1
|
Analyzing the genes related to nicotine addiction or schizophrenia via a pathway and network based approach. Sci Rep 2018; 8:2894. [PMID: 29440730 PMCID: PMC5811491 DOI: 10.1038/s41598-018-21297-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/31/2018] [Indexed: 01/02/2023] Open
Abstract
The prevalence of tobacco use in people with schizophrenia is much higher than in general population, which indicates a close relationship between nicotine addiction and schizophrenia. However, the molecular mechanism underlying the high comorbidity of tobacco smoking and schizophrenia remains largely unclear. In this study, we conducted a pathway and network analysis on the genes potentially associated with nicotine addiction or schizophrenia to reveal the functional feature of these genes and their interactions. Of the 276 genes associated with nicotine addiction and 331 genes associated with schizophrenia, 52 genes were shared. From these genes, 12 significantly enriched pathways associated with both diseases were identified. These pathways included those related to synapse function and signaling transduction, and drug addiction. Further, we constructed a nicotine addiction-specific and schizophrenia-specific sub-network, identifying 11 novel candidate genes potentially associated with the two diseases. Finally, we built a schematic molecular network for nicotine addiction and schizophrenia based on the results of pathway and network analysis, providing a systematic view to understand the relationship between these two disorders. Our results illustrated that the biological processes underlying the comorbidity of nicotine addiction and schizophrenia was complex, and was likely induced by the dysfunction of multiple molecules and pathways.
Collapse
|
2
|
Li J, Zhou HD, Deng J, Zhu J, Li L, Zhang M, Zeng F, Wang YJ. The association of single nucleotide polymorphism of the Fyn gene with sporadic Alzheimer's disease in the Chinese Han population. Neurosci Lett 2014; 575:80-4. [PMID: 24852829 DOI: 10.1016/j.neulet.2014.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/19/2014] [Accepted: 05/07/2014] [Indexed: 10/25/2022]
Abstract
Recent studies suggested genetic factors contribute to the pathogenesis of sporadic Alzheimer's disease (sAD). Fibroblast Yes related novel (Fyn), a tau kinase, has been reported to be associated with aberrant phosphorylated tau and neurofibrillary tangles formation. Fyn gene may be a potential candidate gene for AD. To investigate the association of the polymorphisms in Fyn gene with the susceptibility to sAD, we conducted a case-control study in a Chinese Han cohort including 200 sAD patients and 243 control participants. Four single nucleotide polymorphisms (SNPs) (rs111787668, rs1057979, rs6916861 and rs12910) within the promoter region of Fyn gene and one (rs7768046) in intron were selected and genotyped with a polymerase chain reaction-ligase detection reaction (PCR-LDR) method. Logistic regression under four genetic models was used to analyze the association between target SNPs and the risk of sAD. After adjusting for age, sex and APOE ɛ4 status, no association was revealed between these SNPs or the haplotypes containing four SNPs and the risk of sAD (P>0.05). The SNPs in the selected regions of the Fyn gene are unlikely to confer the susceptibility of sAD in the Chinese Han population. Further studies with a larger sample size and different ethnic populations are needed to reveal the role of Fyn gene in the pathogenesis of sAD.
Collapse
Affiliation(s)
- Jing Li
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hua-Dong Zhou
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Juan Deng
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jie Zhu
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Lin Li
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Meng Zhang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Fan Zeng
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.
| | | |
Collapse
|
3
|
Association study of the Fyn gene with schizophrenia in the Chinese-Han population. Psychiatr Genet 2013; 23:39-40. [PMID: 23250004 DOI: 10.1097/ypg.0b013e328358640b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Kneeland RE, Fatemi SH. Viral infection, inflammation and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42:35-48. [PMID: 22349576 PMCID: PMC3408569 DOI: 10.1016/j.pnpbp.2012.02.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 01/06/2012] [Accepted: 02/02/2012] [Indexed: 12/16/2022]
Abstract
Schizophrenia is a severe neurodevelopmental disorder with genetic and environmental etiologies. Prenatal viral/bacterial infections and inflammation play major roles in the genesis of schizophrenia. In this review, we describe a viral model of schizophrenia tested in mice whereby the offspring of mice prenatally infected with influenza at E7, E9, E16, and E18 show significant gene, protein, and brain structural abnormalities postnatally. Similarly, we describe data on rodents exposed to bacterial infection or injected with a synthetic viral mimic (PolyI:C) also demonstrating brain structural and behavioral abnormalities. Moreover, human serologic data has been indispensible in supporting the viral theory of schizophrenia. Individuals born seropositive for bacterial and viral agents are at a significantly elevated risk of developing schizophrenia. While the specific mechanisms of prenatal viral/bacterial infections and brain disorder are unclear, recent findings suggest that the maternal inflammatory response may be associated with fetal brain injury. Preventive and therapeutic treatment options are also proposed. This review presents data related to epidemiology, human serology, and experimental animal models which support the viral model of schizophrenia.
Collapse
Affiliation(s)
- Rachel E. Kneeland
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St. SE, MMC 392, Minneapolis, MN 55455, United States
| | - S. Hossein Fatemi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St. SE, MMC 392, Minneapolis, MN 55455, United States,Department of Pharmacology, University of Minnesota Medical School, 310 Church St. SE, Minneapolis, MN 55455, United States and Department of Neuroscience, University of Minnesota Medical School, 310 Church St. SE, Minneapolis, MN 55455, United States,Corresponding author at: 420 Delaware Street SE, MMC 392, Minneapolis, MN 55455. Tel.: +1 612 626 3633; fax: +1 612 624 8935. (R.E. Kneeland), (S.H. Fatemi)
| |
Collapse
|
5
|
Bekris LM, Millard S, Lutz F, Li G, Galasko DR, Farlow MR, Quinn JF, Kaye JA, Leverenz JB, Tsuang DW, Yu CE, Peskind ER. Tau phosphorylation pathway genes and cerebrospinal fluid tau levels in Alzheimer's disease. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:874-83. [PMID: 22927204 PMCID: PMC3626266 DOI: 10.1002/ajmg.b.32094] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 08/03/2012] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is characterized by the presence in the brain of amyloid plaques, consisting predominately of the amyloid β peptide (Aβ), and neurofibrillary tangles, consisting primarily of tau. Hyper-phosphorylated-tau (p-tau) contributes to neuronal damage, and both p-tau and total-tau (t-tau) levels are elevated in AD cerebrospinal fluid (CSF) compared to cognitively normal controls. Our hypothesis was that increased ratios of CSF phosphorylated-tau levels relative to total-tau levels correlate with regulatory region genetic variation of kinase or phosphatase genes biologically associated with the phosphorylation status of tau. Eighteen SNPs located within 5' and 3' regions of 5 kinase and 4 phosphatase genes, as well as two SNPs within regulatory regions of the MAPT gene were chosen for this analysis. The study sample consisted of 101 AD patients and 169 cognitively normal controls. Rs7768046 in the FYN kinase gene and rs913275 in the PPP2R4 phosphatase gene were both associated with CSF p-tau and t-tau levels in AD. These SNPs were also differentially associated with either CSF t-tau (rs7768046) or CSF p-tau (rs913275) relative to t-tau levels in AD compared to controls. These results suggest that rs7768046 and rs913275 both influence CSF tau levels in an AD-associated manner.
Collapse
Affiliation(s)
- Lynn M. Bekris
- Geriatric Research, Education, and Clinical Center (GRECC), VA Puget Sound Health Care System, Seattle, Washington,Department of Medicine, University of Washington, Seattle, Washington,Correspondence to: Lynn M. Bekris, Ph.D., Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, VAPSHCS GRECC S182B, 1660 South Columbian Way, Seattle, WA 98108.
| | - Steve Millard
- Northwest Network VISN-20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, Washington
| | - Franziska Lutz
- Geriatric Research, Education, and Clinical Center (GRECC), VA Puget Sound Health Care System, Seattle, Washington,Department of Medicine, University of Washington, Seattle, Washington
| | - Gail Li
- Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington
| | - Doug R. Galasko
- Department of Neurosciences, University of California at San Diego and VA Medical Center San Diego, San Diego, California
| | - Martin R. Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Joseph F. Quinn
- Department of Neurology, Oregon Health and Science University, Portland, Oregon,Portland VA Medical Center, Portland, Oregon
| | - Jeffrey A. Kaye
- Department of Neurology, Oregon Health and Science University, Portland, Oregon,Portland VA Medical Center, Portland, Oregon
| | - James B. Leverenz
- Northwest Network VISN-20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, Washington,Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington,Department of Neurology, University of Washington School of Medicine, Seattle, Washington,Northwest Network VISN-20 Parkinson’s Disease Research, Education and Clinical Center (PADRECC), Roseburg, Oregon
| | - Debby W. Tsuang
- Northwest Network VISN-20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, Washington,Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington
| | - Chang-En Yu
- Geriatric Research, Education, and Clinical Center (GRECC), VA Puget Sound Health Care System, Seattle, Washington,Department of Medicine, University of Washington, Seattle, Washington
| | - Elaine R. Peskind
- Northwest Network VISN-20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, Washington,Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
6
|
Bennett M. Schizophrenia: susceptibility genes, dendritic-spine pathology and gray matter loss. Prog Neurobiol 2011; 95:275-300. [DOI: 10.1016/j.pneurobio.2011.08.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 02/01/2023]
|
7
|
Loss of function studies in mice and genetic association link receptor protein tyrosine phosphatase α to schizophrenia. Biol Psychiatry 2011; 70:626-35. [PMID: 21831360 PMCID: PMC3176920 DOI: 10.1016/j.biopsych.2011.06.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 05/17/2011] [Accepted: 06/02/2011] [Indexed: 01/06/2023]
Abstract
BACKGROUND Solid evidence links schizophrenia (SZ) susceptibility to neurodevelopmental processes involving tyrosine phosphorylation-mediated signaling. Mouse studies implicate the Ptpra gene, encoding protein tyrosine phosphatase RPTPα, in the control of radial neuronal migration, cortical cytoarchitecture, and oligodendrocyte differentiation. The human gene encoding RPTPα, PTPRA, maps to a chromosomal region (20p13) associated with susceptibility to psychotic illness. METHODS We characterized neurobehavioral parameters, as well as gene expression in the central nervous system, of mice with a null mutation in the Ptpra gene. We searched for genetic association between polymorphisms in PTPRA and schizophrenia risk (two independent cohorts, 1420 cases and 1377 controls), and we monitored PTPRA expression in prefrontal dorsolateral cortex of SZ patients (35 cases, 2 control groups of 35 cases). RESULTS We found that Ptpra⁻/⁻ mice reproduce neurobehavioral endophenotypes of human SZ: sensitization to methamphetamine-induced hyperactivity, defective sensorimotor gating, and defective habituation to a startle response. Ptpra loss of function also leads to reduced expression of multiple myelination genes, mimicking the hypomyelination-associated changes in gene expression observed in postmortem patient brains. We further report that a polymorphism at the PTPRA locus is genetically associated with SZ, and that PTPRA mRNA levels are reduced in postmortem dorsolateral prefrontal cortex of subjects with SZ. CONCLUSIONS The implication of this well-studied signaling protein in SZ risk and endophenotype manifestation provides novel entry points into the etiopathology of this disease.
Collapse
|
8
|
Fatemi SH, Folsom TD, Rooney RJ, Mori S, Kornfield TE, Reutiman TJ, Kneeland RE, Liesch SB, Hua K, Hsu J, Patel DH. The viral theory of schizophrenia revisited: abnormal placental gene expression and structural changes with lack of evidence for H1N1 viral presence in placentae of infected mice or brains of exposed offspring. Neuropharmacology 2011; 62:1290-8. [PMID: 21277874 DOI: 10.1016/j.neuropharm.2011.01.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/22/2010] [Accepted: 01/10/2011] [Indexed: 12/19/2022]
Abstract
Researchers have long noted an excess of patients with schizophrenia were born during the months of January and March. This winter birth effect has been hypothesized to result either from various causes such as vitamin D deficiency (McGrath, 1999; McGrath et al., 2010), or from maternal infection during pregnancy. Infection with a number of viruses during pregnancy including influenza, and rubella are known to increase the risk of schizophrenia in the offspring (Brown, 2006). Animal models using influenza virus or Poly I:C, a viral mimic, have been able to replicate many of the brain morphological, genetic, and behavioral deficits of schizophrenia (Meyer et al., 2006, 2008a, 2009; Bitanihirwe et al., 2010; Meyer and Feldon, 2010; Short et al., 2010). Using a murine model of prenatal viral infection, our laboratory has shown that viral infection on embryonic days 9, 16, and 18 leads to abnormal expression of brain genes and brain structural abnormalities in the exposed offspring (Fatemi et al., 2005, 2008a,b, 2009a,b). The purpose of the current study was to examine gene expression and morphological changes in the placenta, hippocampus, and prefrontal cortex as a result of viral infection on embryonic day 7 of pregnancy. Pregnant mice were either infected with influenza virus [A/WSN/33 strain (H1N1)] or sham-infected with vehicle solution. At E16, placentas were harvested and prepared for either microarray analysis or for light microscopy. We observed significant, upregulation of 77 genes and significant downregulation of 93 genes in placentas. In brains of exposed offspring following E7 infection, there were changes in gene expression in prefrontal cortex (6 upregulated and 24 downregulated at P0; 5 upregulated and 14 downregulated at P56) and hippocampus (4 upregulated and 6 downregulated at P0; 6 upregulated and 13 downregulated at P56). QRT-PCR verified the direction and magnitude of change for a number of genes associated with hypoxia, inflammation, schizophrenia, and autism. Placentas from infected mice showed a number of morphological abnormalities including presence of thrombi and increased presence of immune cells. Additionally, we searched for presence of H1N1 viral-specific genes for M1/M2, NA, and NS1 in placentas of infected mice and brains of exposed offspring and found none. Our results demonstrate that prenatal viral infection disrupts structure and gene expression of the placenta, hippocampus, and prefrontal cortex potentially explaining deleterious effects in the exposed offspring without evidence for presence of viral RNAs in the target tissues.
Collapse
Affiliation(s)
- S Hossein Fatemi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fyn Polymorphisms are Associated with Distinct Personality Traits in Healthy Chinese-Han Subjects. J Mol Neurosci 2011; 44:1-5. [DOI: 10.1007/s12031-010-9485-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 12/14/2010] [Indexed: 10/18/2022]
|
10
|
Xuan W, Dai M, Buckner J, Mirel B, Song J, Athey B, Watson SJ, Meng F. Cross-domain neurobiology data integration and exploration. BMC Genomics 2010; 11 Suppl 3:S6. [PMID: 21143788 PMCID: PMC2999351 DOI: 10.1186/1471-2164-11-s3-s6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Understanding the biomedical implications of data from high throughput experiments requires solutions for effective cross-scale and cross-domain data exploration. However, existing solutions do not provide sufficient support for linking molecular level data to neuroanatomical structures, which is critical for understanding high level neurobiological functions. Results Our work integrates molecular level data with high level biological functions and we present results using anatomical structure as a scaffold. Our solution also allows the sharing of intermediate data exploration results with other web applications, greatly increasing the power of cross-domain data exploration and mining. Conclusions The Flex-based PubAnatomy web application we developed enables highly interactive visual exploration of literature and experimental data for understanding the relationships between molecular level changes, pathways, brain circuits and pathophysiological processes. The prototype of PubAnatomy is freely accessible at:
[http://brainarray.mbni.med.umich.edu/Brainarray/prototype/PubAnatomy]
Collapse
Affiliation(s)
- Weijian Xuan
- Psychiatry Department and Molecular and Behavioral Neuroscience Institute, University of Michigan, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Knight J, Rochberg NS, Saccone SF, Nurnberger JI, Rice JP. An investigation of candidate regions for association with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 2010; 153B:1292-1297. [PMID: 20872768 PMCID: PMC3321541 DOI: 10.1002/ajmg.b.31100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We performed a case-control study of 1,000 cases and 1,028 controls on 1,509 markers, 1,139 of which were located in a 8 Mb region on chromosome 6 (105-113 Mb). This region has shown evidence of involvement in bipolar disorder (BP) in a number of other studies. We find association between BP and two SNPs in the gene LACE1. SNP rs9486880 and rs11153113 (both have P-values of 2 × 10(-5)). Both P-values are in the top 5% of the distribution derived from null simulations (P = 0.02 and 0.01, respectively). LACE is a good candidate for BP; it is an ATPase. We genotyped 173 other markers in 17 other positional and/or functional loci but found no further evidence of association with BP.
Collapse
Affiliation(s)
- Jo Knight
- Department of Medical and Molecular Genetics, King's College London School of Medicine, Guy's Hospital, London, UK.
| | | | | | | | | |
Collapse
|
12
|
|
13
|
Bennett M. Positive and negative symptoms in schizophrenia: the NMDA receptor hypofunction hypothesis, neuregulin/ErbB4 and synapse regression. Aust N Z J Psychiatry 2009; 43:711-21. [PMID: 19629792 DOI: 10.1080/00048670903001943] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Carlsson has put forward the hypothesis that the positive and negative symptoms of schizophrenia are due to failure of mesolimbic and mesocortical projections consequent on hypofunction of the glutamate N-methyl-d-aspartate (NMDA) receptor. The hypothesis has been recently emphasized in this Journal that the loss of synaptic spines with NMDA receptors, which can be precipitated by stress, can explain the emergence of positive symptoms such as hallucinations and that this synapse regression involves molecules such as neuregulin and its receptor ErbB4 that have been implicated in schizophrenia. In this essay these two hypotheses are brought together in a single scheme in which emphasis is placed on the molecular pathways from neuregulin/ErbB4, to modulation of the NMDA receptors, subsequent changes in the synaptic spine's cytoskeletal apparatus and so regression of the spines. It is suggested that identification of the molecular constituents of this pathway will allow synthesis of suitable substances for removing the hypofunction of NMDA receptors and so the phenotypic consequences that flow from this hypofunction.
Collapse
Affiliation(s)
- Maxwell Bennett
- Brain and Mind Research Institute, University of Sydney, NSW, Australia.
| |
Collapse
|
14
|
Decreased expression of Fyn protein and disbalanced alternative splicing patterns in platelets from patients with schizophrenia. Psychiatry Res 2009; 168:119-28. [PMID: 19501919 DOI: 10.1016/j.psychres.2008.04.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 03/15/2008] [Accepted: 04/16/2008] [Indexed: 01/12/2023]
Abstract
Fyn, a Src-family kinase, is highly expressed in brain tissue and blood cells. In the mouse brain, Fyn participates in brain development, synaptic transmission through the phosphorylation of N-methyl-d-aspartate (NMDA) receptor subunits, and the regulation of emotional behavior. Recently, we found that Fyn is required for the signal transduction in striatal neurons that is initiated by haloperidol, an antipsychotic drug. To determine whether Fyn abnormalities are present in patients with schizophrenia, we analyzed Fyn expression in platelet samples from 110 patients with schizophrenia, 75 of the patients' first-degree relatives, and 130 control subjects. A Western blot analysis revealed significantly lower levels of Fyn protein among the patients with schizophrenia and their relatives, compared with the level in the control group. At the mRNA level, the splicing patterns of fyn were altered in the patients and their relatives; specifically, the ratio of fynDelta7, in which exon 7 is absent, was elevated. An expression study in HEK293T cells revealed that FynDelta7 had a dominant-negative effect on the phosphorylation of Fyn's substrate. These results suggest novel deficits in Fyn function, manifested as the downregulation of Fyn protein or the altered transcription of the fyn gene, in patients with schizophrenia.
Collapse
|
15
|
Szczepankiewicz A, Skibinska M, Suwalska A, Hauser J, Rybakowski JK. The association study of three FYN polymorphisms with prophylactic lithium response in bipolar patients. Hum Psychopharmacol 2009; 24:287-91. [PMID: 19330793 DOI: 10.1002/hup.1018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
FYN belongs to the protein kinase family that phosphorylates NMDA receptor subunits, participating in the regulation of ion transmission and BDNF/TrkB signal transduction pathway. Lithium inhibits glutamatergic transmission via NMDA receptors, exerting neuroprotective effect against excitotoxicity. The aim of this study was to find possible association of three polymorphisms of FYN gene with prophylactic lithium response in the group of bipolar patients. We analyzed 101 bipolar patients treated with lithium carbonate for 5-27 years (mean 15 years). Twenty-four patients were identified as excellent lithium responders (ER), 51 patients as partial responders (PRs), and 26 patients were non-responders. Genotypes of the three analyzed polymorphisms were established by PCR-RFLP. Statistical analysis was done with Statistica. No significant differences in genotype distribution and allele frequencies were observed between T/G and A/G FYN polymorphisms and lithium response. We observed a trend toward association of TT genotype and T allele of T/C polymorphism with worse lithium response. The results of the study demonstrated only marginal association between FYN polymorphisms and prophylactic lithium response in bipolar patients. The results are discussed in light of our previous studies on FYN gene in bipolar illness and BDNF gene in lithium response.
Collapse
Affiliation(s)
- Aleksandra Szczepankiewicz
- Department of Pediatric Pulmonology, Allergy and Clinical Immunology, IIIrd Department of Pediatrics, Poznan University of Medical Sciences, Poznan, Poland.
| | | | | | | | | |
Collapse
|
16
|
Jung MY, Kim BS, Kim YJ, Koh IS, Chung JH. Assessment of Relationship between Fyn-related Kinase Gene Polymorphisms and Overweight/Obesity in Korean Population. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2008; 12:83-7. [PMID: 20157399 DOI: 10.4196/kjpp.2008.12.2.83] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The fyn-related kinase (FRK) belongs to the tyrosine kinase family of protein kinases. Recent studies have shown that Frk affects pancreatic beta cell number during embryogenesis and promotes beta cell cytotoxic signals in response to streptozotocin. To investigate the genetic association between FRK polymorphisms and the risk of obesity in Korean population, single nucleotide polymorphisms (SNPs) in the FRK gene region were selected and analyzed. The body mass index (BMI) was calculated, and biochemical data (systolic blood pressure, diastolic blood pressure, hemoglobin A1C, triglyceride, total cholesterol, high density lipoprotein, and low density lipoprotein) of blood sample from each subject were also measured. One hundred fifty five healthy control and 204 overweight/obesity subjects were recruited. Genotype frequencies of six SNPs [rs6568920 (+8391G>A), rs3756772 (+56780A>G), rs3798234 (+75687C>T), rs9384970 (+68506G>A), rs1933739 (+72978G>A), and rs9400883 (+75809A>G)] in the FRK gene were determined by Affymetrix Targeted Genotyping Chip data. According to the classification of Korean Society for the Study of Obesity, control (BMI 18 to <23) and overweight/obesity (BMI>/=23) subjects were recruited. For the analysis of genetic data, EM algorithm, SNPStats, Haploview, HapAnalyzer, SNPAnalyzer, and Helixtree programs were used. Multiple logistic regression analysis (codominant, dominant, and recessive models) was performed. Age and gender as covariates were adjusted. For biochemical data, Student's t test was used. The mean value of BMI in the control and overweigh/obesity groups was 21.1+/-1.2 (mean+/-SD) and 25.6+/-2.0, respectively. All biochemical data of the overweight/obesity group were statistically significance, compared with the control group. Among six SNPs, two linkage disequilibrium (LD) blocks were discovered. One block consisted of rs1933739 and rs9400883, and the other comprised rs3756772 and rs3798234. One SNP (rs9384970, +68506G>A) showed an association with overweight/obesity in the codominant model (p=0.03). Interestingly, the AA genotype distribution in the overweight/obesity group (n=7, 3.5%) was higher than those in the control group (n=1, 0.6%), which is not found in either Japanese or Chinese subjects. Therefore, the AA genotype of rs9384970 may be a risk factor for development of obesity in Korean population. The results suggest that FRK may be associated with overweight/obesity in Korean population.
Collapse
Affiliation(s)
- Mi Young Jung
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul 130-701, Korea
| | | | | | | | | |
Collapse
|