1
|
Moreira J, Noé G, Rangarajan S, Courtin C, Etain B, Geoffroy PA, Laplanche JL, Vidal M, Bellivier F, Marie-Claire C. Lithium effects on serine-threonine kinases activity: High throughput kinomic profiling of lymphoblastoid cell lines from excellent-responders and non-responders bipolar patients. World J Biol Psychiatry 2020; 21:317-324. [PMID: 29893160 DOI: 10.1080/15622975.2018.1487078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Objectives: Lithium is the leading mood stabiliser for maintenance treatment in bipolar disorder (BD). However, response to lithium is heterogeneous with more than 60% of patients experiencing partial or no response. In vitro and in vivo molecular studies have reported the implication of kinases in the pathophysiology of BD.Methods: Since kinases are putative targets for lithium therapeutic action, we conducted the first pilot study using kinase array technology to evaluate the global serine/threonine kinases (STK) profiles in cell lines from BD I subtype patients classified as lithium excellent-responders (ER) and non-responder (NR) to lithium treatment.Results: We found significant differences in the basal STK profiles between ER and NR to lithium. We also tested lithium influence on the global STK profile and found no significant difference between ER vs NR cell lines.Conclusions: The results obtained in this exploratory study suggest that multiplex kinase activity profiling could provide a complementary approach in the study of biomarkers of therapeutic response in BD.
Collapse
Affiliation(s)
- Jeverson Moreira
- Variabilité de réponse aux psychotropes, INSERM U1144/Faculté de Pharmacie de Paris, Université Paris Descartes, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Gaëlle Noé
- AP-HP, Hôpital Cochin, Biologie du medicament-Toxicologie, Université Paris Descartes, Paris, France.,UMR8638 CNRS, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Cindie Courtin
- Variabilité de réponse aux psychotropes, INSERM U1144/Faculté de Pharmacie de Paris, Université Paris Descartes, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Bruno Etain
- Variabilité de réponse aux psychotropes, INSERM U1144/Faculté de Pharmacie de Paris, Université Paris Descartes, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP-HP, GH Saint-Louis - Lariboisière - F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, Paris, France.,Fondation FondaMental, Créteil, France
| | - Pierre A Geoffroy
- Variabilité de réponse aux psychotropes, INSERM U1144/Faculté de Pharmacie de Paris, Université Paris Descartes, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP-HP, GH Saint-Louis - Lariboisière - F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, Paris, France.,Fondation FondaMental, Créteil, France
| | - Jean-Louis Laplanche
- Variabilité de réponse aux psychotropes, INSERM U1144/Faculté de Pharmacie de Paris, Université Paris Descartes, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Département de Biochimie and Biologie moléculaire, AP-HP, GH Saint-Louis - Lariboisière - F. Widal, Paris, France
| | - Michel Vidal
- AP-HP, Hôpital Cochin, Biologie du medicament-Toxicologie, Université Paris Descartes, Paris, France.,UMR8638 CNRS, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Frank Bellivier
- Variabilité de réponse aux psychotropes, INSERM U1144/Faculté de Pharmacie de Paris, Université Paris Descartes, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP-HP, GH Saint-Louis - Lariboisière - F. Widal, Pôle de Psychiatrie et de Médecine Addictologique, Paris, France.,Fondation FondaMental, Créteil, France
| | - Cynthia Marie-Claire
- Variabilité de réponse aux psychotropes, INSERM U1144/Faculté de Pharmacie de Paris, Université Paris Descartes, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
2
|
|
3
|
Hendrickx JO, van Gastel J, Leysen H, Santos-Otte P, Premont RT, Martin B, Maudsley S. GRK5 - A Functional Bridge Between Cardiovascular and Neurodegenerative Disorders. Front Pharmacol 2018; 9:1484. [PMID: 30618771 PMCID: PMC6304357 DOI: 10.3389/fphar.2018.01484] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/03/2018] [Indexed: 12/15/2022] Open
Abstract
Complex aging-triggered disorders are multifactorial programs that comprise a myriad of alterations in interconnected protein networks over a broad range of tissues. It is evident that rather than being randomly organized events, pathophysiologies that possess a strong aging component such as cardiovascular diseases (hypertensions, atherosclerosis, and vascular stiffening) and neurodegenerative conditions (dementia, Alzheimer's disease, mild cognitive impairment, Parkinson's disease), in essence represent a subtly modified version of the intricate molecular programs already in place for normal aging. To control such multidimensional activities there are layers of trophic protein control across these networks mediated by so-called "keystone" proteins. We propose that these "keystones" coordinate and interconnect multiple signaling pathways to control whole somatic activities such as aging-related disease etiology. Given its ability to control multiple receptor sensitivities and its broad protein-protein interactomic nature, we propose that G protein coupled receptor kinase 5 (GRK5) represents one of these key network controllers. Considerable data has emerged, suggesting that GRK5 acts as a bridging factor, allowing signaling regulation in pathophysiological settings to control the connectivity between both the cardiovascular and neurophysiological complications of aging.
Collapse
Affiliation(s)
- Jhana O. Hendrickx
- Department of Biomedical Science, University of Antwerp, Antwerp, Belgium
- Center for Molecular Neurology, University of Antwerp – Flanders Institute for Biotechnology (VIB), Antwerp, Belgium
| | - Jaana van Gastel
- Department of Biomedical Science, University of Antwerp, Antwerp, Belgium
- Center for Molecular Neurology, University of Antwerp – Flanders Institute for Biotechnology (VIB), Antwerp, Belgium
| | - Hanne Leysen
- Department of Biomedical Science, University of Antwerp, Antwerp, Belgium
- Center for Molecular Neurology, University of Antwerp – Flanders Institute for Biotechnology (VIB), Antwerp, Belgium
| | - Paula Santos-Otte
- Institute of Biophysics, Humboldt-Universitat zu Berlin, Berlin, Germany
| | - Richard T. Premont
- Harrington Discovery Institute, Case Western Reserve University, Cleveland, GA, United States
| | - Bronwen Martin
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Stuart Maudsley
- Department of Biomedical Science, University of Antwerp, Antwerp, Belgium
- Center for Molecular Neurology, University of Antwerp – Flanders Institute for Biotechnology (VIB), Antwerp, Belgium
| |
Collapse
|
4
|
Sato PY, Chuprun JK, Schwartz M, Koch WJ. The evolving impact of g protein-coupled receptor kinases in cardiac health and disease. Physiol Rev 2015; 95:377-404. [PMID: 25834229 PMCID: PMC4551214 DOI: 10.1152/physrev.00015.2014] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are important regulators of various cellular functions via activation of intracellular signaling events. Active GPCR signaling is shut down by GPCR kinases (GRKs) and subsequent β-arrestin-mediated mechanisms including phosphorylation, internalization, and either receptor degradation or resensitization. The seven-member GRK family varies in their structural composition, cellular localization, function, and mechanism of action (see sect. II). Here, we focus our attention on GRKs in particular canonical and novel roles of the GRKs found in the cardiovascular system (see sects. III and IV). Paramount to overall cardiac function is GPCR-mediated signaling provided by the adrenergic system. Overstimulation of the adrenergic system has been highly implicated in various etiologies of cardiovascular disease including hypertension and heart failure. GRKs acting downstream of heightened adrenergic signaling appear to be key players in cardiac homeostasis and disease progression, and herein we review the current data on GRKs related to cardiac disease and discuss their potential in the development of novel therapeutic strategies in cardiac diseases including heart failure.
Collapse
Affiliation(s)
- Priscila Y Sato
- Center for Translational Medicine and Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania; and Advanced Institutes of Convergence Technology, Suwon, South Korea
| | - J Kurt Chuprun
- Center for Translational Medicine and Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania; and Advanced Institutes of Convergence Technology, Suwon, South Korea
| | - Mathew Schwartz
- Center for Translational Medicine and Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania; and Advanced Institutes of Convergence Technology, Suwon, South Korea
| | - Walter J Koch
- Center for Translational Medicine and Department of Pharmacology, Temple University School of Medicine, Philadelphia, Pennsylvania; and Advanced Institutes of Convergence Technology, Suwon, South Korea
| |
Collapse
|
5
|
Genes and Gene Networks Implicated in Aggression Related Behaviour. Neurogenetics 2014; 15:255-66. [DOI: 10.1007/s10048-014-0417-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 08/04/2014] [Indexed: 10/24/2022]
|
6
|
Ghanemi A. Targeting G protein coupled receptor-related pathways as emerging molecular therapies. Saudi Pharm J 2013; 23:115-29. [PMID: 25972730 PMCID: PMC4420995 DOI: 10.1016/j.jsps.2013.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/29/2013] [Indexed: 12/20/2022] Open
Abstract
G protein coupled receptors (GPCRs) represent the most important targets in modern pharmacology because of the different functions they mediate, especially within brain and peripheral nervous system, and also because of their functional and stereochemical properties. In this paper, we illustrate, via a variety of examples, novel advances about the GPCR-related molecules that have been shown to play diverse roles in GPCR pathways and in pathophysiological phenomena. We have exemplified how those GPCRs’ pathways are, or might constitute, potential targets for different drugs either to stimulate, modify, regulate or inhibit the cellular mechanisms that are hypothesized to govern some pathologic, physiologic, biologic and cellular or molecular aspects both in vivo and in vitro. Therefore, influencing such pathways will, undoubtedly, lead to different therapeutical applications based on the related pharmacological implications. Furthermore, such new properties can be applied in different fields. In addition to offering fruitful directions for future researches, we hope the reviewed data, together with the elements found within the cited references, will inspire clinicians and researchers devoted to the studies on GPCR’s properties.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
7
|
Gurevich EV, Tesmer JJG, Mushegian A, Gurevich VV. G protein-coupled receptor kinases: more than just kinases and not only for GPCRs. Pharmacol Ther 2012; 133:40-69. [PMID: 21903131 PMCID: PMC3241883 DOI: 10.1016/j.pharmthera.2011.08.001] [Citation(s) in RCA: 336] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/01/2011] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptor (GPCR) kinases (GRKs) are best known for their role in homologous desensitization of GPCRs. GRKs phosphorylate activated receptors and promote high affinity binding of arrestins, which precludes G protein coupling. GRKs have a multidomain structure, with the kinase domain inserted into a loop of a regulator of G protein signaling homology domain. Unlike many other kinases, GRKs do not need to be phosphorylated in their activation loop to achieve an activated state. Instead, they are directly activated by docking with active GPCRs. In this manner they are able to selectively phosphorylate Ser/Thr residues on only the activated form of the receptor, unlike related kinases such as protein kinase A. GRKs also phosphorylate a variety of non-GPCR substrates and regulate several signaling pathways via direct interactions with other proteins in a phosphorylation-independent manner. Multiple GRK subtypes are present in virtually every animal cell, with the highest expression levels found in neurons, with their extensive and complex signal regulation. Insufficient or excessive GRK activity was implicated in a variety of human disorders, ranging from heart failure to depression to Parkinson's disease. As key regulators of GPCR-dependent and -independent signaling pathways, GRKs are emerging drug targets and promising molecular tools for therapy. Targeted modulation of expression and/or of activity of several GRK isoforms for therapeutic purposes was recently validated in cardiac disorders and Parkinson's disease.
Collapse
Affiliation(s)
- Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, Preston Research Building, Rm. 454, Nashville, TN 37232, United States.
| | | | | | | |
Collapse
|
8
|
McCarthy MJ, Leckband SG, Kelsoe JR. Pharmacogenetics of lithium response in bipolar disorder. Pharmacogenomics 2011; 11:1439-65. [PMID: 21047205 DOI: 10.2217/pgs.10.127] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bipolar disorder (BD) is a serious mental illness with well-established, but poorly characterized genetic risk. Lithium is among the best proven mood stabilizer therapies for BD, but treatment responses vary considerably. Based upon these and other findings, it has been suggested that lithium-responsive BD may be a genetically distinct phenotype within the mood disorder spectrum. This assertion has practical implications both for the treatment of BD and for understanding the neurobiological basis of the illness: genetic variation within lithium-sensitive signaling pathways may confer preferential treatment response, and the involved genes may underlie BD in some individuals. Presently, the mechanism of lithium is reviewed with an emphasis on gene-expression changes in response to lithium. Within this context, findings from genetic-association studies designed to identify lithium response genes in BD patients are evaluated. Finally, a framework is proposed by which future pharmacogenetic studies can incorporate advances in genetics, molecular biology and bioinformatics in a pathway-based approach to predicting lithium treatment response.
Collapse
Affiliation(s)
- Michael J McCarthy
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
9
|
Greenwood TA, Lazzeroni LC, Murray SS, Cadenhead KS, Calkins ME, Dobie DJ, Green MF, Gur RE, Gur RC, Hardiman G, Kelsoe JR, Leonard S, Light GA, Nuechterlein KH, Olincy A, Radant AD, Schork NJ, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Swerdlow NR, Tsuang DW, Tsuang MT, Turetsky BI, Freedman R, Braff DL. Analysis of 94 candidate genes and 12 endophenotypes for schizophrenia from the Consortium on the Genetics of Schizophrenia. Am J Psychiatry 2011; 168:930-46. [PMID: 21498463 PMCID: PMC3751972 DOI: 10.1176/appi.ajp.2011.10050723] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The authors used a custom array of 1,536 single-nucleotide polymorphisms (SNPs) to interrogate 94 functionally relevant candidate genes for schizophrenia and identify associations with 12 heritable neurophysiological and neurocognitive endophenotypes in data collected by the Consortium on the Genetics of Schizophrenia. METHOD Variance-component association analyses of 534 genotyped subjects from 130 families were conducted by using Merlin software. A novel bootstrap total significance test was also developed to overcome the limitations of existing genomic multiple testing methods and robustly demonstrate significant associations in the context of complex family data and possible population stratification effects. RESULTS Associations with endophenotypes were observed for 46 genes of potential functional significance, with three SNPs at p<10(-4), 27 SNPs at p<10(-3), and 147 SNPs at p<0.01. The bootstrap analyses confirmed that the 47 SNP-endophenotype combinations with the strongest evidence of association significantly exceeded that expected by chance alone, with 93% of these findings expected to be true. Many of the genes interact on a molecular level, and eight genes (e.g., NRG1 and ERBB4) displayed evidence for pleiotropy, revealing associations with four or more endophenotypes. The results collectively support a strong role for genes related to glutamate signaling in mediating schizophrenia susceptibility. CONCLUSIONS This study supports use of relevant endophenotypes and the bootstrap total significance test for identifying genetic variation underlying the etiology of schizophrenia. In addition, the observation of extensive pleiotropy for some genes and singular associations for others suggests alternative, independent pathways mediating pathogenesis in the "group of schizophrenias."
Collapse
Affiliation(s)
- Tiffany A Greenwood
- Department of Psychiatry, University of California at San Diego, La Jolla, CA 92093-0804, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Taneja M, Salim S, Saha K, Happe HK, Qutna N, Petty F, Bylund DB, Eikenburg DC. Differential effects of inescapable stress on locus coeruleus GRK3, alpha2-adrenoceptor and CRF1 receptor levels in learned helpless and non-helpless rats: a potential link to stress resilience. Behav Brain Res 2011; 221:25-33. [PMID: 21333691 PMCID: PMC3108052 DOI: 10.1016/j.bbr.2011.02.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Revised: 02/01/2011] [Accepted: 02/10/2011] [Indexed: 02/06/2023]
Abstract
Exposure of rats to unpredictable, inescapable stress results in two distinct behaviors during subsequent escape testing. One behavior, suggestive of lack of stress resilience, is prolonged escape latency compared to non-stressed rats and is labeled learned helplessness (LH). The other behavior suggestive of stress resilience is normal escape latency and is labeled non-helpless (NH). This study examines the effects of unpredictable, inescapable tail-shock stress (TSS) on alpha(2)-adrenoceptor (α(2A)-AR) and corticotropin-releasing factor 1 receptor (CRF(1)-R) regulation as well as protein levels of G protein-coupled receptor kinase 3 (GRK3), GRK2, tyrosine hydroxylase (TH) plus carbonylated protein levels in locus coeruleus (LC), amygdala (AMG), cortex (COR) and striatum (STR). In NH rats, α(2A)-AR and CRF(1)-R were significantly down-regulated in LC after TSS. No changes in these receptor levels were observed in the LC of LH rats. GRK3, which phosphorylates receptors and thereby contributes to α(2A)-AR and CRF(1)-R down-regulation, was reduced in the LC of LH but not NH rats. GRK2 levels were unchanged. In AMG, GRK3 but not GRK2 levels were reduced in LH but not NH rats, and receptor regulation was impaired in LH rats. In STR, no changes in GRK3 or GRK2 levels were observed. Finally, protein carbonylation, an index of oxidative stress, was increased in the LC and AMG of LH but not NH rats. We suggest that reduced stress resilience after TSS may be related to oxidative stress, depletion of GRK3 and impaired regulation of α(2A)-AR and CRF(1)-R in LC.
Collapse
Affiliation(s)
| | | | | | | | - Nidal Qutna
- Dept. Psychiatry, Creighton Univ., Omaha, NE
| | | | - David B. Bylund
- Pharmacol. and Exptl. Neurosci., Univ. of Nebraska Med. Ctr., Omaha, NE
| | | |
Collapse
|
11
|
Scotti MAL, Lee G, Stevenson SA, Ostromecki AM, Wied TJ, Kula DJ, Gessay GM, Gammie SC. Behavioral and pharmacological assessment of a potential new mouse model for mania. Physiol Behav 2011; 103:376-83. [PMID: 21397618 PMCID: PMC3081909 DOI: 10.1016/j.physbeh.2011.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 03/02/2011] [Accepted: 03/04/2011] [Indexed: 10/18/2022]
Abstract
Bipolar disorder (BPD) is a devastating long-term disease for which a significant symptom is mania. Rodent models for mania include psychostimulant-induced hyperactivity and single gene alterations, such as in the Clock or DAT genes, but there is still a pressing need for additional models. Recently, our lab isolated a line of mice, termed Madison (MSN), that exhibit behavioral characteristics that may be analogous to symptoms of mania. In this study we quantified possible traits for mania and tested the response to common anti-BPD drugs in altering the behavioral profiles observed in this strain. Relative to other mouse lines, MSN mice showed significant elevations of in-cage hyperactivity levels, significant decreases in daytime sleep, and significant increases in time swimming in the forced swim test. In terms of sexual behavior, the MSN mice showed significantly higher number of mounts and a trend toward higher time mounting. In separate studies, olanzapine and lithium (or respective controls) were administered to MSN mice for at least 2weeks and response to treatments was evaluated. Olanzapine (1mg/kg/day) significantly decreased in-cage hyperactivity and significantly increased time sleeping. Lithium (0.2-0.4% in food) significantly decreased in-cage hyperactivity. Given the behavioral phenotypes and the response to anti-BPD treatments, we propose that MSN mice may provide a possible new model for understanding the neural and genetic basis of phenotypes related to mania and for developing pharmaceutical treatments.
Collapse
Affiliation(s)
- Melissa-Ann L. Scotti
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL
- Department of Psychology, Northern Illinois University, DeKalb, IL
| | - Grace Lee
- Department of Neuroscience, Tufts University, Medford, MA
| | - Sharon A. Stevenson
- Department of Zoology, Neuroscience Training Program, University of Wisconsin, Madison, WI
| | | | - Tyler J. Wied
- Department of Zoology, Neuroscience Training Program, University of Wisconsin, Madison, WI
| | - Daniel J. Kula
- Department of Zoology, Neuroscience Training Program, University of Wisconsin, Madison, WI
| | - Griffin M. Gessay
- Department of Zoology, Neuroscience Training Program, University of Wisconsin, Madison, WI
| | - Stephen C. Gammie
- Department of Zoology, Neuroscience Training Program, University of Wisconsin, Madison, WI
| |
Collapse
|
12
|
Mitchell PB, Meiser B, Wilde A, Fullerton J, Donald J, Wilhelm K, Schofield PR. Predictive and diagnostic genetic testing in psychiatry. Clin Lab Med 2011; 30:829-46. [PMID: 20832655 DOI: 10.1016/j.cll.2010.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The recent advent of commercially available genetic tests for the diagnosis of several mental illnesses has led to intense controversy amongst the psychiatric research community. In this article the authors review these developments, and contrast these with the growing evidence from genomewide association studies that highly heritable psychiatric conditions such as schizophrenia are due to the contributions and interaction of multiple allelic variants, each of small effect size. There is also evidence for the contribution of some highly penetrant rare de novo copy number variants, though the lack of disease specificity for these is of concern. This article outlines the prerequisites for predictive and diagnostic genetic tests, such as clinical validity and utility, and reviews the opportunity that genetic tests for mental illnesses present. As the scientific discourse on genetic tests for complex disorders is not limited to psychiatry, the authors outline current thoughts on the significance of genome-wide association studies across health, and the phenomenon of direct-to-consumer tests in medicine. The attitudes and understanding of patients, families, and clinicians about the future (currently hypothetical) scenario of psychiatric genetic tests are discussed, as is the potential for such testing to increase, rather than diminish stigma. Finally, recommendations on the future development and availability of genetic tests in psychiatry are provided.
Collapse
Affiliation(s)
- Philip B Mitchell
- School of Psychiatry, Prince of Wales Hospital, University of New South Wales, Randwick, Sydney, NSW 2031, Australia.
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The recent advent of commercially available genetic tests for the diagnosis of several mental illnesses has led to intense controversy amongst the psychiatric research community. In this article the authors review these developments, and contrast these with the growing evidence from genome-wide association studies that highly heritable psychiatric conditions such as schizophrenia are due to the contributions and interaction of multiple allelic variants, each of small effect size. There is also evidence for the contribution of some highly penetrant rare de novo copy number variants, though the lack of disease specificity for these is of concern. This article outlines the prerequisites for predictive and diagnostic genetic tests, such as clinical validity and utility, and reviews the opportunity that genetic tests for mental illnesses present. As the scientific discourse on genetic tests for complex disorders is not limited to psychiatry, the authors outline current thoughts on the significance of genome-wide association studies across health, and the phenomenon of direct-to-consumer tests in medicine. The attitudes and understanding of patients, families, and clinicians about the future (currently hypothetical) scenario of psychiatric genetic tests are discussed, as is the potential for such testing to increase, rather than diminish stigma. Finally, recommendations on the future development and availability of genetic tests in psychiatry are provided.
Collapse
|
14
|
McCarthy MJ, Barrett TB, Nissen S, Kelsoe JR, Turner EE. Allele specific analysis of the ADRBK2 gene in lymphoblastoid cells from bipolar disorder patients. J Psychiatr Res 2010; 44:201-8. [PMID: 19766236 PMCID: PMC2830298 DOI: 10.1016/j.jpsychires.2009.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 07/24/2009] [Accepted: 08/18/2009] [Indexed: 01/10/2023]
Abstract
G-protein coupled receptor kinase-3 (GRK3), translated from the gene, ADRBK2 has been implicated as a candidate molecule for bipolar disorder through multiple, converging lines of evidence. In some individuals, the ADRBK2 gene harbors the A-haplotype, a collection of single nucleotide polymorphisms (SNPs) previously associated with an increased risk for bipolar disorder. Because the A-haplotype encompasses the ADRBK2 promoter, we hypothesized that it may alter the regulation of gene expression. Using histone H3 acetylation to infer promoter activity in lymphoblastoid cells from patients with bipolar disorder, we examined the A-haplotype within its genomic context and determined that at least four of its SNPs are present in transcriptionally active portions of the promoter. However, using chromatin immunoprecipitation followed by allele-specific PCR in samples heterozygous for the A-haplotype, we found no evidence of altered levels of acetylated histone H3 at the affected allele compared to the common allele. Similarly, using a transcribed SNP to discriminate expressed ADRBK2 mRNA strands by allele of origin; we found that the A-haplotype did not confer an allelic-expression imbalance. Our data suggest that while the A-haplotype is situated in active regulatory sequence, the risk-associated SNPs do not appear to affect ADRBK2 gene regulation at the level of histone H3 acetylation nor do they confer measurable changes in transcription in lymphoblastoid cells. However, tissue-specific mechanisms by which the A-haplotype could affect ADRBK2 in the central nervous system cannot be excluded.
Collapse
Affiliation(s)
- Michael J McCarthy
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
15
|
Rao JS, Rapoport SI, Kim HW. Decreased GRK3 but not GRK2 expression in frontal cortex from bipolar disorder patients. Int J Neuropsychopharmacol 2009; 12:851-60. [PMID: 19400979 PMCID: PMC2738976 DOI: 10.1017/s146114570900025x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Overactivation of G-protein-mediated functions and altered G-protein regulation have been reported in bipolar disorder (BD) brain. Further, drugs effective in treating BD are reported to up-regulate expression of G-protein receptor kinase (GRK) 3 in rat frontal cortex. We therefore hypothesized that some G-protein subunits and GRK levels would be reduced in the brain of BD patients. We determined protein and mRNA levels of G-protein beta and gamma subunits, GRK2, and GRK3 in post-mortem frontal cortex from 10 BD patients and 10 age-matched controls by using immunoblots and real-time RT-PCR. There were statistically significant decreases in protein and mRNA levels of G-protein subunits beta and gamma and of GRK3 in BD brain but not a significant difference in the GRK2 level. Decreased expression of G-protein subunits and of GRK3 may alter neurotransmission, leading to disturbed cognition and behaviour in BD.
Collapse
Affiliation(s)
- Jagadeesh S Rao
- Brain Physiology and Metabolism Section, NIA, NIH, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
16
|
Lachman HM. Copy variations in schizophrenia and bipolar disorder. Cytogenet Genome Res 2009; 123:27-35. [PMID: 19287136 DOI: 10.1159/000184689] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2008] [Indexed: 01/19/2023] Open
Abstract
The analysis of copy number variations (CNVs) is an emerging tool for identifying genetic factors underlying complex traits. In this chapter I will review studies that have been carried out showing that CNVs play a role in the development of two such complex traits; schizophrenia (SZ) and bipolar disorder (BD). There are two aspects to consider regarding the role of copy variations in these conditions. One is gene discovery in which DNA from patients is analyzed for the purpose of identifying rare, patient-specific CNVs that may be informative to a larger population of affected individuals. The model for this concept is based on the emergence of DISC1 as a SZ candidate gene, which was discovered in a single informative family with a rare chromosomal translocation. Another aspect revolves around the idea that polymorphic CNVs found in the general population, many of which appear to disrupt previously identified SZ and BD candidate genes, contribute to disease pathogenesis. Here, gene-disrupting CNVs are viewed in the same manner as functional SNPs and analyzed for involvement in disease susceptibility using genetic association. Although the analysis of CNVs in patients with psychiatric disorders is in its infancy, informative new findings have already been made, suggesting that this is a very promising line of research.
Collapse
Affiliation(s)
- H M Lachman
- Department of Psychiatry and Behavioral Sciences, Division of Basic Research Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
17
|
Brody H. Ask your doctor if this genetic test is right for you. THE AMERICAN JOURNAL OF BIOETHICS : AJOB 2008; 8:1-2. [PMID: 18726765 DOI: 10.1080/15265160802248450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|