulation of corticospinal excitability warrants further evaluation as a potential predictive biomarker of antidepressant response to left DLPFC 10 Hz rTMS.
Collapse
Affiliation(s)
- Albino J Oliveira-Maia
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 02215 MA, USA; Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, 1349-019 Lisboa, Portugal; NOVA School of Medicine | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; Champalimaud Research & Clinical Centre, Champalimaud Centre for the Unknown, 1400-038 Lisboa, Portugal.
| | - Daniel Press
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 02215 MA, USA.
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 02215 MA, USA; Institut Guttmann de Neurorrehabilitación, Universitat Autonoma de Barcelona, Badalona, Barcelona, Spain.
| |
Collapse
|
35
|
Huang YJ, Lane HY, Lin CH. New Treatment Strategies of Depression: Based on Mechanisms Related to Neuroplasticity. Neural Plast 2017; 2017:4605971. [PMID: 28491480 PMCID: PMC5405587 DOI: 10.1155/2017/4605971] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/10/2017] [Accepted: 03/23/2017] [Indexed: 12/22/2022] Open
Abstract
Major depressive disorder is a severe and complex mental disorder. Impaired neurotransmission and disrupted signalling pathways may influence neuroplasticity, which is involved in the brain dysfunction in depression. Traditional neurobiological theories of depression, such as monoamine hypothesis, cannot fully explain the whole picture of depressive disorders. In this review, we discussed new treatment directions of depression, including modulation of glutamatergic system and noninvasive brain stimulation. Dysfunction of glutamatergic neurotransmission plays an important role in the pathophysiology of depression. Ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, has rapid and lasting antidepressive effects in previous studies. In addition to ketamine, other glutamatergic modulators, such as sarcosine, also show potential antidepressant effect in animal models or clinical trials. Noninvasive brain stimulation is another new treatment strategy beyond pharmacotherapy. Growing evidence has demonstrated that superficial brain stimulations, such as transcranial magnetic stimulation, transcranial direct current stimulation, cranial electrotherapy stimulation, and magnetic seizure therapy, can improve depressive symptoms. The antidepressive effect of these brain stimulations may be through modulating neuroplasticity. In conclusion, drugs that modulate neurotransmission via NMDA receptor and noninvasive brain stimulation may provide new directions of treatment for depression. Furthermore, exploring the underlying mechanisms will help in developing novel therapies for depression in the future.
Collapse
Affiliation(s)
- Yu-Jhen Huang
- Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Hsien-Yuan Lane
- Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| | - Chieh-Hsin Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Center for General Education, Cheng Shiu University, Kaohsiung, Taiwan
| |
Collapse
|
36
|
Taylor SF, Bhati MT, Dubin MJ, Hawkins JM, Lisanby SH, Morales O, Reti IM, Sampson S, Short EB, Spino C, Watcharotone K, Wright J. A naturalistic, multi-site study of repetitive transcranial magnetic stimulation therapy for depression. J Affect Disord 2017; 208:284-290. [PMID: 27794252 PMCID: PMC5550826 DOI: 10.1016/j.jad.2016.08.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/21/2016] [Accepted: 08/24/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) was approved in 2008 in the United States, and there are relatively few studies describing its use in regular clinical practice since approval. METHODS From April 2011 to October 2014, ten sites within the National Network of Depression Centers (NNDC) provided data on 62 evaluable patients with a depressive episode. Treatment was determined naturalistically. Response was assessed by the Quick Inventory of Depressive Symptoms, Self-Report (QIDS-SR) as the primary outcome, and the Patient Health Questionnaire-9 (PHQ-9) and the clinician-rated Clinical Global Impression (CGI) as secondary depression measures. RESULTS Enrolled patients exhibited significant treatment resistance, with 70.2% reporting more than 4 prior depressive episodes. Most patients received treatment with standard parameters (10Hz over the left dorsolateral prefrontal cortex), although 22.6% of the patients received 1 or 5Hz stimulation at some point. Over 6 weeks of treatment, response and remission rates were 29.4% and 5.9%, respectively, for the QIDS-SR; 39.2% and 15.7%, respectively, for the PHQ-9; and 50.9% and 17.9%, respectively, for the CGI. Moderator analyses revealed no effect of prior depressive episodes, history of ECT or gender, although early life stress predicted a better response to rTMS therapy. LIMITATIONS The study was an open-label, registry trial, with relatively coarse clinical data, reflecting practice only in academic, depression-specialty centers. Because of the relatively small size and heterogeneity of the sample, type 2 errors are possible and positive findings are in need of replication. CONCLUSION rTMS demonstrates effectiveness in clinical practice within the NNDC, although remission rates appear slightly lower in comparison with other recent naturalistic studies.
Collapse
Affiliation(s)
- Stephan F. Taylor
- University of Michigan, Ann Arbor, Michigan,To whom correspondence should be addressed: Department of Psychiatry, Rachel Upjohn Building 4250 Plymouth Rd, Ann Arbor MI 48109-2700, Phone: (734) 936-4955, Fax: (734) 936-7868,
| | | | | | | | - Sarah H. Lisanby
- Duke University, Durham, North Carolina and National Institute of Mental Health
| | - Oscar Morales
- McLean Hospital, Harvard University, Cambridge, Massachusetts
| | | | | | - E. Baron Short
- Medical University of South Carolina, Charleston, South Carolina
| | | | | | | |
Collapse
|
37
|
Fidalgo TM, Silveira EDD, Winters KC, Silveira DXD. Psychometric properties of the Brazilian version of the Personal Experience Screening Questionnaire. Rev Assoc Med Bras (1992) 2016; 62:768-773. [PMID: 27992018 DOI: 10.1590/1806-9282.62.08.768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 02/15/2016] [Indexed: 11/22/2022] Open
Abstract
Introduction: The Personal Experience Screening Questionnaire (PESQ) is an instrument devised for assessing the magnitude of drug misuse among adolescents. However, its psychometric properties have not been evaluated in adolescent samples outside the United States. Objective: To assess the internal reliability and validity of the Brazilian version of the PESQ. Method: A cross-sectional study was carried out with 84 adolescents from a clinical sample and a community-based sample. All of them answered the PESQ. Results: Among adolescents from the community, the PESQ problem severity index, which can vary from 18 to 72, was 26.48±9.28, whereas the clinical sample scored 42.89±10.02 (p<0.001). Cronbach's alpha was 0.91. Factor analysis resulted in a four-factor solution. Furthermore, both samples also had different mean scores for the other distinct content areas measured by the instrument. Conclusion: Evidence to support the reliability and validity of the Brazilian version of the Personal Experience Questionnaire was found.
Collapse
Affiliation(s)
- Thiago Marques Fidalgo
- Addiction Unit - Programa de Orientação e Atendimento a Dependentes (PROAD), Department of Psychiatry, Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brazil
| | - Evelyn Doering da Silveira
- Addiction Unit - Programa de Orientação e Atendimento a Dependentes (PROAD), Department of Psychiatry, Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brazil
| | - Ken C Winters
- Center for Adolescent Substance Abuse Research, Department of Psychiatry, University of Minnesota Medical School, Minneapolis, USA
| | - Dartiu Xavier da Silveira
- Addiction Unit - Programa de Orientação e Atendimento a Dependentes (PROAD), Department of Psychiatry, Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brazil
| |
Collapse
|
38
|
Simis M, Doruk D, Imamura M, Anghinah R, Morales-Quezada L, Fregni F, Battistella LR. Neurophysiologic predictors of motor function in stroke. Restor Neurol Neurosci 2016; 34:45-54. [PMID: 26518670 DOI: 10.3233/rnn-150550] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE Understanding the neural mechanisms of stroke recovery is of paramount importance for neurorehabilitation. METHODS For this purpose, we analyzed several TMS and EEG variables and their association with motor recovery. Thirty-five subjects with chronic stroke were recruited. The neurophysiological examination included assessments by transcranial magnetic stimulation (TMS), intra- and inter-hemispheric EEG coherence in different frequency bands (e.g. alpha (8-13 Hz)) as determined by quantitative electroencephalography (qEEG). Motor function was measured by Fugl-Meyer (FM). Multiple univariate and multivariate linear regression analyses were performed to identify the predictors for FM. RESULTS Multivariate analyses, showed a significant interaction effect of motor threshold (MT) in the lesioned hemisphere and beta coherence in the unlesioned hemisphere. This interaction suggests that higher beta activity in the unlesioned hemisphere strengthens the negative association between MT and FM scores. CONCLUSIONS Our results suggest that MT in the lesioned hemisphere is the strongest predictors of motor recovery after stroke. Moreover, cortical activity in the unlesioned hemisphere measured by qEEG provides additional information, specifying the association between MT and FM scores. Therefore, complementary application of EEG and TMS can help constitute a better model of the lesioned and the unlesioned hemispheres that supports the importance of bihemispheric activity in recovery.
Collapse
Affiliation(s)
- Marcel Simis
- Physical and Rehabilitation Medicine Institute of the University of Sao Paulo Medical School General Hospital, Brazil.,Laboratory of Neuromodulation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Deniz Doruk
- Laboratory of Neuromodulation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Marta Imamura
- Physical and Rehabilitation Medicine Institute of the University of Sao Paulo Medical School General Hospital, Brazil
| | - Renato Anghinah
- Physical and Rehabilitation Medicine Institute of the University of Sao Paulo Medical School General Hospital, Brazil
| | - Leon Morales-Quezada
- Laboratory of Neuromodulation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Felipe Fregni
- Physical and Rehabilitation Medicine Institute of the University of Sao Paulo Medical School General Hospital, Brazil.,Laboratory of Neuromodulation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Linamara Rizzo Battistella
- Physical and Rehabilitation Medicine Institute of the University of Sao Paulo Medical School General Hospital, Brazil
| |
Collapse
|
39
|
Grecco LAC, Oliveira CS, Galli M, Cosmo C, Duarte NDAC, Zanon N, Edwards DJ, Fregni F. Spared Primary Motor Cortex and The Presence of MEP in Cerebral Palsy Dictate the Responsiveness to tDCS during Gait Training. Front Hum Neurosci 2016; 10:361. [PMID: 27486393 PMCID: PMC4949210 DOI: 10.3389/fnhum.2016.00361] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/05/2016] [Indexed: 01/06/2023] Open
Abstract
The current priority of investigations involving transcranial direct current stimulation (tDCS) and neurorehabilitation is to identify biomarkers associated with the positive results of the interventions such that respondent and non-respondent patients can be identified in the early phases of treatment. The aims were to determine whether: (1) present motor evoked potential (MEP); and (2) injuries involving the primary motor cortex, are associated with tDCS-enhancement in functional outcome following gait training in children with cerebral palsy (CP). We reviewed the data from our parallel, randomized, sham-controlled, double-blind studies. Fifty-six children with spastic CP received gait training (either treadmill training or virtual reality training) and tDCS (active or sham). Univariate and multivariate logistic regression analyses were employed to identify clinical, neurophysiologic and neuroanatomic predictors associated with the responsiveness to treatment with tDCS. MEP presence during the initial evaluation and the subcortical injury were associated with positive effects in the functional results. The logistic regression revealed that present MEP was a significant predictor for the six-minute walk test (6MWT; p = 0.003) and gait speed (p = 0.028), whereas the subcortical injury was a significant predictor of gait kinematics (p = 0.013) and gross motor function (p = 0.021). In this preliminary study involving children with CP, two important prediction factors of good responses to anodal tDCS combined with gait training were identified. Apparently, MEP (integrity of the corticospinal tract) and subcortical location of the brain injury exerted different influences on aspects related to gait, such as velocity and kinematics.
Collapse
Affiliation(s)
- Luanda A Collange Grecco
- Center of Pediatric Neurosurgery, CENEPE-RehabilitationSão Paulo, Brazil; Movement Analysis Laboratory, Department of Rehabilitation Sciences, University Nove de JulhoSão Paulo, Brazil
| | - Claudia Santos Oliveira
- Movement Analysis Laboratory, Department of Rehabilitation Sciences, University Nove de Julho São Paulo, Brazil
| | - Manuela Galli
- Department of Electronics, Computer Science and Bioengineering (DEIB), Politecnico di MilanoMilano, Italy; IRCCS San Raffaele PisanaRome, Italy
| | - Camila Cosmo
- PostGraduate Program-Interactive Process of Organs and Systems, Health Sciences Institute, Federal University of Bahia Salvador, Brazil
| | | | - Nelci Zanon
- Center of Pediatric Neurosurgery, CENEPE-Rehabilitation São Paulo, Brazil
| | - Dylan J Edwards
- Departments of Neurology and Neuroscience, Burke Medical Research Institute, Weill Medical College of Cornel University White Plains, NY, USA
| | - Felipe Fregni
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Harvard Medical School Boston, MA, USA
| |
Collapse
|
40
|
Pérez C, Leite J, Carvalho S, Fregni F. Transcranial Electrical Stimulation (tES) for the Treatment of Neuropsychiatric Disorders Across Lifespan. EUROPEAN PSYCHOLOGIST 2016. [DOI: 10.1027/1016-9040/a000252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract. Transcranial electrical stimulation (tES) is a safe, painless, and inexpensive noninvasive brain stimulation (NIBS) technique. tES has been shown to reduce symptoms in a variety of neuropsychiatric conditions such as depression, schizophrenia, anxiety, autism, and craving. There are many factors that can influence the effects of tES, such as current intensity, duration, baseline level of activity, gender, and age. Age is a critical variable, since the human brain undergoes several anatomic and functional changes across the lifespan. Therefore, tES-induced effects may not be the same across the lifespan. In this review we summarize the effects of tES, including tDCS, tACS, and tRNS, on clinical outcomes in several neuropsychiatric conditions, using a framework in which studies are organized according to the age of subjects. The use of tES in neuropsychiatric disorders has yielded promising results with mild, if any, adverse effects. Most of the published studies with tES have been conducted with tDCS in adult population. Future studies should focus on interventions guided by surrogate outcomes of neuroplasticity. A better understanding of neuroplasticity across the lifespan will help optimize current tES stimulation parameters, especially for use with children and elderly populations.
Collapse
Affiliation(s)
- Carolina Pérez
- Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jorge Leite
- Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Neuropsychophysiology Laboratory, CIPsi, School of Psychology (EPsi), University of Minho, Braga, Portugal
| | - Sandra Carvalho
- Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Neuropsychophysiology Laboratory, CIPsi, School of Psychology (EPsi), University of Minho, Braga, Portugal
| | - Felipe Fregni
- Spaulding Neuromodulation Center, Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
41
|
Neurostimulation as an intervention for treatment resistant depression: From research on mechanisms towards targeted neurocognitive strategies. Clin Psychol Rev 2015; 41:61-9. [DOI: 10.1016/j.cpr.2014.10.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 08/17/2014] [Accepted: 10/13/2014] [Indexed: 01/12/2023]
|
42
|
Korley FK, Diaz-Arrastia R, Wu AHB, Yue JK, Manley GT, Sair HI, Van Eyk J, Everett AD, Okonkwo DO, Valadka AB, Gordon WA, Maas AIR, Mukherjee P, Yuh EL, Lingsma HF, Puccio AM, Schnyer DM. Circulating Brain-Derived Neurotrophic Factor Has Diagnostic and Prognostic Value in Traumatic Brain Injury. J Neurotrauma 2015; 33:215-25. [PMID: 26159676 DOI: 10.1089/neu.2015.3949] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is important for neuronal survival and regeneration. We investigated the diagnostic and prognostic values of serum BDNF in traumatic brain injury (TBI). We examined serum BDNF in two independent cohorts of TBI cases presenting to the emergency departments (EDs) of the Johns Hopkins Hospital (JHH; n = 76) and San Francisco General Hospital (SFGH, n = 80), and a control group of JHH ED patients without TBI (n = 150). Findings were subsequently validated in the prospective, multi-center Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) Pilot study (n = 159). We investigated the association between BDNF, glial fibrillary acidic protein (GFAP), and ubiquitin C-terminal hydrolase-L1 (UCH-L1) and recovery from TBI at 6 months in the TRACK-TBI Pilot cohort. Incomplete recovery was defined as having either post-concussive syndrome or a Glasgow Outcome Scale Extended score <8 at 6 months. Median day-of-injury BDNF concentrations (ng/mL) were lower among TBI cases (JHH TBI, 17.5 and SFGH TBI, 13.8) than in JHH controls (60.3; p = 0.0001). Among TRACK-TBI Pilot subjects, median BDNF concentrations (ng/mL) were higher in mild (8.3) than in moderate (4.3) or severe TBI (4.0; p = 0.004. In the TRACK-TBI cohort, the 75 (71.4%) subjects with very low BDNF values (i.e., <the 1st percentile for non-TBI controls, <14.2 ng/mL) had higher odds of incomplete recovery than those who did not have very low values (odds ratio, 4.0; 95% confidence interval [CI]: 1.5-11.0). The area under the receiver operator curve for discriminating complete and incomplete recovery was 0.65 (95% CI: 0.52-0.78) for BDNF, 0.61 (95% CI: 0.49-0.73) for GFAP, and 0.55 (95% CI: 0.43-0.66) for UCH-L1. The addition of GFAP/UCH-L1 to BDNF did not improve outcome prediction significantly. Day-of-injury serum BDNF is associated with TBI diagnosis and also provides 6-month prognostic information regarding recovery from TBI. Thus, day-of-injury BDNF values may aid in TBI risk stratification.
Collapse
Affiliation(s)
- Frederick K Korley
- 1 Department of Emergency Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Ramon Diaz-Arrastia
- 2 Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | - Alan H B Wu
- 3 Clinical Chemistry Laboratory, San Francisco General Hospital , San Francisco, California
| | - John K Yue
- 4 Department of Neurological Surgery, University of California San Francisco , San Francisco, California
| | - Geoffrey T Manley
- 4 Department of Neurological Surgery, University of California San Francisco , San Francisco, California
| | - Haris I Sair
- 5 Department of Radiology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Jennifer Van Eyk
- 6 Department of Medicine, the Advanced Clinical Biosystems Research Institute , Cedars Sinai Medical Center, Los Angeles, California
| | - Allen D Everett
- 7 Department of Pediatrics, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | | | - David O Okonkwo
- 8 The Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) Investigators .,9 Department of Neurological Surgery, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Alex B Valadka
- 8 The Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) Investigators .,10 Seton Brain and Spine Institute , Austin, Texas
| | - Wayne A Gordon
- 8 The Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) Investigators .,11 Department of Rehabilitation Medicine, Mount Sinai School of Medicine , New York, New York
| | - Andrew I R Maas
- 8 The Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) Investigators .,12 Department of Neurosurgery, Antwerp University Hospital , Edegem, Belgium
| | - Pratik Mukherjee
- 8 The Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) Investigators .,13 Department of Radiology and Biomedical Imaging University of California San Francisco , San Francisco, California
| | - Esther L Yuh
- 8 The Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) Investigators .,13 Department of Radiology and Biomedical Imaging University of California San Francisco , San Francisco, California
| | - Hester F Lingsma
- 8 The Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) Investigators .,14 Department of Public Health Center for Medical Decision Making Erasmas Medical Center , Rotterdam, the Netherlands
| | - Ava M Puccio
- 8 The Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) Investigators .,9 Department of Neurological Surgery, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - David M Schnyer
- 8 The Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) Investigators .,15 Department of Psychology, University of Texas , Austin, Texas
| |
Collapse
|
43
|
Brunoni AR, Machado-Vieira R, Zarate CA, Vieira ELM, Valiengo L, Benseñor IM, Lotufo PA, Gattaz WF, Teixeira AL. Assessment of non-BDNF neurotrophins and GDNF levels after depression treatment with sertraline and transcranial direct current stimulation in a factorial, randomized, sham-controlled trial (SELECT-TDCS): an exploratory analysis. Prog Neuropsychopharmacol Biol Psychiatry 2015; 56:91-6. [PMID: 25172025 PMCID: PMC4258544 DOI: 10.1016/j.pnpbp.2014.08.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/24/2014] [Accepted: 08/20/2014] [Indexed: 01/07/2023]
Abstract
The neurotrophic hypothesis of depression states that the major depressive episode is associated with lower neurotrophic factors levels, which increase with amelioration of depressive symptoms. However, this hypothesis has not been extended to investigate neurotrophic factors other than the brain-derived neurotrophic factor (BDNF). We therefore explored whether plasma levels of neurotrophins 3 (NT-3) and 4 (NT-4), nerve growth factor (NGF) and glial cell line derived neurotrophic factor (GDNF) changed after antidepressant treatment and correlated with treatment response. Seventy-three patients with moderate-to-severe, antidepressant-free unipolar depression were assigned to a pharmacological (sertraline) and a non-pharmacological (transcranial direct current stimulation, tDCS) intervention in a randomized, 2 × 2, placebo-controlled design. The plasma levels of NT-3, NT-4, NGF and GDNF were determined by enzyme-linked immunosorbent assay before and after a 6-week treatment course and analyzed according to clinical response and allocation group. We found that tDCS and sertraline (separately and combined) produced significant improvement in depressive symptoms. Plasma levels of all neurotrophic factors were similar across groups at baseline and remained significantly unchanged regardless of the intervention and of clinical response. Also, baseline plasma levels were not associated with clinical response. To conclude, in this 6-week placebo-controlled trial, NT-3, NT-4, NGF and GDNF plasma levels did not significantly change with sertraline or tDCS. These data suggest that these neurotrophic factors are not surrogate biomarkers of treatment response or involved in the antidepressant mechanisms of tDCS.
Collapse
Affiliation(s)
- André R Brunoni
- Center for Clinical and Epidemiological Research & Interdisciplinary Center for Applied Neuromodulation (CINA), University Hospital, University of São Paulo, São Paulo, Brazil; Service of Interdisciplinary Neuromodulation (SIN), Department and Institute of Psychiatry, Faculty of Medicine of University of São Paulo, São Paulo, Brazil; Laboratory of Neuroscience (LIM27), Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil.
| | - Rodrigo Machado-Vieira
- Laboratory of Neuroscience (LIM27), Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil; Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health (NIMH), NIH, Bethesda, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health (NIMH), NIH, Bethesda, MD, USA
| | - Erica L M Vieira
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine of Minas Gerais, Belo Horizonte, Brazil
| | - Leandro Valiengo
- Center for Clinical and Epidemiological Research & Interdisciplinary Center for Applied Neuromodulation (CINA), University Hospital, University of São Paulo, São Paulo, Brazil; Service of Interdisciplinary Neuromodulation (SIN), Department and Institute of Psychiatry, Faculty of Medicine of University of São Paulo, São Paulo, Brazil; Laboratory of Neuroscience (LIM27), Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Isabela M Benseñor
- Center for Clinical and Epidemiological Research & Interdisciplinary Center for Applied Neuromodulation (CINA), University Hospital, University of São Paulo, São Paulo, Brazil
| | - Paulo A Lotufo
- Center for Clinical and Epidemiological Research & Interdisciplinary Center for Applied Neuromodulation (CINA), University Hospital, University of São Paulo, São Paulo, Brazil
| | - Wagner F Gattaz
- Laboratory of Neuroscience (LIM27), Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Antonio L Teixeira
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
44
|
Abstract
Major depression is often difficult to diagnose accurately. Even when the diagnosis is properly made, standard treatment approaches (eg, psychotherapy, medications, or their combination) are often inadequate to control acute symptoms or maintain initial benefit. Additional obstacles involve safety and tolerability problems, which frequently preclude an adequate course of treatment. This leaves an important gap in our ability to properly manage major depression in a substantial proportion of patients, leaving them vulnerable to ensuing complications (eg, employment-related disability, increased risk of suicide, comorbid medical disorders, and substance abuse). Thus, there is a need for more effective and better tolerated approaches. Transcranial magnetic stimulation is a neuromodulation technique increasingly used to partly fill this therapeutic void. In the context of treating depression, we critically review the development of transcranial magnetic stimulation, focusing on the results of controlled and pragmatic trials for depression, which consider its efficacy, safety, and tolerability.
Collapse
Affiliation(s)
- Philip G Janicak
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mehmet E Dokucu
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
45
|
Janicak PG, Carpenter L. The Efficacy of Transcranial Magnetic Stimulation for Major Depression: A Review of the Evidence. Psychiatr Ann 2014. [DOI: 10.3928/00485713-20140609-06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
46
|
Brunoni AR, Machado-Vieira R, Zarate CA, Valiengo L, Vieira EL, Benseñor IM, Lotufo PA, Gattaz WF, Teixeira AL. Cytokines plasma levels during antidepressant treatment with sertraline and transcranial direct current stimulation (tDCS): results from a factorial, randomized, controlled trial. Psychopharmacology (Berl) 2014; 231:1315-23. [PMID: 24150249 PMCID: PMC4081040 DOI: 10.1007/s00213-013-3322-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/04/2013] [Indexed: 12/17/2022]
Abstract
RATIONALE The inflammatory hypothesis of depression states that increased levels of pro-inflammatory cytokines triggered by external and internal stressors are correlated to the acute depressive state. This hypothesis also suggests that pharmacotherapy partly acts in depression through anti-inflammatory effects. Transcranial direct current stimulation (tDCS) is a novel, promising, non-invasive somatic treatment for depression, although its antidepressant mechanisms are only partly understood. OBJECTIVES We explored the effects of tDCS and sertraline over the immune system during an antidepressant treatment trial. METHODS In a 6-week, double-blind, placebo-controlled trial, 73 antidepressant-free patients with unipolar depression were randomized to active/sham tDCS and sertraline/placebo (2 × 2 design). Plasma levels of several cytokines (IL-2, IL-4, IL-6, IL-10, IL-17a, IFN-γ, and TNF-α) were determined to investigate the effects of the interventions and of clinical response on them. RESULTS All cytokines, except TNF-α, decreased over time, these effects being similar across the different intervention-groups and in responders vs. non-responders. CONCLUSIONS tDCS and sertraline (separately and combined) acute antidepressant effects might not specifically involve normalization of the immune system. In addition, being one of the first placebo-controlled trials measuring cytokines over an antidepressant treatment course, our study showed that the decrease in cytokine levels during the acute depressive episode could involve a placebo effect, highlighting the need of further placebo-controlled trials and observational studies examining cytokine changes during depression treatment and also after remission of the acute depressive episode.
Collapse
Affiliation(s)
- André R Brunoni
- Center for Clinical and Epidemiological Research and Interdisciplinary Center for Applied Neuromodulation (CINA), University Hospital, University of São Paulo, Av. Prof Lineu Prestes 2565, 3o andar, CEP 05508-000, São Paulo, São Paulo, Brazil,
| | | | | | | | | | | | | | | | | |
Collapse
|