1
|
Goldfield GS, Cameron JD, Sigal RJ, Kenny GP, Prud'homme D, Ngu M, Alberga AS, Doucette S, Goldfield DB, Tulloch H, Thai H, Simas KR, Walsh J. The BDNF Val66Met polymorphism and health-related quality of life in youth with obesity. Physiol Rep 2024; 12:e16140. [PMID: 38997217 PMCID: PMC11245332 DOI: 10.14814/phy2.16140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
The brain derived-neurotrophic factor (BDNF) Val66Met polymorphism causes functional changes in BDNF, and is associated with obesity and some psychiatric disorders, but its relationship to health-related quality of life (HRQoL) remains unknown. This study examined, in youth with obesity, whether carriers of the BDNF Val66met polymorphism Met-alleles (A/A or G/A) differed from noncarriers (G/G) on HRQoL. The participants were 187 adolescents with obesity. Ninety-nine youth were carriers of the homozygous Val/Val (G/G) alleles, and 88 were carriers of the Val/Met (G/A) or Met/Met (A/A) alleles. Blood samples were drawn in the morning after an overnight fast for genotyping. HRQoL was measured using the Pediatric-Quality of Life core version. Compared to carriers of the Val66Met Val (G/G) alleles, carriers of the Met-Alleles reported significantly higher physical -HRQoL (p = 0.02), school-related HRQoL, (p = 0.05), social-related HRQoL (p = 0.05), and total HRQoL (p = 0.03), and a trend for Psychosocial-HRQoL. Research is needed to confirm our findings and determine whether carriers of the BDNF Val66Met homozygous Val (G/G) alleles may be at risk of diminished HRQoL, information that can influence interventions in a high-risk population of inactive youth with obesity.
Collapse
Affiliation(s)
- Gary S. Goldfield
- Healthy Active Living and Obesity Research GroupChildren's Hospital of Eastern Ontario Research InstituteOttawaOntarioCanada
- Department of PediatricsUniversity of OttawaOttawaOntarioCanada
- School of Human KineticsUniversity of OttawaOttawaOntarioCanada
- Department of PsychologyCarleton UniversityOttawaOntarioCanada
| | - Jameason D. Cameron
- Department of PharmacyChildren's Hospital of Eastern OntarioOttawaOntarioCanada
| | - Ronald J. Sigal
- School of Human KineticsUniversity of OttawaOttawaOntarioCanada
- Department of Medicine, Cardiac Sciences and Community Health Sciences, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaOntarioCanada
| | - Glen P. Kenny
- School of Human KineticsUniversity of OttawaOttawaOntarioCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaOntarioCanada
| | - Denis Prud'homme
- School of Human KineticsUniversity of OttawaOttawaOntarioCanada
- University of MonctonMonctonNew BrunswickCanada
| | - Mathew Ngu
- School of Human KineticsUniversity of OttawaOttawaOntarioCanada
| | - Angela S. Alberga
- Department of Exercise ScienceConcordia UniversityMontrealQuebecCanada
| | - Steve Doucette
- Department of Community Health and EpidemiologyDalhousie UniversityHalifaxNova ScotiaCanada
| | | | - Heather Tulloch
- Division of Cardiac Prevention and RehabilitationUniversity of Ottawa Heart InstituteOttawaOntarioCanada
| | - Helen Thai
- Healthy Active Living and Obesity Research GroupChildren's Hospital of Eastern Ontario Research InstituteOttawaOntarioCanada
- Department of PsychologyCarleton UniversityOttawaOntarioCanada
- Department of PsychologyMcGill UniversityMontrealQuebecCanada
| | - Kevin R. Simas
- Healthy Active Living and Obesity Research GroupChildren's Hospital of Eastern Ontario Research InstituteOttawaOntarioCanada
- Department of NeuroscienceCarleton UniversityOttawaOntarioCanada
| | - Jeremy Walsh
- Department of KinesiologyMcMaster UniversityHamiltonOntarioCanada
| |
Collapse
|
2
|
Jorge KTDOS, Braga MP, Cazzaniga RA, Santos CNO, Teixeira MM, Gomes KB, de Jesus AMR, Soriani FM. The role of neurotrophin polymorphisms and susceptibility to neural damage in leprosy. Int J Infect Dis 2024; 142:106946. [PMID: 38278287 DOI: 10.1016/j.ijid.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/20/2023] [Accepted: 01/21/2024] [Indexed: 01/28/2024] Open
Abstract
OBJECTIVES Mycobacterium leprae is able to infect Schwann cells leading to neural damage. Neurotrophins are involved in nervous system plasticity and impact neural integrity during diseases. Investigate the association between single nucleotide polymorphisms in neurotrophin genes and leprosy phenotypes, especially neural damage. DESIGN We selected single nucleotide polymorphisms in neurotrophins or their receptors genes associated with neural disorders: rs6265 and rs11030099 of brain-derived neurotrophic factor (BDNF), rs6330 of BDNF, rs6332 in NT3 and rs2072446 of P75NTR. The association of genetic frequencies with leprosy phenotypes was investigated in a case-control study. RESULTS An association of the BDNF single nucleotide polymorphism rs11030099 with the number of affected nerves was demonstrated. The "AA+AC" genotypes were demonstrated to be protective against nerve impairment. However, this variation does not affect BDNF serum levels. BDNF is an important factor for myelination of Schwann cells and polymorphisms in this gene can be associated with leprosy outcome. Moreover, rs11030099 is located in the binding region for micro-RNA (miRNA) 26a that could be involved in control of BDNF expression. We demonstrated different expression levels of this miRNA in polar forms of leprosy. CONCLUSION Our findings demonstrate for the first time an association between the polymorphism rs11030099 in the BDNF gene and neural commitment in leprosy and may indicate a possible role of miRNA-26a acting synergistically to these genetic variants in neural damage development.
Collapse
Affiliation(s)
| | - Marina Pimenta Braga
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Mauro Martins Teixeira
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Karina Braga Gomes
- Department of Clinical and Toxicological Analyzes - Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Frederico Marianetti Soriani
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
3
|
Petrill SA, Klamer BG, Buyske S, Willcutt EG, Gruen JR, Francis DJ, Flax JF, Brzustowicz LM, Bartlett CW. The Rosetta Phenotype Harmonization Method Facilitates Finding a Relationship Quantitative Trait Locus for a Complex Cognitive Trait. Genes (Basel) 2023; 14:1748. [PMID: 37761888 PMCID: PMC10531321 DOI: 10.3390/genes14091748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Genetics researchers increasingly combine data across many sources to increase power and to conduct analyses that cross multiple individual studies. However, there is often a lack of alignment on outcome measures when the same constructs are examined across studies. This inhibits comparison across individual studies and may impact the findings from meta-analysis. Using a well-characterized genotypic (brain-derived neurotrophic factor: BDNF) and phenotypic constructs (working memory and reading comprehension), we employ an approach called Rosetta, which allows for the simultaneous examination of primary studies that employ related but incompletely overlapping data. We examined four studies of BDNF, working memory, and reading comprehension with a combined sample size of 1711 participants. Although the correlation between working memory and reading comprehension over all participants was high, as expected (ρ = 0.45), the correlation between working memory and reading comprehension was attenuated in the BDNF Met/Met genotype group (ρ = 0.18, n.s.) but not in the Val/Val (ρ = 0.44) or Val/Met (ρ = 0.41) groups. These findings indicate that Met/Met carriers may be a unique and robustly defined subgroup in terms of memory and reading comprehension. This study demonstrates the utility of the Rosetta method when examining complex phenotypes across multiple studies, including psychiatric genetic studies, as shown here, and also for the mega-analysis of cohorts generally.
Collapse
Affiliation(s)
- Stephen A. Petrill
- Department of Psychology, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - Brett G. Klamer
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210, USA;
| | - Steven Buyske
- Department of Statistics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
| | - Erik G. Willcutt
- Department of Psychology, University of Colorado Boulder, Boulder, CO 80309, USA;
| | - Jeffrey R. Gruen
- Departments of Pediatrics and of Genetics, Yale Medical School, New Haven, CT 06511, USA;
| | - David J. Francis
- Texas Institute for Measurement, Evaluation, and Statistics, University of Houston, Houston, TX 77004, USA;
| | - Judy F. Flax
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (J.F.F.); (L.M.B.)
| | - Linda M. Brzustowicz
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; (J.F.F.); (L.M.B.)
| | - Christopher W. Bartlett
- The Steve & Cindy Rasmussen Institute for Genomic Medicine in the Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
4
|
Anderson C, Hicks AJ, Carmichael J, Burke R, Ponsford J. COMT Val158Met and BDNF Val66Met Single-Nucleotide Polymorphisms Are Not Associated With Emotional Distress One Year After Moderate-Severe Traumatic Brain Injury. Neurotrauma Rep 2023; 4:495-506. [PMID: 37636335 PMCID: PMC10457651 DOI: 10.1089/neur.2023.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Emotional distress is a common, but poorly addressed, feature of moderate-severe traumatic brain injury (TBI). Previously identified sociodemographic, psychological, and injury-related factors account for only a small proportion of the variability in emotional distress post-TBI. Genetic factors may help to further understand emotional distress in this population. The catechol-O-methyltransferase (COMT) Val158 and brain-derived neurotrophic factor (BDNF) 66Met single-nucleotide polymorphisms (SNPs) have been identified as possible contributory factors to outcomes after TBI. We investigated whether the COMT Val158 and BDNF 66Met SNPs were associated with emotional distress 1 year after moderate-severe TBI, and whether these associations were moderated by age, sex, and TBI severity (as measured by the duration of post-traumatic amnesia [PTA]). Moderate-severe TBI survivors (COMT, n = 391; BDNF, n = 311) provided saliva samples after admission to a TBI rehabilitation hospital. At a follow-up interview ∼1 year after injury, participants completed a self-report measure of emotional distress (Hospital Anxiety and Depression Scale; HADS). Multiple linear regression models were constructed for each SNP to predict total scores on the HADS. Neither COMT Val158 nor BDNF 66Met carriage status (carrier vs. non-carrier) significantly predicted emotional distress (COMT, p = 0.49; BDNF, p = 0.66). Interactions of SNP × age (COMT, p = 0.90; BDNF, p = 0.93), SNP × sex (COMT, p = 0.09; BDNF, p = 0.60), SNP × injury severity (COMT, p = 0.53; BDNF, p = 0.87), and SNP × sex × age (COMT, p = 0.08; BDNF, p = 0.76) were also non-significant. Our null findings suggest that COMT Val158 and BDNF 66Met SNPs do not aid the prediction of emotional distress 1 year after moderate-severe TBI, neither in isolation nor in interaction with age, sex and injury severity. The reporting of null findings such as ours is important to avoid publication bias and prompt researchers to consider the challenges of single-gene candidate studies in understanding post-TBI outcomes. Analyses in larger samples that incorporate multiple genetic factors and their relevant moderating factors may provide a greater understanding of the role of genetics in post-TBI emotional distress.
Collapse
Affiliation(s)
- Chloe Anderson
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Amelia J. Hicks
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Jai Carmichael
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Richard Burke
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Jennie Ponsford
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
5
|
Wei H, Sun B, Li Y, Wang Y, Chen Y, Guo M, Mo X, Hu F, Du Y. Electrochemical immunosensor AuNPs/NG-PANI/ITO-PET for the determination of BDNF in depressed mice serum. Mikrochim Acta 2023; 190:330. [PMID: 37500906 DOI: 10.1007/s00604-023-05878-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
A novel electrochemical immunosensor was developed for highly sensitive detection of brain-derived neurotrophic factor (BDNF), a well-known depression marker. The immunosensor was fabricated by modifying indium tin oxide-coated polyethylene terephthalate (ITO-PET) with N-doped graphene-polyaniline (NG-PANI) and gold nanoparticles (AuNPs) to enhance the conductivity and protein loading capacity. Subsequently, BDNF was immobilized onto the electrode surface via gold-sulfur bonds, followed by the attachment of biotinylated antibody (Biotin-Ab) and horseradish peroxidase-avidin (HRP-Avidin) to create the final immunosensor (HRP-Avidin-Biotin-Ab-BDNF-AuNPs/NG-PANI/ITO-PET). The proposed immunosensor exhibited a linear range of determination (0.781-400 pg/mL) with a low limit of detection (LOD) of 0.261 pg/mL (S/N = 3) and excellent reproducibility (RSD = 1.4%) and stability (92.7%, RSD = 3.1%). Additionally, the immunosensor demonstrated good anti-interference performance and good recovery (98.1-107%). To evaluate the practical utility of the immunosensor, BDNF levels were quantified in the serum of mice with depression induced by chronic unpredictable mild stress (CUMS). The results indicated that the serum BDNF levels were significantly decreased in the depression model group compared with the control group, highlighting the potential of this immunosensor for clinical detection of BDNF in depression diagnosis and treatment.
Collapse
Affiliation(s)
- Hong Wei
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou University, Gansu, 730000, Lanzhou, China
| | - Bolu Sun
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730000, Gansu, China
| | - YuanYuan Li
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou University, Gansu, 730000, Lanzhou, China
| | - Yanping Wang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou University, Gansu, 730000, Lanzhou, China
| | - Yan Chen
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou University, Gansu, 730000, Lanzhou, China
| | - Min Guo
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou University, Gansu, 730000, Lanzhou, China
| | - Xiaohui Mo
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou University, Gansu, 730000, Lanzhou, China
| | - Fangdi Hu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, Codonopsis Radix Industrial Technology Engineering Research Center, Gansu Province, Lanzhou University, Gansu, 730000, Lanzhou, China.
| | - Yongling Du
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Durazzo TC, McNerney MW, Hansen AM, Gu M, Sacchet MD, Padula CB. BDNF rs6265 Met carriers with alcohol use disorder show greater age-related decline of N-acetylaspartate in left dorsolateral prefrontal cortex. Drug Alcohol Depend 2023; 248:109901. [PMID: 37146499 DOI: 10.1016/j.drugalcdep.2023.109901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/04/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is implicated in neuronal and glial cell growth and differentiation, synaptic plasticity, and apoptotic mechanisms. A single-nucleotide polymorphism of the BDNF rs6265 gene may contribute to the pattern and magnitude of brain metabolite abnormalities apparent in those with an Alcohol Use Disorder (AUD). We predicted that Methionine (Met) carriers would demonstrate lower magnetic resonance spectroscopy (MRS) measures of N-acetylaspartate level (NAA) and greater age-related decline in NAA than Valine (Val) homozygotes. METHODS Veterans with AUD (n=95; 46±12 years of age, min = 25, max = 71) were recruited from VA Palo Alto residential treatment centers. Single voxel MRS, at 3 Tesla, was used to obtain NAA, choline (Cho) and creatine (Cr) containing compounds from the left dorsolateral prefrontal cortex (DLPFC). Metabolite spectra were fit with LC Model and NAA and Cho were standardized to total Cr level and NAA was also standardized to Cho. RESULTS Val/Met (n=35) showed markedly greater age-related decline in left DLPFC NAA/Cr level than Val/Val (n=60); no differences in mean metabolite levels were observed between Val/Met and Val/Val. Val/Met demonstrated greater frequency of history of MDD and higher frequency of cannabis use disorder over 12 months prior to study. CONCLUSIONS The greater age-related decline in left DLPFC NAA/Cr and the higher frequency of MDD history and Cannabis Use disorder in BDNF rs6265 Met carriers with AUD are novel and may have implications for non-invasive brain stimulation targeting the left DLFPC and other psychosocial interventions typically utilized in the treatment of AUD.
Collapse
Affiliation(s)
- Timothy C Durazzo
- Palo Alto Veterans Affairs Health Care System, Mental Illness Research and Education Clinical Centers (MIRECC) Palo Alto, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| | - M Windy McNerney
- Palo Alto Veterans Affairs Health Care System, Mental Illness Research and Education Clinical Centers (MIRECC) Palo Alto, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Annika M Hansen
- Palo Alto Veterans Affairs Health Care System, Mental Illness Research and Education Clinical Centers (MIRECC) Palo Alto, CA, USA
| | - Meng Gu
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew D Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Claudia B Padula
- Palo Alto Veterans Affairs Health Care System, Mental Illness Research and Education Clinical Centers (MIRECC) Palo Alto, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
7
|
Nicholson EL, Garry MI, Ney LJ, Hsu CMK, Zuj DV, Felmingham KL. The influence of the BDNF Val66Met genotype on emotional recognition memory in post-traumatic stress disorder. Sci Rep 2023; 13:5033. [PMID: 36977737 PMCID: PMC10050310 DOI: 10.1038/s41598-023-30787-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Dysregulated consolidation of emotional memories is a core feature of posttraumatic stress disorder (PTSD). Brain Derived Neurotrophic Factor (BDNF) influences synaptic plasticity and emotional memory consolidation. The BDNF Val66Met polymorphism has been associated with PTSD risk and memory deficits respectively, although findings have been inconsistent, potentially due to a failure to control for important confounds such as sex, ethnicity, and the timing/extent of previous trauma experiences. Furthermore, very little research has examined the impact of BDNF genotypes on emotional memory in PTSD populations. This study investigated the interaction effects of Val66Met and PTSD symptomatology in an emotional recognition memory task in 234 participants divided into healthy control (n = 85), trauma exposed (TE: n = 105) and PTSD (n = 44) groups. Key findings revealed impaired negative recognition memory in PTSD compared to control and TE groups and in participants with the Val/Met compared to the Val/Val genotype. There was a group × genotype interaction showing no Met effect in the TE group despite significant effects in PTSD and controls. Results suggest that people previously exposed to trauma who do not develop PTSD may be protected from the BDNF Met effect, however more research is needed to replicate findings and to explore the epigenetic and neural processes involved.
Collapse
Affiliation(s)
- Emma Louise Nicholson
- Melbourne School of Psychological Sciences, University of Melbourne, Redmond Barry Building, Parkville, VIC, 3010, Australia.
| | - Michael I Garry
- School of Psychological Sciences, University of Tasmania, Hobart, Australia
| | - Luke J Ney
- School of Psychological Sciences, University of Tasmania, Hobart, Australia
- Faculty of Health, School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
| | - Chia-Ming K Hsu
- School of Psychological Sciences, University of Tasmania, Hobart, Australia
| | - Daniel V Zuj
- School of Psychological Sciences, University of Tasmania, Hobart, Australia
- Experimental Psychopathology Lab, Department of Psychology, Swansea University, Swansea, UK
| | - Kim L Felmingham
- Melbourne School of Psychological Sciences, University of Melbourne, Redmond Barry Building, Parkville, VIC, 3010, Australia
| |
Collapse
|
8
|
Anderson C, Carmichael J, Hicks AJ, Burke R, Ponsford J. Interaction between APOE ɛ4 and Age Is Associated with Emotional Distress One Year after Moderate-Severe Traumatic Brain Injury. J Neurotrauma 2023; 40:326-336. [PMID: 35996348 DOI: 10.1089/neu.2022.0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Emotional distress is common following moderate-severe traumatic brain injury (TBI) and is associated with poorer post-injury outcomes. Previously investigated sociodemographic, psychological, and injury-related factors account for only a small proportion of variance in post-TBI emotional distress, highlighting a need to consider other factors such as genetic factors. The apolipoprotein E gene (APOE) has been commonly studied in the TBI literature, with the ɛ4 allele linked to worse neuronal repair and recovery. Few studies have investigated the potential relationship between APOE ɛ4 and emotional distress after moderate-severe TBI, and results have been varied. We examined whether APOE ɛ4 was associated with emotional distress 1 year following moderate-severe TBI, and whether this relationship was moderated by age, sex, and TBI severity (as indexed by the duration of post-traumatic amnesia [PTA]). Moderate-severe TBI survivors provided saliva samples following inpatient admission to a TBI rehabilitation hospital. They completed a self-report measure of emotional distress, the Hospital Anxiety and Depression Scale (HADS), at a follow-up interview ∼1 year post-injury. Complete genetic and follow-up data were available for 441 moderate-severe TBI survivors (mean age = 39.42 years; 75% male). We constructed a linear regression model that included APOE ɛ4 carriage status (carrier vs. non-carrier) and interactions with age, sex, and TBI severity (APOE × age, APOE × sex, APOE × age × sex, and APOE × PTA duration) to predict total score on the HADS, while covarying for the main effects of age, sex, PTA duration, and previous head injury. There was a significant main effect of APOE ɛ4, whereby ɛ4 carriers reported less emotional distress than non-carriers (p = 0.04). However, we also found a significant interaction with age such that APOE ɛ4 carriers reported increasingly greater emotional distress with older age compared with non-carriers (p = 0.01). A sensitivity analysis (n = 306) suggested that the APOE × age interaction, and main effects of age and previous head injury, were not unique to individuals with pre-injury mental health problems (n = 136). However, the main effect of APOE ɛ4 was no longer significant when individuals with pre-injury mental health problems were removed. Our findings highlight the importance of considering moderation of genetic associations, suggesting that APOE ɛ4 may be a risk factor for emotional distress specifically among older survivors of moderate-severe TBI. If these findings can be independently replicated, APOE ɛ4 carriage status, interpreted in the context of age, could be incorporated into risk prediction models of emotional distress after moderate-severe TBI, enhancing targeted early detection and intervention efforts.
Collapse
Affiliation(s)
- Chloe Anderson
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institutes for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Jai Carmichael
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institutes for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Amelia J Hicks
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institutes for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Richard Burke
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Jennie Ponsford
- Monash-Epworth Rehabilitation Research Centre, Epworth HealthCare, Melbourne, Australia; Turner Institutes for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
9
|
Effect of Transcutaneous Spinal Direct Current Stimulation in Patients with Painful Polyneuropathy and Influence of Possible Predictors of Efficacy including BDNF Polymorphism: A Randomized, Sham-Controlled Crossover Study. Brain Sci 2023; 13:brainsci13020229. [PMID: 36831772 PMCID: PMC9953758 DOI: 10.3390/brainsci13020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Introduction: The neuromodulating effects of transcutaneous-spinal Direct Current Stimulation (tsDCS) have been reported to block pain signaling. For patients with chronic pain, tsDCS could be a potential treatment option. To approach this, we studied the effect of anodal tsDCS on patients with neuropathic pain approaching an optimal paradigm including the investigation of different outcome predictors. Methods: In this randomized, double-blinded, sham-controlled crossover study we recruited twenty patients with neurophysiologically evaluated neuropathic pain due to polyneuropathy (PNP). Variables (VAS; pain and sleep quality) were reported daily, one week prior to, and one week after the stimulation/sham period. Anodal tsDCS (2.5 mA, 20 min) was given once daily for three days during one week. BDNF-polymorphism, pharmacological treatment, and body mass index (BMI) of all the patients were investigated. Results: Comparing the effects of sham and real stimulation at the group level, there was a tendency towards reduced pain, but no significant effects were found. However, for sleep quality a significant improvement was seen. At the individual level, 30 and 35% of the subjects had a clinically significant improvement of pain level and sleep quality, respectively, the first day after the stimulation. Both effects were reduced over the coming week and these changes were negatively correlated. The BDNF polymorphism Val66Met was carried by 35% of the patients and this group was found to have a lower general level of pain but there was no significant difference in the tsDCS response effect. Neither pharmacologic treatment or BMI influenced the treatment effect. Conclusions: Short-term and sparse anodal thoracic tsDCS reduces pain and improves sleep with large inter-individual differences. Roughly 30% will benefit in a clinically meaningful way. The BDNF genotype seems to influence the level of pain that PNP produces. Individualized and intensified tsDCS may be a treatment option for neuropathic pain due to PNP.
Collapse
|
10
|
Ng H, Alfian SD, Abdulah R, Barliana MI. BDNF val66met genotype is not associated with psychological distress: A cross-sectional study in Indonesian Pharmacy young adults. Medicine (Baltimore) 2022; 101:e29481. [PMID: 35905264 PMCID: PMC9333470 DOI: 10.1097/md.0000000000029481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The number of mental disorders has been increasing but has yet to receive sufficient attention. In particular, healthcare students and professionals tend to have high stress burden. Finding the root cause of psychological distress is important to formulate a method for early detection and prevention. The association of brain-derived neurotrophic factor val66met polymorphism to neuropsychiatric disorders has been widely studied. To study the interplay between brain-derived neurotrophic factor val66met polymorphism and sociodemographic factors in the pathogenesis of psychological distress among Indonesian Pharmacy students. Level of psychological distress and sociodemographic profiling was collected by using the Kessler Psychological Distress Scale and sociodemographic questionnaires, respectively. Genotyping was performed using polymerase chain reaction-amplified refractory mutation system. Pearson's chi square and binomial logistic tests were used to evaluate the correlation. This study recruited 148 participants. The psychological distress levels of the participants were well (27.03%), mild (37.16%), moderate (25.00%), and severe (10.81%). Genotypic distributions were AA (25.67%), GA (50.68%), and GG (23.65%). No statistical significance between genotype and psychological distress was found in the study (P = .076). The sociodemographic factors also showed non significance, except for the source of tuition fee among women students (P = .049). Psychological distress is not affected by genotypic and sociodemographic factors. Further confirmatory research with larger and broader populations is required.
Collapse
Affiliation(s)
- Henry Ng
- Department of Biological Pharmacy, Biotechnology Laboratory, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Sofa Dewi Alfian
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Melisa I. Barliana
- Department of Biological Pharmacy, Biotechnology Laboratory, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jatinangor, Indonesia
- *Correspondence: Melisa I. Barliana, Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM. 21, Jatinangor 45363, Indonesia (e-mail: )
| |
Collapse
|
11
|
Pathak P, Mehra A, Ram S, Pal A, Grover S. Association of Serum BDNF level and Val66Met polymorphism with response to treatment in patients of Major Depressive Disease: A step towards personalized therapy. Behav Brain Res 2022; 430:113931. [DOI: 10.1016/j.bbr.2022.113931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/28/2022] [Accepted: 05/14/2022] [Indexed: 11/02/2022]
|
12
|
Goldfield GS, Walsh J, Sigal RJ, Kenny GP, Hadjiyannakis S, De Lisio M, Ngu M, Prud’homme D, Alberga AS, Doucette S, Goldfield DB, Cameron JD. Associations of the BDNF Val66Met Polymorphism With Body Composition, Cardiometabolic Risk Factors, and Energy Intake in Youth With Obesity: Findings From the HEARTY Study. Front Neurosci 2021; 15:715330. [PMID: 34867148 PMCID: PMC8633533 DOI: 10.3389/fnins.2021.715330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/01/2021] [Indexed: 01/10/2023] Open
Abstract
The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is functionally related to BDNF, and is associated with obesity and metabolic complications in adults, but limited research exists among adolescents. This study comparatively examined carriers and non-carriers of the BDNF Val66Met polymorphism on body composition, energy intake, and cardiometabolic profile among adolescents with obesity. The sample consisted of 187 adolescents with obesity; 99 were carriers of the homozygous Val (G/G) alleles and 88 were carriers of the Val/Met (G/A) or Met (A/A) alleles. Cardiometabolic profile and DNA were quantified from fasted blood samples. Body composition was assessed by magnetic resonance imaging (MRI). Compared to carriers of the homozygous Val (G/G) allele, carriers of the Val/Met (G/A) or Met/Met (A/A) variants exhibited significantly higher protein (p = 0.01) and fat (p = 0.05) intake, C-Reactive protein (p = 0.05), and a trend toward higher overall energy intake (p = 0.07), fat-free mass (p = 0.07), and lower HDL-C (p = 0.07) Results showed for the first time that among youth with obesity, carriers of the Val66Met BDNF Met-alleles exhibited significantly higher C-reactive protein and energy intake in the form of fat and protein compared to Val-allele carriers, thereby providing support for the possible role of BDNF in appetite, weight, and metabolic regulation during adolescence. Clinical Trial Registration: http://clinicaltrials.gov/, identifier NCT00195858.
Collapse
Affiliation(s)
- Gary S. Goldfield
- Healthy Active Living and Obesity Research Group, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
- School of Human Kinetics, University of Ottawa, Ottawa, ON Canada
| | - Jeremy Walsh
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Ronald J. Sigal
- School of Human Kinetics, University of Ottawa, Ottawa, ON Canada
- Department of Medicine, Cardiac Sciences and Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Glen P. Kenny
- School of Human Kinetics, University of Ottawa, Ottawa, ON Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Stasia Hadjiyannakis
- Centre for Healthy Active Living, Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Michael De Lisio
- School of Human Kinetics, University of Ottawa, Ottawa, ON Canada
| | - Mathew Ngu
- School of Human Kinetics, University of Ottawa, Ottawa, ON Canada
| | - Denis Prud’homme
- President and Vice Chancellor, University of Moncton, Moncton, NB, Canada
| | - Angela S. Alberga
- Department of Kinesiology, Concordia University, Montreal, QC, Canada
| | - Steve Doucette
- Department of Community Health and Epidemiology, Dalhousie University, Halifax, NS, Canada
| | | | - Jameason D. Cameron
- Department of Pharmacy, Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada
| |
Collapse
|
13
|
Kao PC, Pierro MA, Wu T, Gonzalez DM, Seeley R. Association between functional physical capacity and cognitive performance under destabilizing walking conditions in older adults. Exp Gerontol 2021; 155:111582. [PMID: 34637948 DOI: 10.1016/j.exger.2021.111582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cognitive decline increases the risk of falls in older adults. Understanding the association between cognitive function, functional physical capacity, and falls may help identify targets for fall screening and intervention. This study examined (1) cognitive and functional physical capacity in community-dwelling older adults with and without a history of falls or the presence of brain-derived neurotrophic factor (BDNF) gene Val66Met polymorphism (Val/Met), and (2) the association between their cognitive and functional physical capacity, focusing on the cognitive performance during dual-task, challenging walking conditions. METHODS Twenty-nine healthy, community-dwelling older adults attended two testing sessions for (1) functional assessments of physical capacity and global cognitive status, and (2) performing four cognitive tasks (visual and auditory Stroop tasks, Clock task, and Paced Auditory Serial Addition Test) during standing and while walking on the treadmill with and without medio-lateral treadmill platform sways. RESULTS Participants with a fall history had reduced functional reach distance whereas individuals with Val/Met had reduced functional gait assessment (FGA) score compared to their controls. In addition, participants with a fall history or Val/Met showed reduced Clock task performance under dual-task conditions. Among all cognitive tasks, visual-Stroop performance, especially during the perturbed walking conditions, was significantly correlated with more physical capacity items. The performance of the other three cognitive tasks provided complementary information on those items not correlated with visual-Stroop performance. CONCLUSIONS Clock task performance can distinguish fallers from non-fallers as well as older adults with and without the BDNF gene polymorphism. Administering different types of cognitive tasks and under more challenging walking conditions can better reveal the association between cognitive and functional physical capacity in older adults. Fall screening and prevention intervention should integrate cognitive tasks into the functional physical capacity assessment and training regime, and progress to a more challenging condition such as introducing gait or balance perturbations during the assessment or training.
Collapse
Affiliation(s)
- Pei-Chun Kao
- Department of Physical Therapy and Kinesiology, University of Massachusetts Lowell, Lowell, MA, United States; New England Robotics Validation and Experimentation (NERVE) Center, University of Massachusetts Lowell, Lowell, MA, United States.
| | - Michaela A Pierro
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, Lowell, MA, United States
| | - Tong Wu
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, United States
| | - Daniela M Gonzalez
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, MA, United States
| | - Rachel Seeley
- Department of Physical Therapy and Kinesiology, University of Massachusetts Lowell, Lowell, MA, United States
| |
Collapse
|
14
|
Collins JM, Hill E, Bindoff A, King AE, Alty J, Summers MJ, Vickers JC. Association Between Components of Cognitive Reserve and Serum BDNF in Healthy Older Adults. Front Aging Neurosci 2021; 13:725914. [PMID: 34408648 PMCID: PMC8365170 DOI: 10.3389/fnagi.2021.725914] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/13/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The brain-derived neurotrophic factor (BDNF) protein has been shown to have a prominent role in neuron survival, growth, and function in experimental models, and the BDNF Val66Met polymorphism which regulates its expression has been linked to resilience toward the effects of aging on cognition. Cognitively stimulating activity is linked to both increased levels of BDNF in the brain, and protection against age-related cognitive decline. The aim of this study was to investigate the associations between serum BDNF levels, the BDNF Val66Met genotype, and components of cognitive reserve in early and mid-life, measured with the Lifetime of Experiences Questionnaire (LEQ). Methods: Serum BDNF levels were measured cross-sectionally in 156 participants from the Tasmanian Healthy Brain Project (THBP) cohort, a study examining the potential benefits of older adults engaging in a university-level education intervention. Multiple linear regression was used to estimate serum BDNF's association with age, education, gender, BDNF Val66Met genotype, later-life university-level study, and cognitively stimulating activities measured by the LEQ. Results: Serum BDNF in older adults was associated with early life education and training, increasing 0.007 log(pg/ml) [95%CI 0.001, 0.012] per unit on the LEQ subscale. Conversely, education and training in mid-life were associated with a -0.007 log(pg/ml) [-0.012, -0.001] decrease per unit on the LEQ subscale. Serum BDNF decreased with age (-0.008 log(pg/ml) [-0.015, -0.001] per year), and male gender (-0.109 log(pg/ml) [-0.203, -0.015]), but mean differences between the BDNF Val66Met polymorphisms were not significant (p = 0.066). All effect sizes were small, with mid-life education and training having the largest effect size ( η p 2 = 0.044). Conclusion: Education in both early and mid-life explained small but significant amounts of variance in serum BDNF levels, more than age or gender. These effects were opposed and independent, suggesting that education at different stages of life may be associated with different cognitive and neural demands. Education at different stages of life may be important covariates when estimating associations between other exposures and serum BDNF.
Collapse
Affiliation(s)
- Jessica M Collins
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Edward Hill
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Aidan Bindoff
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Jane Alty
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| | - Mathew J Summers
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia.,School of Health and Behavioral Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - James C Vickers
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
15
|
Bakusic J, Vrieze E, Ghosh M, Pizzagalli DA, Bekaert B, Claes S, Godderis L. Interplay of Val66Met and BDNF methylation: effect on reward learning and cognitive performance in major depression. Clin Epigenetics 2021; 13:149. [PMID: 34325733 PMCID: PMC8323304 DOI: 10.1186/s13148-021-01136-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/16/2021] [Indexed: 12/02/2022] Open
Abstract
Background There is a growing interest in the role of brain-derived neurotrophic factor (BDNF) in major depressive disorder (MDD). BDNF potentially exhibits opposite effects in the pathways linked to anhedonia and reward learning on the one hand and cognitive performance, on the other hand. However, the epigenetic mechanisms behind this remain unknown. In the present study, we aimed to investigate the interplay of DNA methylation of different BDNF exons and the common Val66Met polymorphism on anhedonia, reward learning and cognitive performance in MDD. Methods We recruited 80 depressed patients and 58 age- and gender-matched healthy controls. Participants underwent clinical assessment including neuropsychological testing and a probabilistic reward task to assess reward learning. Val66Met polymorphism and DNA methylation of BDNF promoters I, IV and exon IX were assessed from whole blood derived DNA, using pyrosequencing. Results BDNF promoter I methylation was lower in MDD patients (p = 0.042) and was negatively associated with self-reported anhedonia. In depressed patients, both Val66Met polymorphism and DNA methylation of promoter I were significantly associated with reward bias (p < 0.050 and p = 0.040, respectively), without an interaction effect. On the other hand, methylation of exon IX had a negative impact on executive functioning (p = 0.002) and mediated the effect of Val66Met on this outcome in patients with MDD. Conclusions Our results provide the first evidence of Val66Met susceptibility to differential epigenetic regulation of BDNF exons in reward learning and executive functioning in MDD, which needs to be further explored. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01136-z.
Collapse
Affiliation(s)
- J Bakusic
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), Kapucijnenvoer 35, 3000, Leuven, Belgium.
| | - E Vrieze
- Psychiatry Research Group, Department of Neuroscience, KU Leuven, Leuven, Belgium
| | - M Ghosh
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), Kapucijnenvoer 35, 3000, Leuven, Belgium
| | - D A Pizzagalli
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - B Bekaert
- Department of Forensic Medicine, Laboratory of Forensic Genetics and Molecular Archaeology, KU Leuven, Leuven, Belgium.,Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - S Claes
- Psychiatry Research Group, Department of Neuroscience, KU Leuven, Leuven, Belgium
| | - L Godderis
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven (University of Leuven), Kapucijnenvoer 35, 3000, Leuven, Belgium.,IDEWE, External Service for Prevention and Protection at Work, Heverlee, Belgium
| |
Collapse
|
16
|
Interactive effects of the APOE and BDNF polymorphisms on functional brain connectivity: the Tasmanian Healthy Brain Project. Sci Rep 2021; 11:14514. [PMID: 34267235 PMCID: PMC8282840 DOI: 10.1038/s41598-021-93610-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/24/2021] [Indexed: 11/27/2022] Open
Abstract
Resting-state functional magnetic resonance imaging measures pathological alterations in neurodegenerative diseases, including Alzheimer’s disease. Disruption in functional connectivity may be a potential biomarker of ageing and early brain changes associated with AD-related genes, such as APOE and BDNF. The objective of this study was to identify group differences in resting-state networks between individuals with BDNF Val66Met and APOE polymorphisms in cognitively healthy older persons. Dual regression following Independent Components Analysis were performed to examine differences associated with these polymorphisms. APOE ε3 homozygotes showed stronger functional connectivity than APOE ε4 carriers. Males showed stronger functional connectivity between the Default Mode Network (DMN) and grey matter premotor cortex, while females showed stronger functional connectivity between the executive network and lateral occipital cortex and parahippocampal gyrus. Additionally, we found that with increasing cognitive reserve, functional connectivity increased within the Dorsal Attention Network (DAN), but decreased within the DMN. Interaction effects indicated stronger functional connectivity in Met/ε3 carriers than in Met/ε4 and Val/ε4 within both the DMN and DAN. APOE/BDNF interactions may therefore influence the integrity of functional brain connections in older adults, and may underlie a vulnerable phenotype for subsequent Alzheimer’s-type dementia.
Collapse
|
17
|
Way H, Williams G, Hausman-Cohen S, Reeder J. Genomics as a Clinical Decision Support Tool: Successful Proof of Concept for Improved ASD Outcomes. J Pers Med 2021; 11:jpm11070596. [PMID: 34202628 PMCID: PMC8305264 DOI: 10.3390/jpm11070596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 01/01/2023] Open
Abstract
Considerable evidence is emerging that Autism Spectrum Disorder (ASD) is most often triggered by a range of different genetic variants that interact with environmental factors such as exposures to toxicants and changes to the food supply. Up to 80% of genetic variations that contribute to ASD found to date are neither extremely rare nor classified as pathogenic. Rather, they are less common single nucleotide polymorphisms (SNPs), found in 1-15% or more of the population, that by themselves are not disease-causing. These genomic variants contribute to ASD by interacting with each other, along with nutritional and environmental factors. Examples of pathways affected or triggered include those related to brain inflammation, mitochondrial dysfunction, neuronal connectivity, synapse formation, impaired detoxification, methylation, and neurotransmitter-related effects. This article presents information on four case study patients that are part of a larger ongoing pilot study. A genomic clinical decision support (CDS) tool that specifically focuses on variants and pathways that have been associated with neurodevelopmental disorders was used in this pilot study to help develop a targeted, personalized prevention and intervention strategy for each child. In addition to an individual's genetic makeup, each patient's personal history, diet, and environmental factors were considered. The CDS tool also looked at genomic SNPs associated with secondary comorbid ASD conditions including attention deficit hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD), anxiety, and pediatric autoimmune neuropsychiatric disorder associated with streptococcal infections/pediatric acute-onset neuropsychiatric syndrome (PANDAS/PANS). The interpreted genomics tool helped the treating clinician identify and develop personalized, genomically targeted treatment plans. Utilization of this treatment approach was associated with significant improvements in socialization and verbal skills, academic milestones and intelligence quotient (IQ), and overall increased ability to function in these children, as measured by autism treatment evaluation checklist (ATEC) scores and parent interviews.
Collapse
Affiliation(s)
- Heather Way
- The Australian Centre for Genomic Analysis, Brisbane, QLD 4069, Australia;
| | | | - Sharon Hausman-Cohen
- IntellxxDNA™, Austin, TX 78731, USA; (G.W.); (J.R.)
- Correspondence: ; Tel.: +1-512-717-3300
| | | |
Collapse
|
18
|
Koute V, Michalopoulou A, Siokas V, Aloizou AM, Rikos D, Bogdanos DP, Kontopoulos E, Grivea IN, Syrogiannopoulos GA, Papadimitriou A, Hadjigeorgiou GM, Dardiotis E. Val66Met polymorphism is associated with decreased likelihood for pediatric headache and migraine. Neurol Res 2021; 43:715-723. [PMID: 34000980 DOI: 10.1080/01616412.2021.1922181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Migraine is a complex multifactorial disorder and its pathogenesis still remains unclear. Evidence suggests the involvement of the activated trigeminovascular pathway, in which BDNF seems to play an important role. Therefore, BDNF polymorphisms are promising candidate susceptibility factors.Aim: BDNF rs6265 functional polymorphism was analyzed in order to determine its possible association with pediatric headache and migraine risk.Methods: The research included 120 consecutive pediatric patients who were diagnosed with headache and 120 healthy controls. The diagnosis was in compliance with the International Classification of Headache Disorders. Blood samples were collected from all participants and genotyped for rs6265.Results: BDNF rs6265 was significantly associated with decreased headache risk, particularly in the dominant model [Odds Ratio, OR (95% confidence interval, C.I.): 0.47 (0.26-0.85), p = 0.011] and the log-additive model [OR (95% C.I.): 0.48 (0.28-0.82), p = 0.0053]. During the sensitivity analysis, the associations were also maintained among patients with migraine.Conclusions: This is the first study to reveal a significant association of this BDNF variant with headache risk. Additionally, Val66Met was also for the first time related to decreased childhood migraine risk.
Collapse
Affiliation(s)
- Vasiliki Koute
- Department of Pediatrics, University of Thessaly, University Hospital of Larissa, Larissa,Greece
| | - Amalia Michalopoulou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Dimitrios Rikos
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis Larissa, Greece
| | | | - Ioanna N Grivea
- Department of Pediatrics, University of Thessaly, University Hospital of Larissa, Larissa,Greece
| | | | - Alexandros Papadimitriou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Georgios M Hadjigeorgiou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece.,Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| |
Collapse
|
19
|
de Assis GG, Hoffman JR, Bojakowski J, Murawska-Ciałowicz E, Cięszczyk P, Gasanov EV. The Val66 and Met66 Alleles-Specific Expression of BDNF in Human Muscle and Their Metabolic Responsivity. Front Mol Neurosci 2021; 14:638176. [PMID: 34025349 PMCID: PMC8131668 DOI: 10.3389/fnmol.2021.638176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/18/2021] [Indexed: 12/22/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays an essential role in nervous system formation and functioning, including metabolism. Present only in humans, the “Val66Met” polymorphism of the BDNF gene (BDNF) is suggested to have a negative influence on the etiology of neurological diseases. However, this polymorphism has only been addressed, at the molecular level, in nonhuman models. Knowledge about Val66- and Met66-variant differences, to date, has been achieved at the protein level using either cell culture or animal models. Thus, the purpose of our study was to analyze the impact of the Val66Met polymorphism on BDNF expression in healthy humans and compare the allele-specific responses to metabolic stress. Muscle biopsies from 13 male recreational athletes (34 ± 9 years, 1.80 ± 0.08 m, 76.4 ± 10.5 kg) were obtained before and immediately following a VO2max test. Allele-specific BDNF mRNA concentrations were quantified by droplet digital PCR (ddPCR) in heterozygous and homozygous subjects. The results indicated that BDNF expression levels were influenced by the genotype according to the presence of the polymorphism. BDNF expression from the Met66-coding alleles, in heterozygotes, was 1.3-fold lower than that from the Val66-coding alleles. Total BDNF mRNA levels in these heterozygotes remained below the whole sample’s mean. A partial dominance was detected for the Val66-coding variant on the Met66-coding’s. BDNF expression levels decreased by an average of 1.8-fold following the VO2max test, independent of the individual’s genotype. The results of this study indicate that metabolic stress downregulates BDNF expression but not plasma BDNF concentrations. No correlation between expression level and plasma BDNF concentrations was found.
Collapse
Affiliation(s)
- Gilmara Gomes de Assis
- Department of Molecular Biology, Gdansk University of Physical Education and Sport, Gdańsk, Poland.,Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Jay R Hoffman
- Department of Physical Therapy, Ariel University, Ariel, Israel
| | - Jacek Bojakowski
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Eugenia Murawska-Ciałowicz
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, University School of Physical Education in Wrocław, Wrocław, Poland
| | - Paweł Cięszczyk
- Department of Molecular Biology, Gdansk University of Physical Education and Sport, Gdańsk, Poland
| | - Eugene V Gasanov
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
20
|
Kumar PK, Mitra P, Ghosh R, Sharma S, Nebhinani N, Sharma P. Association of circulating BDNF levels with BDNF rs6265 polymorphism in schizophrenia. Behav Brain Res 2020; 394:112832. [PMID: 32726665 DOI: 10.1016/j.bbr.2020.112832] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 01/26/2023]
Abstract
Schizophrenia is a severe neuropsychiatric disorder affecting 1% of the world population. Disturbances in neuronal development and synaptic connections are important factors in the pathogenesis of schizophrenia. Brain derived neurotrophic factor (BDNF), a member of the neurotrophin family, plays a critical role in the development of neurons. Among several polymorphisms reported in BDNF, the rs6265 polymorphism is known to be associated with many neuropsychiatric diseases. This study was aimed to determine the effect of BDNF rs6265 functional polymorphism on serum BDNF concentration in patients with schizophrenia. In total, 50 schizophrenia patients and 50 controls were recruited after obtaining written informed consent. Serum BDNF levels were estimated using the ELISA method and BDNF rs6265 polymorphism was genotyped using T-ARMS PCR. Serum BDNF levels were decreased significantly in schizophrenia patients when compared to the healthy controls (p < 0.0001). Further, the rs6265 polymorphism was also not associated with the schizophrenia (p = 0.41). Intragroup analysis between different genotypes revealed no association between the serum BDNF levels and rs6265 polymorphism. Our results suggest that the functional polymorphism rs6265 is not associated with serum BDNF levels, which is in line with previous findings, which indicates that serum BDNF levels depend more on diagnostic effect than genetic effect. Replication studies on a larger study population are needed.
Collapse
Affiliation(s)
- Pvsn Kiran Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Prasenjit Mitra
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Raghumoy Ghosh
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Shailja Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Naresh Nebhinani
- Department of Psychiatry, All India Institute of Medical Sciences, Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India.
| |
Collapse
|
21
|
de Assis GG, Hoffman JR, Gasanov EV. BDNF Val66Met Polymorphism, the Allele-Specific Analysis by qRT-PCR - a Novel Protocol. Int J Med Sci 2020; 17:3058-3064. [PMID: 33173426 PMCID: PMC7646112 DOI: 10.7150/ijms.50643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/28/2020] [Indexed: 12/23/2022] Open
Abstract
Background: Alteration in brain-derived neurotrophic factor (BDNF) production is a marker of neuropathological conditions, which has led to the investigation of Val66Met polymorphism occurring in the human BDNF gene (BDNF). Presently, there are no reported methods available for the analysis of Val66Met impact on human BDNF functioning. Purpose: To develop a qRT-PCR protocol for the allele-specific expression evaluation of the Val66Met polymorphism in BDNF. Methods: Using RNA extracted from muscle samples of 9 healthy volunteers (32.9 ± 10.3 y) at rest and following a maximal effort aerobic capacity exercise test, a protocol was developed for the detection of Val66/Met66 allele-specific BDNF expression in Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) - relative to housekeeping genes - and validated by absolute quantification in Droplet Digital Polymerase Chain Reaction (ddPCR). Results: Differences in the relative values of BDNF mRNA were confirmed by ddPCR analysis. HPRT1 and B2M were the most stable genes expressed in muscle tissue among different metabolic conditions, while GAPDH revealed to be metabolic responsive. Conclusion: Our qRT-PCR protocol successfully determines the allele-specific detection and changes in BDNF expression regarding the Val66Met polymorphism.
Collapse
Affiliation(s)
- Gilmara Gomes de Assis
- Gdansk University of Physical Education and Sport, Faculty of Physical Education, Gdansk, Poland.,Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Jay R Hoffman
- Department of Physical Therapy, Ariel University, Ariel, Israel
| | - Eugene V Gasanov
- International Institute of Molecular and Cell Biology in Warsaw, Poland
| |
Collapse
|
22
|
Effects of Fatigue on Balance in Individuals With Parkinson Disease: Influence of Medication and Brain-Derived Neurotrophic Factor Genotype. J Neurol Phys Ther 2019; 42:61-71. [PMID: 29547479 DOI: 10.1097/npt.0000000000000213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND PURPOSE Because falls can have deleterious consequences, it is important to understand the influence of fatigue and medications on balance in persons with Parkinson disease (PD). Thus, the purpose of this study was to investigate the effects of fatigue on balance in individuals with PD. Because brain-derived neurotrophic factor (BDNF) has been shown to be related to motor performance, we also explored its role. METHODS A total of 27 individuals (age = 65.4 ± 8.1 years; males = 14, females = 13) with neurologist-diagnosed PD with 13 genotyped for BDNF as Val66Val, 11 as Val66Met, 2 as Met66Met (1 refused). Participants were tested both on and off medication, 1 week apart. On both days, they completed a pre- and posttest separated by a fatiguing condition. Factorial analyses of variance were performed for the following balance domains: (1) anticipatory postural responses; (2) adaptive postural responses; (3) dynamic balance; (4) sensory orientation; and (5) gait kinematics. For BDNF, t-tests were conducted comparing genotype for the pre-post difference scores in both the on and off medication states. RESULTS There were no interactions between time (pre- and postintervention) and medication for any of the domains (Ps ≥ 0.187). Participants with BDNF Met alleles were not significantly different from Val66Val participants in balance (Ps ≥ 0.111) and response to a fatiguing condition (Ps ≥ 0.070). DISCUSSION AND CONCLUSIONS Fatigue does not appear to have a detrimental effect on balance, and there was not a differential effect of medication in individuals with PD. These results also indicate that participants with a BDNF Met allele did not have a greater decay in function after a fatiguing condition.Video Abstract available for more insights from the authors (see Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A196).
Collapse
|
23
|
Hippocampal volume change following ECT is mediated by rs699947 in the promotor region of VEGF. Transl Psychiatry 2019; 9:191. [PMID: 31431610 PMCID: PMC6702208 DOI: 10.1038/s41398-019-0530-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/26/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
Several studies have shown that electroconvulsive therapy (ECT) results in increased hippocampal volume. It is likely that a multitude of mechanisms including neurogenesis, gliogenesis, synaptogenesis, angiogenesis, and vasculogenesis contribute to this volume increase. Neurotrophins, like vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF) seem to play a crucial mediating role in several of these mechanisms. We hypothesized that two regulatory SNPs in the VEGF and BDNF gene influence the changes in hippocampal volume following ECT. We combined genotyping and brain MRI assessment in a sample of older adults suffering from major depressive disorder to test this hypothesis. Our results show an effect of rs699947 (in the promotor region of VEGF) on hippocampal volume changes following ECT. However, we did not find a clear effect of rs6265 (in BDNF). To the best of our knowledge, this is the first study investigating possible genetic mechanisms involved in hippocampal volume change during ECT treatment.
Collapse
|
24
|
Childhood trauma and emotion regulation: The moderator role of BDNF Val66Met. Neurosci Lett 2018; 685:7-11. [DOI: 10.1016/j.neulet.2018.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 02/07/2023]
|
25
|
Shen T, You Y, Joseph C, Mirzaei M, Klistorner A, Graham SL, Gupta V. BDNF Polymorphism: A Review of Its Diagnostic and Clinical Relevance in Neurodegenerative Disorders. Aging Dis 2018; 9:523-536. [PMID: 29896439 PMCID: PMC5988606 DOI: 10.14336/ad.2017.0717] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/17/2017] [Indexed: 12/17/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has a unique role in the neuronal development, differentiation, and survival in the developing and adult nervous system. A common single-nucleotide polymorphism in the pro-region of the human BDNF gene, resulting in a valine to methionine substitution (Val66Met), has been associated with the susceptibility, incidence, and clinical features of several neurodegenerative disorders. Much research has been dedicated to evaluating the effects of polymorphism in the past decade, and functional effects of this genetic variation. A better understanding of how this naturally occurring polymorphism associates with or influences physiology, anatomy, and cognition in both healthy and diseased adults in neurodegenerative conditions will help understand neurochemical mechanisms and definable clinical outcomes in humans. Here we review the role and relevance of the BDNF Val66Met polymorphism in neurodegenerative diseases, with particular emphasis on glaucoma, multiple sclerosis (MS), Alzheimer’s disease (AD) and Parkinson’s disease (PD). Several controversies and unresolved issues, including small effect sizes, possible ethnicity, gender, and age effects of the BDNF Val66Met are also discussed with respect to future research.
Collapse
Affiliation(s)
- Ting Shen
- 1Faculty of Medicine and Health Sciences, Macquarie University, Australia
| | - Yuyi You
- 2Save Sight Institute, Sydney University, Sydney, Australia
| | - Chitra Joseph
- 1Faculty of Medicine and Health Sciences, Macquarie University, Australia
| | - Mehdi Mirzaei
- 3Faculty of Science and Engineering, Macquarie University, Australia
| | - Alexander Klistorner
- 1Faculty of Medicine and Health Sciences, Macquarie University, Australia.,2Save Sight Institute, Sydney University, Sydney, Australia
| | - Stuart L Graham
- 1Faculty of Medicine and Health Sciences, Macquarie University, Australia.,2Save Sight Institute, Sydney University, Sydney, Australia
| | - Vivek Gupta
- 1Faculty of Medicine and Health Sciences, Macquarie University, Australia
| |
Collapse
|
26
|
Vandermeer MRJ, Sheikh HI, Singh SS, Klein DN, Olino TM, Dyson MW, Bufferd SJ, Hayden EP. The BDNF gene val66met polymorphism and behavioral inhibition in early childhood. SOCIAL DEVELOPMENT 2018; 27:543-554. [PMID: 30245555 DOI: 10.1111/sode.12292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stably elevated behavioural inhibition (BI) is an established risk factor for internalizing disorders. This stability may be related to genetic factors, including a valine-to-methionine substitution on codon 66 (val66met) of the brain-derived neurotrophic factor (BDNF) gene. Past work on the BDNF met variant has inconsistently linked it to vulnerability to internalizing problems; some of this inconsistency may stem from the failure to consider gene-trait interactions in shaping the course of early BI. Toward elucidating early pathways to anxiety vulnerability, we examined gene-by-trait interactions in predicting the course of BI over time in 476 children, assessed for BI using standardized laboratory methods. We found that children with the met allele showed lower stability of BI between ages 3 and 6 than those without this allele. While the mechanisms that underlie this effect are unclear, our findings are consistent with the notion that the met variant, in the context of early BI, influences the stability of this trait in early development.
Collapse
|
27
|
González-Castro TB, Salas-Magaña M, Juárez-Rojop IE, López-Narváez ML, Tovilla-Zárate CA, Hernández-Díaz Y. Exploring the association between BDNF Val66Met polymorphism and suicidal behavior: Meta-analysis and systematic review. J Psychiatr Res 2017; 94:208-217. [PMID: 28756290 DOI: 10.1016/j.jpsychires.2017.07.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/17/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022]
Abstract
Suicide is a serious worldwide health problem of critical consequences. Nowadays genetic factors are considered to be an important cause of suicide. The association between Val66Met (rs6265) polymorphism of the BDNF gene and suicide behavior has been increasingly studied. The aim of this study was to perform a meta-analysis in order to unravel the possible association between BDNF gene Val66Met polymorphism and suicide behavior. These meta-analysis and systematic review were performed using 23 articles that searched for a genetic association between Val66Met and suicide behavior, including 4532 cases and 5364 control subjects. The association was analyzed following the models: allelic, homozygous, heterozygous, dominant and recessive. Also, analyses by ethnicity (Caucasian and Asian populations) were done following the same four models. When the overall population was evaluated, we found no evidence of association between the polymorphism Val66Met of BDNF (rs6265) and suicide behavior (Met vs. Val: OR: 1.01; 95% CI = 0.92-1.10). However, a significant increased risk was found in the subgroup analysis by ethnicity in Caucasian populations (Met-Met vs. Met-Val + Val-Val: OR: 1.96; 95% CI = 1.58-2.43) and Asian populations (Val-Val vs. Val-Met + Met: OR: 1.36; 95% CI = 1.04-1.78). Our results suggest there is no association between the BDNF gene Val66Met (rs6265) and suicide behavior in the overall population. However, ethnic differences can be observed and the BDNF Val66Met might increase the risk for suicide behavior in Asian and Caucasian populations. Further studies with larger samples are necessary in order to have conclusive outcomes.
Collapse
Affiliation(s)
- Thelma Beatriz González-Castro
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Tabasco, Mexico.
| | - Marisol Salas-Magaña
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico.
| | - Isela Esther Juárez-Rojop
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, Mexico.
| | | | - Carlos Alfonso Tovilla-Zárate
- División Académica Multidisciplinaria de Comalcalco, Universidad Juárez Autónoma de Tabasco, Comalcalco, Tabasco, Mexico.
| | - Yazmín Hernández-Díaz
- División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Tabasco, Mexico.
| |
Collapse
|
28
|
The serotonin transporter promoter polymorphism moderates the continuity of behavioral inhibition in early childhood. Dev Psychopathol 2017; 28:1103-1116. [PMID: 27739394 DOI: 10.1017/s0954579416000729] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Persistently elevated behavioral inhibition (BI) in children is a marker of vulnerability to psychopathology. However, little research has considered the joint influences of caregiver and child factors that may moderate the continuity of BI in early childhood, particularly genetic variants that may serve as markers of biological plasticity, such as the serotonin transporter linked polymorphic region (5-HTTLPR). We explored this issue in 371 preschoolers and their caregivers, examining whether parent characteristics (i.e., overinvolvement or anxiety disorder) and child 5-HTTLPR influenced the continuity of BI between ages 3 and 5. Measures were observational ratings of child BI, observational and questionnaire measures of parenting, and parent interviews for anxiety disorder history, and children were genotyped for the 5-HTTLPR. Parent factors did not moderate the association between age 3 and age 5 BI; however, child BI at age 3 interacted with children's 5-HTTLPR variants to predict age 5 BI, such that children with at least one copy of the short allele exhibited less continuity of BI over time relative to children without this putative plasticity variant. Findings are consistent with previous work indicating the 5-HTTLPR short variant increases plasticity to contextual influences, thereby serving to decrease the continuity of BI in early childhood.
Collapse
|
29
|
Ward DD, Andel R, Saunders NL, Thow ME, Klekociuk SZ, Bindoff AD, Vickers JC. The BDNF Val66Met polymorphism moderates the effect of cognitive reserve on 36-month cognitive change in healthy older adults. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2017; 3:323-331. [PMID: 29067339 PMCID: PMC5651414 DOI: 10.1016/j.trci.2017.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction Cognitive reserve (CR) and BDNF Val66Met are independently associated with the rate of cognitive decline in preclinical Alzheimer's disease. This study was designed to investigate the interactive effects of these variables on 36-month cognitive change in cognitively intact older adults. Methods Data for this investigation were obtained from 445 community-residing participants of the Tasmanian Healthy Brain Project, who underwent genetic screening and annual assessment of neuropsychological, health, and psychosocial function. Results Our main result was that BDNF Val66Met moderated the relationship between baseline CR and change in executive function performance, in that CR-related differences in function decreased across the follow-up period in BDNF Val homozygotes, but became more pronounced in BDNF Met carriers. Similar effects were not observed within the other memory- and language-related cognitive domains. Discussion Inheritance of BDNF Met may be associated with a detrimental influence on the relationship between CR and cognitive change in cognitively intact older adults, but this effect may be restricted to the executive function domain.
Collapse
Affiliation(s)
- David D Ward
- Wicking Dementia Research & Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Ross Andel
- School of Aging Studies, University of South Florida, Tampa, FL, USA
| | - Nichole L Saunders
- Wicking Dementia Research & Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Megan E Thow
- Wicking Dementia Research & Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Shannon Z Klekociuk
- Wicking Dementia Research & Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Aidan D Bindoff
- Wicking Dementia Research & Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - James C Vickers
- Wicking Dementia Research & Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
30
|
Coskunoglu A, Orenay-Boyacioglu S, Deveci A, Bayam M, Onur E, Onan A, Cam FS. Evidence of associations between brain-derived neurotrophic factor (BDNF) serum levels and gene polymorphisms with tinnitus. Noise Health 2017; 19:140-148. [PMID: 28615544 PMCID: PMC5501024 DOI: 10.4103/nah.nah_74_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) gene polymorphisms are associated with abnormalities in regulation of BDNF secretion. Studies also linked BDNF polymorphisms with changes in brainstem auditory-evoked response test results. Furthermore, BDNF levels are reduced in tinnitus, psychiatric disorders, depression, dysthymic disorder that may be associated with stress, conversion disorder, and suicide attempts due to crises of life. For this purpose, we investigated whether there is any role of BDNF changes in the pathophysiology of tinnitus. MATERIALS AND METHODS In this study, we examined the possible effects of BDNF variants in individuals diagnosed with tinnitus for more than 3 months. Fifty-two tinnitus subjects between the ages of 18 and 55, and 42 years healthy control subjects in the same age group, who were free of any otorhinolaryngology and systemic disease, were selected for examination. The intensity of tinnitus and depression was measured using the tinnitus handicap inventory, and the differential diagnosis of psychiatric diagnoses made using the Structured Clinical Interview for Fourth Edition of Mental Disorders. BDNF gene polymorphism was analyzed in the genomic deoxyribonucleic acid (DNA) samples extracted from the venous blood, and the serum levels of BDNF were measured. One-way analysis of variance and Chi-squared tests were applied. RESULTS Serum BDNF level was found lower in the tinnitus patients than controls, and it appeared that there is no correlation between BDNF gene polymorphism and tinnitus. CONCLUSIONS This study suggests neurotrophic factors such as BDNF may have a role in tinnitus etiology. Future studies with larger sample size may be required to further confirm our results.
Collapse
Affiliation(s)
- Aysun Coskunoglu
- Department of Medical Genetics, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - Seda Orenay-Boyacioglu
- Department of Medical Genetics, Faculty of Medicine, Adnan Menderes University, Efeler, Aydin, Turkey
| | - Artuner Deveci
- Department of Psychiatry, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - Mustafa Bayam
- Department of Otorhinolaryngology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - Ece Onur
- Department of Medical Biochemistry, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - Arzu Onan
- Department of Medical Biochemistry, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - Fethi S. Cam
- Department of Medical Genetics, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| |
Collapse
|
31
|
A genetic variant brain-derived neurotrophic factor (BDNF) polymorphism interacts with hostile parenting to predict error-related brain activity and thereby risk for internalizing disorders in children. Dev Psychopathol 2017; 30:125-141. [PMID: 28427482 DOI: 10.1017/s0954579417000517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The error-related negativity (ERN) is a negative deflection in the event-related potential occurring when individuals make mistakes, and is increased in children with internalizing psychopathology. We recently found that harsh parenting predicts a larger ERN in children, and recent work has suggested that variation in the brain-derived neurotrophic factor (BDNF) gene may moderate the impact of early life adversity. Parents and children completed measures of parenting when children were 3 years old (N = 201); 3 years later, the ERN was measured and diagnostic interviews as well as dimensional symptom measures were completed. We found that harsh parenting predicted an increased ERN only among children with a methionine allele of the BDNF genotype, and evidence of moderated mediation: the ERN mediated the relationship between parenting and internalizing diagnoses and dimensional symptoms only if children had a methionine allele. We tested this model with externalizing disorders, and found that harsh parenting predicted externalizing outcomes, but the ERN did not mediate this association. These findings suggest that harsh parenting predicts both externalizing and internalizing outcomes in children; however, this occurs through different pathways that uniquely implicate error-related brain activity in the development of internalizing disorders.
Collapse
|
32
|
Miu AC, Cărnuţă M, Vulturar R, Szekely-Copîndean RD, Bîlc MI, Chiş A, Cioară M, Fernandez KC, Szentágotai-Tătar A, Gross JJ. BDNFVal66Met polymorphism moderates the link between child maltreatment and reappraisal ability. GENES BRAIN AND BEHAVIOR 2017; 16:419-426. [DOI: 10.1111/gbb.12366] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/17/2016] [Accepted: 12/21/2016] [Indexed: 11/30/2022]
Affiliation(s)
- A. C. Miu
- Cognitive Neuroscience Laboratory, Department of Psychology; Babeş-Bolyai University
| | - M. Cărnuţă
- Cognitive Neuroscience Laboratory, Department of Psychology; Babeş-Bolyai University
| | - R. Vulturar
- Cognitive Neuroscience Laboratory, Department of Psychology; Babeş-Bolyai University
- Department of Molecular Sciences; Iuliu Haţieganu University of Medicine and Pharmacy; Cluj-Napoca
| | | | - M. I. Bîlc
- Cognitive Neuroscience Laboratory, Department of Psychology; Babeş-Bolyai University
| | - A. Chiş
- Cognitive Neuroscience Laboratory, Department of Psychology; Babeş-Bolyai University
- Department of Molecular Sciences; Iuliu Haţieganu University of Medicine and Pharmacy; Cluj-Napoca
| | - M. Cioară
- Department of Psychology; University of Oradea; Oradea
| | - K. C. Fernandez
- Department of Psychology; Stanford University; Stanford CA USA
| | - A. Szentágotai-Tătar
- Department of Clinical Psychology and Psychotherapy; Babeş-Bolyai University; Cluj-Napoca Romania
| | - J. J. Gross
- Department of Psychology; Stanford University; Stanford CA USA
| |
Collapse
|
33
|
Peng JH, Liu CW, Pan SL, Wu HY, Liang QH, Gan RJ, Huang L, Ding Y, Bian ZY, Huang H, Lv ZP, Zhou XL, Yin RX. Potential unfavorable impacts of BDNF Val66Met polymorphisms on metabolic risks in average population in a longevous area. BMC Geriatr 2017; 17:4. [PMID: 28056856 PMCID: PMC5217242 DOI: 10.1186/s12877-016-0393-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/08/2016] [Indexed: 12/14/2022] Open
Abstract
Background Brain-derived neurotrophic factor (BDNF) has been implicated in cognitive performance and the modulation of several metabolic parameters in some disease models, but its potential roles in successful aging remain unclear. We herein sought to define the putative correlation between BDNF Val66Met and several metabolic risk factors including BMI, blood pressure, fasting plasma glucose (FPG) and lipid levels in a long-lived population inhabiting Hongshui River Basin in Guangxi. Methods BDNF Val66Met was typed by ARMS-PCR for 487 Zhuang long-lived individuals (age ≥ 90, long-lived group, LG), 593 of their offspring (age 60–77, offspring group, OG) and 582 ethnic-matched healthy controls (aged 60–75, control group, CG) from Hongshui River Basin. The correlations of genotypes with metabolic risks were then determined. Results As a result, no statistical difference was observed on the distribution of allelic and genotypic frequencies of BDNF Val66Met among the three groups (all P > 0.05) except that AA genotype was dramatically higher in females than in males of CG. The HDL-C level of A allele (GA/AA genotype) carriers was profoundly lower than was non-A (GG genotype) carriers in the total population and the CG (P = 0.009 and 0.006, respectively), which maintained in females, hyperglycemic and normolipidemic subgroup of CG after stratification by gender, BMI, glucose and lipid status. Furthermore, allele A carriers, with a higher systolic blood pressure, exhibited 1.63 folds higher risk than non-A carriers to be overweight in CG (OR = 1.63, 95% CI: 1.05 - 2.55, P = 0.012). Multiple regression analysis displayed that the TC level of LG reversely associated with BDNF Val66Met genotype. Conclusions These data suggested that BDNF 66Met may play unfavorable roles in blood pressure and lipid profiles in the general population in Hongshui River area which might in part underscore their poorer survivorship versus the successful aging individuals and their offspring. Electronic supplementary material The online version of this article (doi:10.1186/s12877-016-0393-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun-Hua Peng
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Human Development and Disease Research, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Cheng-Wu Liu
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Human Development and Disease Research, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Shang-Ling Pan
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China. .,Guangxi Colleges and Universities Key Laboratory of Human Development and Disease Research, 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
| | - Hua-Yu Wu
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Qing-Hua Liang
- Department of Neurology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, 85 Hedi Road, Nanning, 530021, Guangxi, China
| | - Rui-Jing Gan
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Ling Huang
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Yi Ding
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Zhang-Ya Bian
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Hao Huang
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Ze-Ping Lv
- Department of Neurology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, 85 Hedi Road, Nanning, 530021, Guangxi, China
| | - Xiao-Ling Zhou
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Rui-Xing Yin
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| |
Collapse
|
34
|
Imlach AR, Ward DD, Stuart KE, Summers MJ, Valenzuela MJ, King AE, Saunders NL, Summers J, Srikanth VK, Robinson A, Vickers JC. Age is no barrier: predictors of academic success in older learners. NPJ SCIENCE OF LEARNING 2017; 2:13. [PMID: 30631459 PMCID: PMC6161509 DOI: 10.1038/s41539-017-0014-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/04/2017] [Accepted: 10/16/2017] [Indexed: 05/18/2023]
Abstract
Although predictors of academic success have been identified in young adults, such predictors are unlikely to translate directly to an older student population, where such information is scarce. The current study aimed to examine cognitive, psychosocial, lifetime, and genetic predictors of university-level academic performance in older adults (50-79 years old). Participants were mostly female (71%) and had a greater than high school education level (M = 14.06 years, SD = 2.76), on average. Two multiple linear regression analyses were conducted. The first examined all potential predictors of grade point average (GPA) in the subset of participants who had volunteered samples for genetic analysis (N = 181). Significant predictors of GPA were then re-examined in a second multiple linear regression using the full sample (N = 329). Our data show that the cognitive domains of episodic memory and language processing, in conjunction with midlife engagement in cognitively stimulating activities, have a role in predicting academic performance as measured by GPA in the first year of study. In contrast, it was determined that age, IQ, gender, working memory, psychosocial factors, and common brain gene polymorphisms linked to brain function, plasticity and degeneration (APOE, BDNF, COMT, KIBRA, SERT) did not influence academic performance. These findings demonstrate that ageing does not impede academic achievement, and that discrete cognitive skills as well as lifetime engagement in cognitively stimulating activities can promote academic success in older adults.
Collapse
Affiliation(s)
- Abbie-Rose Imlach
- Wicking Dementia Research & Education Centre, University of Tasmania, Hobart, Australia
| | - David D. Ward
- Wicking Dementia Research & Education Centre, University of Tasmania, Hobart, Australia
- Population Health Sciences, Deutsches Zentrum für Neurodegenerative Erkrankungen, Bonn, Germany
| | - Kimberley E. Stuart
- Wicking Dementia Research & Education Centre, University of Tasmania, Hobart, Australia
| | - Mathew J. Summers
- Wicking Dementia Research & Education Centre, University of Tasmania, Hobart, Australia
- Sunshine Coast Mind and Neuroscience - Thompson Institute, University of the Sunshine Coast, Birtinya, Australia
| | - Michael J. Valenzuela
- Regenerative Neuroscience Group, Brain and Mind Research Institute, University of Sydney, Camperdown, Australia
| | - Anna E. King
- Wicking Dementia Research & Education Centre, University of Tasmania, Hobart, Australia
| | - Nichole L. Saunders
- Wicking Dementia Research & Education Centre, University of Tasmania, Hobart, Australia
| | - Jeffrey Summers
- University of Tasmania, Hobart, Australia
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Velandai K. Srikanth
- Peninsula Clinical School, Central Clinical School, Monash University, Melbourne, Australia
- Department of Medicine, Peninsula Health, Melbourne, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Andrew Robinson
- Wicking Dementia Research & Education Centre, University of Tasmania, Hobart, Australia
| | - James C. Vickers
- Wicking Dementia Research & Education Centre, University of Tasmania, Hobart, Australia
| |
Collapse
|
35
|
Vulturar R, Chiş A, Hambrich M, Kelemen B, Ungureanu L, Miu AC. Allelic distribution of BDNF Val66Met polymorphism in healthy Romanian volunteers. Transl Neurosci 2016; 7:31-34. [PMID: 28123819 PMCID: PMC5017592 DOI: 10.1515/tnsci-2016-0006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/19/2016] [Indexed: 12/26/2022] Open
Abstract
Population stratification of functional gene polymorphisms is a potential confounding factor in genetic association studies. The Val66Met (rs6265) single-nucleotide polymorphism in the brain-derived neurotrophic factor gene (BDNF) exhibits one of the highest variabilities in terms of allelic distribution between populations. The present study reports the distribution of BDNF Val66Met alleles in a sample of healthy volunteers (N = 1124) selected from the Romanian population. Frequencies were 80.74% for the Val allele and 19.26% for the Met allele. The data from this study extends efforts to map the allelic distribution of BDNF Val66Met in populations around the world and emphasizes that population stratification should be controlled for in future studies that report phenotypic associations in samples from different populations.
Collapse
Affiliation(s)
- Romana Vulturar
- Discipline of Cell and Molecular Biology, Department of Molecular Sciences, "Iuliu Ha.ieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania; Cognitive Neuroscience Laboratory, Department of Psychology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Adina Chiş
- Discipline of Cell and Molecular Biology, Department of Molecular Sciences, "Iuliu Ha.ieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania; Cognitive Neuroscience Laboratory, Department of Psychology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Melinda Hambrich
- Discipline of Medical Psychology, Department of Neurosciences, "Iuliu Ha.ieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Beatrice Kelemen
- Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Loredana Ungureanu
- Department of Dermatology, "Iuliu Ha.ieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei C Miu
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeş-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
36
|
Wang CK, Xu MS, Ross CJ, Lo R, Procyshyn RM, Vila-Rodriguez F, White RF, Honer WG, Barr AM. Development of a cost-efficient novel method for rapid, concurrent genotyping of five common single nucleotide polymorphisms of the brain derived neurotrophic factor (BDNF) gene by tetra-primer amplification refractory mutation system. Int J Methods Psychiatr Res 2015; 24:235-44. [PMID: 26118823 PMCID: PMC6878560 DOI: 10.1002/mpr.1475] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 10/30/2014] [Accepted: 02/23/2015] [Indexed: 01/08/2023] Open
Abstract
Brain derived neurotrophic factor (BDNF) is a molecular trophic factor that plays a key role in neuronal survival and plasticity. Single nucleotide polymorphisms (SNPs) of the BDNF gene have been associated with specific phenotypic traits in a large number of neuropsychiatric disorders and the response to psychotherapeutic medications in patient populations. Nevertheless, due to study differences and occasionally contrasting findings, substantial further research is required to understand in better detail the association between specific BDNF SNPs and these psychiatric disorders. While considerable progress has been made recently in developing advanced genotyping platforms of SNPs, many high-throughput probe- or array-based detection methods currently available are limited by high costs, slow processing times or access to advanced instrumentation. The polymerase chain reaction (PCR)-based, tetra-primer amplification refractory mutation system (T-ARMS) method is a potential alternative technique for detecting SNP genotypes efficiently, quickly, easily, and cheaply. As a tool in psychopathology research, T-ARMS was shown to be capable of detecting five common SNPs in the BDNF gene (rs6265, rs988748, rs11030104, 11757G/C and rs7103411), which are all SNPs with previously demonstrated clinical relevance to schizophrenia and depression. The present technique therefore represents a suitable protocol for many research laboratories to study the genetic correlates of BDNF in psychiatric disorders. Copyright Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Cathy K Wang
- Department of Pharmacology, University of British Columbia, Vancouver, Canada
| | - Michael S Xu
- Department of Pharmacology, University of British Columbia, Vancouver, Canada
| | - Colin J Ross
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Ryan Lo
- Department of Pharmacology, University of British Columbia, Vancouver, Canada
| | - Ric M Procyshyn
- Department of Psychiatry, University of British Columbia, Vancouver, Canada.,British Columbia Mental Health & Addictions Research Institute, Vancouver, Canada
| | - Fidel Vila-Rodriguez
- Department of Psychiatry, University of British Columbia, Vancouver, Canada.,British Columbia Mental Health & Addictions Research Institute, Vancouver, Canada
| | - Randall F White
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - William G Honer
- Department of Psychiatry, University of British Columbia, Vancouver, Canada.,British Columbia Mental Health & Addictions Research Institute, Vancouver, Canada
| | - Alasdair M Barr
- Department of Pharmacology, University of British Columbia, Vancouver, Canada.,British Columbia Mental Health & Addictions Research Institute, Vancouver, Canada
| |
Collapse
|
37
|
Szentágotai-Tătar A, Chiș A, Vulturar R, Dobrean A, Cândea DM, Miu AC. Shame and Guilt-Proneness in Adolescents: Gene-Environment Interactions. PLoS One 2015; 10:e0134716. [PMID: 26230319 PMCID: PMC4521752 DOI: 10.1371/journal.pone.0134716] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/02/2015] [Indexed: 12/16/2022] Open
Abstract
Rooted in people’s preoccupation with how they are perceived and evaluated, shame and guilt are self-conscious emotions that play adaptive roles in social behavior, but can also contribute to psychopathology when dysregulated. Shame and guilt-proneness develop during childhood and adolescence, and are influenced by genetic and environmental factors that are little known to date. This study investigated the effects of early traumatic events and functional polymorphisms in the brain-derived neurotrophic factor (BDNF) gene and the serotonin transporter gene promoter (5-HTTLPR) on shame and guilt in adolescents. A sample of N = 271 healthy adolescents between 14 and 17 years of age filled in measures of early traumatic events and proneness to shame and guilt, and were genotyped for the BDNF Val66Met and 5-HTTLPR polymorphisms. Results of moderator analyses indicated that trauma intensity was positively associated with guilt-proneness only in carriers of the low-expressing Met allele of BDNF Val66Met. This is the first study that identifies a gene-environment interaction that significantly contributes to guilt proneness in adolescents, with potential implications for developmental psychopathology.
Collapse
Affiliation(s)
- Aurora Szentágotai-Tătar
- Department of Clinical Psychology and Psychotherapy, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
- * E-mail:
| | - Adina Chiș
- Department of Cell and Molecular Biology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj, Cluj-Napoca, Romania
| | - Romana Vulturar
- Department of Cell and Molecular Biology, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj, Cluj-Napoca, Romania
| | - Anca Dobrean
- Department of Clinical Psychology and Psychotherapy, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Diana Mirela Cândea
- Department of Clinical Psychology and Psychotherapy, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Andrei C. Miu
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| |
Collapse
|
38
|
Puri R, Hinder MR, Fujiyama H, Gomez R, Carson RG, Summers JJ. Duration-dependent effects of the BDNF Val66Met polymorphism on anodal tDCS induced motor cortex plasticity in older adults: a group and individual perspective. Front Aging Neurosci 2015; 7:107. [PMID: 26097454 PMCID: PMC4456583 DOI: 10.3389/fnagi.2015.00107] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 05/21/2015] [Indexed: 01/09/2023] Open
Abstract
The brain derived neurotrophic factor (BDNF) Val66Met polymorphism and stimulation duration are thought to play an important role in modulating motor cortex plasticity induced by non-invasive brain stimulation (NBS). In the present study we sought to determine whether these factors interact or exert independent effects in older adults. Fifty-four healthy older adults (mean age = 66.85 years) underwent two counterbalanced sessions of 1.5 mA anodal transcranial direct current stimulation (atDCS), applied over left M1 for either 10 or 20 min. Single pulse transcranial magnetic stimulation (TMS) was used to assess corticospinal excitability (CSE) before and every 5 min for 30 min following atDCS. On a group level, there was an interaction between stimulation duration and BDNF genotype, with Met carriers (n = 13) showing greater post-intervention potentiation of CSE compared to Val66Val homozygotes homozygotes (n = 37) following 20 min (p = 0.002) but not 10 min (p = 0.219) of stimulation. Moreover, Met carriers, but not Val/Val homozygotes, exhibited larger responses to TMS (p = 0.046) after 20 min atDCS, than following 10 min atDCS. On an individual level, two-step cluster analysis revealed a considerable degree of inter-individual variability, with under half of the total sample (42%) showing the expected potentiation of CSE in response to atDCS across both sessions. Intra-individual variability in response to different durations of atDCS was also apparent, with one-third of the total sample (34%) exhibiting LTP-like effects in one session but LTD-like effects in the other session. Both the inter-individual (p = 0.027) and intra-individual (p = 0.04) variability was associated with BDNF genotype. In older adults, the BDNF Val66Met polymorphism along with stimulation duration appears to play a role in modulating tDCS-induced motor cortex plasticity. The results may have implications for the design of NBS protocols for healthy and diseased aged populations.
Collapse
Affiliation(s)
- Rohan Puri
- Human Motor Control Laboratory, School of Medicine, Faculty of Health, University of Tasmania, Hobart TAS, Australia
| | - Mark R Hinder
- Human Motor Control Laboratory, School of Medicine, Faculty of Health, University of Tasmania, Hobart TAS, Australia
| | - Hakuei Fujiyama
- Human Motor Control Laboratory, School of Medicine, Faculty of Health, University of Tasmania, Hobart TAS, Australia ; Movement Control and Neuroplasticity Research Group, Department of Kinesiology KU Leuven, Belgium
| | - Rapson Gomez
- School of Health Sciences, Federation University Australia, Ballarat VIC, Australia
| | - Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin Dublin, Ireland ; School of Psychology, Queen's University Belfast Belfast, UK
| | - Jeffery J Summers
- Human Motor Control Laboratory, School of Medicine, Faculty of Health, University of Tasmania, Hobart TAS, Australia ; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University Liverpool, UK
| |
Collapse
|
39
|
The BDNF Val66Met polymorphism moderates the relationship between cognitive reserve and executive function. Transl Psychiatry 2015; 5:e590. [PMID: 26125153 PMCID: PMC4490292 DOI: 10.1038/tp.2015.82] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/25/2015] [Accepted: 05/21/2015] [Indexed: 01/01/2023] Open
Abstract
The concept of cognitive reserve (CR) has been proposed to account for observed discrepancies between pathology and its clinical manifestation due to underlying differences in brain structure and function. In 433 healthy older adults participating in the Tasmanian Healthy Brain Project, we investigated whether common polymorphic variations in apolipoprotein E (APOE) or brain-derived neurotrophic factor (BDNF) influenced the association between CR contributors and cognitive function in older adults. We show that BDNF Val66Met moderates the association between CR and executive function. CR accounted for 8.5% of the variance in executive function in BDNF Val homozygotes, but CR was a nonsignificant predictor in BDNF Met carriers. APOE polymorphisms were not linked to the influence of CR on cognitive function. This result implicates BDNF in having an important role in capacity for building or accessing CR.
Collapse
|
40
|
Ward DD, Summers MJ, Saunders NL, Janssen P, Stuart KE, Vickers JC. APOE and BDNF Val66Met polymorphisms combine to influence episodic memory function in older adults. Behav Brain Res 2014; 271:309-15. [PMID: 24946073 DOI: 10.1016/j.bbr.2014.06.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 01/09/2023]
Abstract
Genetic polymorphisms of apolipoprotein E (APOE) and brain-derived neurotrophic factor (BDNF) have shown inconsistent associations with healthy adult cognitive functions. Recent investigations have suggested that APOE polymorphisms do not contribute to non-pathological cognitive function and that any effect is likely due to prodromal Alzheimer's disease (AD). Similarly, although BDNF Val66Met polymorphisms affect hippocampal morphology and function, associations with learning and/or memory have not always been found. This study sought to determine whether APOE and BDNF polymorphisms were associated, either independently or in combination, with adult cognition. Comprehensive neuropsychological assessments were conducted on 433 older adults, aged 50-79 years (M=62.16, SD=6.81), which yielded measures of episodic memory, working memory, executive function, and language processing. Participants underwent comprehensive neuropsychological assessment to ensure that only cognitively intact individuals comprised the sample. APOE and BDNF polymorphic data were used as predictors in general linear models that assessed composite cognitive domain variables, while covarying for education and age. Although no main effects for APOE or BDNF were found, the analysis identified a significant APOE×BDNF interaction that predicted episodic memory performance (p=.02, η(2)=.02). Post-hoc analyses demonstrated that in BDNF Val homozygotes, the cognitive consequences of APOE polymorphisms were minimal. However, in BDNF Met carriers, the hypothesized beneficial/detrimental effects of APOE polymorphisms were found. Our data show that concurrent consideration of both APOE and BDNF polymorphisms are required in order to witness a cognitive effect in healthy older adults.
Collapse
Affiliation(s)
- David D Ward
- School of Medicine, University of Tasmania, Australia; Wicking Dementia Research & Education Centre, University of Tasmania, Australia
| | - Mathew J Summers
- School of Medicine, University of Tasmania, Australia; Wicking Dementia Research & Education Centre, University of Tasmania, Australia.
| | - Nichole L Saunders
- Wicking Dementia Research & Education Centre, University of Tasmania, Australia
| | - Pierce Janssen
- Wicking Dementia Research & Education Centre, University of Tasmania, Australia
| | - Kimberley E Stuart
- School of Medicine, University of Tasmania, Australia; Wicking Dementia Research & Education Centre, University of Tasmania, Australia
| | - James C Vickers
- School of Medicine, University of Tasmania, Australia; Wicking Dementia Research & Education Centre, University of Tasmania, Australia
| |
Collapse
|
41
|
Fujiyama H, Hyde J, Hinder MR, Kim SJ, McCormack GH, Vickers JC, Summers JJ. Delayed plastic responses to anodal tDCS in older adults. Front Aging Neurosci 2014; 6:115. [PMID: 24936185 PMCID: PMC4047559 DOI: 10.3389/fnagi.2014.00115] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/22/2014] [Indexed: 11/24/2022] Open
Abstract
Despite the abundance of research reporting the neurophysiological and behavioral effects of transcranial direct current stimulation (tDCS) in healthy young adults and clinical populations, the extent of potential neuroplastic changes induced by tDCS in healthy older adults is not well understood. The present study compared the extent and time course of anodal tDCS-induced plastic changes in primary motor cortex (M1) in young and older adults. Furthermore, as it has been suggested that neuroplasticity and associated learning depends on the brain-derived neurotrophic factor (BDNF) gene polymorphisms, we also assessed the impact of BDNF polymorphism on these effects. Corticospinal excitability was examined using transcranial magnetic stimulation before and following (0, 10, 20, 30 min) anodal tDCS (30 min, 1 mA) or sham in young and older adults. While the overall extent of increases in corticospinal excitability induced by anodal tDCS did not vary reliably between young and older adults, older adults exhibited a delayed response; the largest increase in corticospinal excitability occurred 30 min following stimulation for older adults, but immediately post-stimulation for the young group. BDNF genotype did not result in significant differences in the observed excitability increases for either age group. The present study suggests that tDCS-induced plastic changes are delayed as a result of healthy aging, but that the overall efficacy of the plasticity mechanism remains unaffected.
Collapse
Affiliation(s)
- Hakuei Fujiyama
- Human Motor Control Laboratory, School of Medicine, University of Tasmania Hobart, TAS, Australia ; Movement Control and Neuroplasticity Research Group, Department of Kinesiology KU Leuven, Leuven, Belgium
| | - Jane Hyde
- Human Motor Control Laboratory, School of Medicine, University of Tasmania Hobart, TAS, Australia
| | - Mark R Hinder
- Human Motor Control Laboratory, School of Medicine, University of Tasmania Hobart, TAS, Australia
| | - Seok-Jin Kim
- Human Motor Control Laboratory, School of Medicine, University of Tasmania Hobart, TAS, Australia ; Motor Behavior Laboratory, Department of Physical Education, Seoul National University Seoul, South Korea
| | - Graeme H McCormack
- Wicking Dementia Research and Education Centre, University of Tasmania Hobart, TAS, Australia
| | - James C Vickers
- Wicking Dementia Research and Education Centre, University of Tasmania Hobart, TAS, Australia
| | - Jeffery J Summers
- Human Motor Control Laboratory, School of Medicine, University of Tasmania Hobart, TAS, Australia ; Research Institute for Sport and Exercise Sciences, Liverpool John Moores University Liverpool, UK
| |
Collapse
|