1
|
McCaffrey KR, Miller MA, Balaguera-Reina SA, Romer AS, Kirkland M, Peters A, Metzger EF, Rodgers L, Mazzotti FJ. Optimizing survey conditions for Burmese python detection and removal using community science data. Sci Rep 2025; 15:2421. [PMID: 39827207 PMCID: PMC11742711 DOI: 10.1038/s41598-024-84641-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025] Open
Abstract
Burmese pythons (Python bivittatus) have demonstrated prolific spread and low detectability within their invasive range in Florida, USA. Consequently, programs exist which incentivize contractors to remove pythons. While surveying, contractors collect data on search effort and python captures. We examined data from South Florida Water Management District's Python Elimination Program to determine the effect of operational and environmental covariates on two measures of survey outcome: success (i.e., probability of removing at least one python) and efficiency (i.e., the number of pythons removed per survey hour). Additionally, we assessed the spatial distribution of contractor search effort and removals. Warm temperatures (> 25 °C) improve survey outcomes, especially when surveys occur late at night and during the wet season (May-Oct). The most efficient interval for conducting surveys occurs from 20:00 to 02:00. The spatial distribution of python removals is concentrated in four regions and coincides with contractor search effort. Our results provide insights into optimizing removal efforts for invasive Burmese pythons in Florida, which may allow for increases in removal efficiency. Moreover, this study demonstrates that community science data can be used to synthesize recommendations for invasive species removal efforts.
Collapse
Affiliation(s)
- Kelly R McCaffrey
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, 3205 College Ave, Davie, FL, 33314, USA
- South Florida Natural Resources Center, Everglades National Park, National Park Service, 40001 SR 9336, Homestead, FL, USA
| | - Melissa A Miller
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, 3205 College Ave, Davie, FL, 33314, USA
| | - Sergio A Balaguera-Reina
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, 3205 College Ave, Davie, FL, 33314, USA
| | - Alexander S Romer
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, 3205 College Ave, Davie, FL, 33314, USA.
| | - Michael Kirkland
- South Florida Water Management District, 3301 Gun Club Rd, West Palm Beach, FL, 33406, USA
| | - Amy Peters
- South Florida Water Management District, 3301 Gun Club Rd, West Palm Beach, FL, 33406, USA
| | - Edward F Metzger
- South Florida Water Management District, 3301 Gun Club Rd, West Palm Beach, FL, 33406, USA
| | - LeRoy Rodgers
- South Florida Water Management District, 3301 Gun Club Rd, West Palm Beach, FL, 33406, USA
| | - Frank J Mazzotti
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, 3205 College Ave, Davie, FL, 33314, USA
| |
Collapse
|
2
|
Vishnu CS, Marshall BM, Ramesh C, Thirumurugan V, Talukdar G, Das A. Home range ecology of Indian rock pythons (Python molurus) in Sathyamangalam and Mudumalai Tiger Reserves, Tamil Nadu, Southern India. Sci Rep 2023; 13:9749. [PMID: 37328577 PMCID: PMC10275859 DOI: 10.1038/s41598-023-36974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023] Open
Abstract
The Indian rock pythons (Python molurus) are classified as a near-threatened snake species by the International Union for the Conservation of Nature and Natural Resources (IUCN); they are native to the Indian subcontinent and have experienced population declines caused primarily by poaching and habitat loss. We hand-captured the 14 rock pythons from villages, agricultural lands, and core forests to examine the species' home ranges. We later released/translocated them in different kilometer ranges at the Tiger Reserves. From December 2018 to December 2020, we obtained 401 radio-telemetry locations, with an average tracking duration of (444 ± 212 days), and a mean of 29 ± SD 16 data points per individual. We quantified home ranges and measured morphometric and ecological factors (sex, body size, and location) associated with intraspecific differences in home range size. We analyzed the home ranges of rock pythons using Auto correlated Kernel Density Estimates (AKDE). AKDEs can account for the auto-correlated nature of animal movement data and mitigate against biases stemming from inconsistent tracking time lags. Home range size varied from 1.4 ha to 8.1 km2 and averaged 4.2 km2. Differences in home range sizes could not be connected to body mass. Initial indications suggest that rock python home ranges are larger than other pythons.
Collapse
Affiliation(s)
- C S Vishnu
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, 248002, India
| | | | - Chinnasamy Ramesh
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, 248002, India.
| | | | - Gautam Talukdar
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, 248002, India
| | - Abhijit Das
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, 248002, India
| |
Collapse
|
3
|
Maestresalas B, Piquet JC, López-Darias M. Spatial ecology to strengthen invasive snake management on islands. Sci Rep 2023; 13:6731. [PMID: 37185934 PMCID: PMC10130030 DOI: 10.1038/s41598-023-32483-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Knowledge on the spatial ecology of invasive predators positively contributes to optimizing their management, especially when involving cryptic and secretive species, such as snakes. However, this information is lacking for most invasive snakes, particularly on islands, where they are known to cause severe ecological and socio-economic impacts. This research is focused on assessing the spatial ecology of the California kingsnake (Lampropeltis californiae) on Gran Canaria to strengthen management actions. We monitored 15 radio-tagged individuals once per day on 9-11 days per month from July 2020 to June 2021 to calculate the species' home range and describe annual activity patterns in the invaded range. To account for the species' diel activity during the emergence period, we additionally monitored snakes from January to May 2021 during three consecutive days per month in four different time intervals each day. We detected movement (consecutive detections at least 6 m apart) in 31.68% of the 1146 detections during the whole monitoring period. Movements most frequently detected were shorter than 100 m (82.24%), and among them the range 0-20 m was the most recurrent (27.03%). The mean distance of movement was 62.57 ± 62.62 m in 1-2 days. Average home range was 4.27 ± 5.35 ha-calculated with the Autocorrelated Kernel Density Estimator (AKDE) at 95%-and did not significantly vary with SVL nor sex. We detected an extremely low value of motion variance (0.76 ± 2.62 σ2m) compared to other studies, with a general inactivity period from November to February, January being the less active month of the year. Diel activity was higher during central and evening hours than during early morning and night. Our results should be useful to improve control programs for this invasive snake (e.g., trap placement and visual survey guidance) on Gran Canaria. Our research highlights the importance of gathering spatial information on invasive snakes to enhance control actions, which can contribute to the management of secretive invasive snakes worldwide.
Collapse
Affiliation(s)
- Borja Maestresalas
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206, La Laguna, Tenerife, Canary Islands, Spain
| | - Julien C Piquet
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206, La Laguna, Tenerife, Canary Islands, Spain
| | - Marta López-Darias
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206, La Laguna, Tenerife, Canary Islands, Spain.
| |
Collapse
|
4
|
Krochmal AR, Roth TC. The case for investigating the cognitive map in nonavian reptiles. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
5
|
The Reptile Relocation Industry in Australia: Perspectives from Operators. DIVERSITY 2023. [DOI: 10.3390/d15030343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Thousands of reptiles are relocated annually in Australia, yet there has been relatively little research aimed at understanding how the reptile relocation industry operates. An online questionnaire was distributed to anyone who had relocated a reptile between April 2019 and April 2020, including wildlife relocators, wildlife rehabilitators and the general public. The questionnaire explored demographics, decision-making and concerns about how the industry functions, through 24 questions and two opportunities to provide open-ended comments. We received 125 responses and 123 comments from operators in all Australian states and territories. Beliefs about appropriate times and places for reptile releases were not reflected in practice for the majority of operators. Confidence about reptiles remaining at recipient sites was low regardless of how many years’ experience an operator had. Escaped captive native reptiles were encountered by most operators, and a quarter of operators were called out to exotic non-native snakes. Operators across all levels of experience indicated a need for changes within the industry, including increased training and professionalism, and more scientific studies on the outcomes of relocations to address concerns about the impacts that the industry has on the wildlife that it is trying to protect.
Collapse
|
6
|
Nguyen AM, Todd BD, Halstead BJ. Survival and establishment of captive‐reared and translocated giant gartersnakes after release. J Wildl Manage 2023. [DOI: 10.1002/jwmg.22374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Allison M. Nguyen
- U.S. Geological Survey 800 Business Park Drive Suite D Dixon CA 95620 USA
| | - Brian D. Todd
- University of California Davis, One Shields Avenue Davis CA 95616 USA
| | - Brian J. Halstead
- U.S. Geological Survey 800 Business Park Drive Suite D Dixon CA 95620 USA
| |
Collapse
|
7
|
Guzy JC, Falk BG, Smith BJ, Willson JD, Reed RN, Aumen NG, Avery ML, Bartoszek IA, Campbell E, Cherkiss MS, Claunch NM, Currylow AF, Dean T, Dixon J, Engeman R, Funck S, Gibble R, Hengstebeck KC, Humphrey JS, Hunter ME, Josimovich JM, Ketterlin J, Kirkland M, Mazzotti FJ, McCleery R, Miller MA, McCollister M, Parker MR, Pittman SE, Rochford M, Romagosa C, Roybal A, Snow RW, Spencer MM, Waddle JH, Yackel Adams AA, Hart KM. Burmese pythons in Florida: A synthesis of biology, impacts, and management tools. NEOBIOTA 2023. [DOI: 10.3897/neobiota.80.90439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Burmese pythons (Python molurus bivittatus) are native to southeastern Asia, however, there is an established invasive population inhabiting much of southern Florida throughout the Greater Everglades Ecosystem. Pythons have severely impacted native species and ecosystems in Florida and represent one of the most intractable invasive-species management issues across the globe. The difficulty stems from a unique combination of inaccessible habitat and the cryptic and resilient nature of pythons that thrive in the subtropical environment of southern Florida, rendering them extremely challenging to detect. Here we provide a comprehensive review and synthesis of the science relevant to managing invasive Burmese pythons. We describe existing control tools and review challenges to productive research, identifying key knowledge gaps that would improve future research and decision making for python control.
Collapse
|
8
|
Feuka AB, Nafus MG, Yackel Adams AA, Bailey LL, Hooten MB. Individual heterogeneity influences the effects of translocation on urban dispersal of an invasive reptile. MOVEMENT ECOLOGY 2022; 10:2. [PMID: 35033211 PMCID: PMC8761355 DOI: 10.1186/s40462-022-00300-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/03/2022] [Indexed: 05/28/2023]
Abstract
BACKGROUND Invasive reptiles pose a serious threat to global biodiversity, but early detection of individuals in an incipient population is often hindered by their cryptic nature, sporadic movements, and variation among individuals. Little is known about the mechanisms that affect the movement of these species, which limits our understanding of their dispersal. Our aim was to determine whether translocation or small-scale landscape features affect movement patterns of brown treesnakes (Boiga irregularis), a destructive invasive predator on the island of Guam. METHODS We conducted a field experiment to compare the movements of resident (control) snakes to those of snakes translocated from forests and urban areas into new urban habitats. We developed a Bayesian hierarchical model to analyze snake movement mechanisms and account for attributes unique to invasive reptiles by incorporating multiple behavioral states and individual heterogeneity in movement parameters. RESULTS We did not observe strong differences in mechanistic movement parameters (turning angle or step length) among experimental treatment groups. We found some evidence that translocated snakes from both forests and urban areas made longer movements than resident snakes, but variation among individuals within treatment groups weakened this effect. Snakes translocated from forests moved more frequently from pavement than those translocated from urban areas. Snakes translocated from urban areas moved less frequently from buildings than resident snakes. Resident snakes had high individual heterogeneity in movement probability. CONCLUSIONS Our approach to modeling movement improved our understanding of invasive reptile dispersal by allowing us to examine the mechanisms that influence their movement. We also demonstrated the importance of accounting for individual heterogeneity in population-level analyses, especially when management goals involve eradication of an invasive species.
Collapse
Affiliation(s)
- Abigail B. Feuka
- U.S. Department of Agriculture Animal and Plant Health Inspection Service, National Wildlife Research Center, 4101 Laporte Ave, Fort Collins, CO 80521-2154 USA
- Colorado State University, Department of Fish, Wildlife, and Conservation Biology and Graduate Degree Program in Ecology, Fort Collins, CO 80523-1474 USA
| | - Melia G. Nafus
- U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue, Building C, Fort Collins, CO 80526-8118 USA
| | - Amy A. Yackel Adams
- U.S. Geological Survey, Fort Collins Science Center, 2150 Centre Avenue, Building C, Fort Collins, CO 80526-8118 USA
| | - Larissa L. Bailey
- Colorado State University, Department of Fish, Wildlife, and Conservation Biology and Graduate Degree Program in Ecology, Fort Collins, CO 80523-1474 USA
| | - Mevin B. Hooten
- The University of Texas at Austin, Department of Statistics and Data Sciences, Welch 5.216, 105 E 24th St D9800, Austin, TX 78705-1576 USA
| |
Collapse
|
9
|
Pittman SE, Bartoszek IA. Initial dispersal behavior and survival of non-native juvenile Burmese pythons (Python bivittatus) in South Florida. BMC ZOOL 2021; 6:33. [PMID: 37170339 PMCID: PMC10124209 DOI: 10.1186/s40850-021-00098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/10/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Dispersal behavior is a critical component of invasive species dynamics, impacting both spatial spread and population density. In South Florida, Burmese pythons (Python bivittatus) are an invasive species that disrupt ecosystems and have the potential to expand their range northward. Control of python populations is limited by a lack of information on movement behavior and vital rates, especially within the younger age classes. We radio-tracked 28 Burmese pythons from hatching until natural mortality for approximately 3 years. Pythons were chosen from 4 clutches deposited by adult females in 4 different habitats: forested wetland, urban interface, upland pine, and agricultural interface.
Results
Known-fate survival estimate was 35.7% (95% CI = 18% - 53%) in the first 6 months, and only 2 snakes survived 3 years post hatching. Snakes moving through ‘natural’ habitats had higher survival than snakes dispersing through ‘modified’ habitats in the first 6- months post-hatching. Predation was the most common source of mortality. Snakes from the agricultural interface utilized canals and displayed the largest net movements.
Conclusions
Our results suggest that pythons may have lower survival if clutches are deposited in or near urbanized areas. Alternatively, juvenile pythons could quickly disperse to new locations by utilizing canals that facilitate linear movement. This study provides critical information about behavioral and life history characteristics of juvenile Burmese pythons that will inform management practices.
Collapse
|
10
|
Bartoszek IA, Smith BJ, Reed RN, Hart KM. Spatial ecology of invasive Burmese pythons in southwestern Florida. Ecosphere 2021. [DOI: 10.1002/ecs2.3564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
| | - Brian J. Smith
- Department of Wildland Resources and Conservation Center Utah State University 5230 Old Main Hill Logan Utah84322USA
| | - Robert N. Reed
- Pacific Island Ecosystems Research Center U.S. Geological Survey Hawaii Volcanoes National Park Hawaii96718USA
| | - Kristen M. Hart
- Wetland and Aquatic Research Center U.S. Geological Survey 3321 College Avenue Davie Florida33314USA
| |
Collapse
|
11
|
Jessop TS, Ariefiandy A, Purwandana D, Ciofi C, Imansyah J, Benu YJ, Fordham DA, Forsyth DM, Mulder RA, Phillips BL. Exploring mechanisms and origins of reduced dispersal in island Komodo dragons. Proc Biol Sci 2018; 285:rspb.2018.1829. [PMID: 30429305 DOI: 10.1098/rspb.2018.1829] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/22/2018] [Indexed: 11/12/2022] Open
Abstract
Loss of dispersal typifies island biotas, but the selective processes driving this phenomenon remain contentious. This is because selection via, both indirect (e.g. relaxed selection or island syndromes) and direct (e.g. natural selection or spatial sorting) processes may be involved, and no study has yet convincingly distinguished between these alternatives. Here, we combined observational and experimental analyses of an island lizard, the Komodo dragon (Varanus komodoensis, the world's largest lizard), to provide evidence for the actions of multiple processes that could contribute to island dispersal loss. In the Komodo dragon, concordant results from telemetry, simulations, experimental translocations, mark-recapture, and gene flow studies indicated that despite impressive physical and sensory capabilities for long-distance movement, Komodo dragons exhibited near complete dispersal restriction: individuals rarely moved beyond the valleys they were born/captured in. Importantly, lizard site-fidelity was insensitive to common agents of dispersal evolution (i.e. indices of risk for inbreeding, kin and intraspecific competition, and low habitat quality) that consequently reduced survival of resident individuals. We suggest that direct selection restricts movement capacity (e.g. via benefits of spatial philopatry and increased costs of dispersal) alongside use of dispersal-compensating traits (e.g. intraspecific niche partitioning) to constrain dispersal in island species.
Collapse
Affiliation(s)
- Tim S Jessop
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds 3220, Australia
| | | | | | - Claudio Ciofi
- Department of Animal Biology and Genetics, University of Florence, Florence 50125, Italy
| | - Jeri Imansyah
- Komodo Survival Program, Denpasar 80223, Bali, Indonesia
| | | | - Damien A Fordham
- The Environment Institute and School of Earth and Environmental Science, The University of Adelaide, Adelaide, South Australia 5005, Australia.,Center for Macroecology, Evolution, and Climate, National Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - David M Forsyth
- Vertebrate Pest Research Unit, New South Wales Department of Primary Industries, Orange, New South Wales 2800, Australia
| | - Raoul A Mulder
- School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Benjamin L Phillips
- School of Biosciences, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
12
|
Abstract
Long-distance migrants, including Pacific salmon (Oncorhynchus spp), can use geomagnetic information to navigate. We tested the hypothesis that a "magnetic map" (i.e., an ability to extract positional information from Earth's magnetic field) also exists in a population of salmon that do not undertake oceanic migrations. This study examined juvenile Atlantic salmon (Salmo salar) originally from a nonanadromous population in Maine transferred ∼60 years ago to a lake in central Oregon. We exposed juveniles to magnetic displacements representative of locations at the latitudinal boundaries of the Pacific salmon oceanic range in the North Pacific and at the periphery of their ancestral oceanic range in the North Atlantic. Orientation differed among the magnetic treatments, indicating that Atlantic salmon detect map information from the geomagnetic field. Despite no recent history of ocean migration, these fish displayed adaptive orientation responses similar to those observed in native Pacific salmonids. These findings indicate that use of map information from the geomagnetic field is a shared ancestral character in the family Salmonidae and is not restricted to populations with anadromous life histories. Lastly, given that Atlantic salmon are transported throughout the world for capture fisheries and aquaculture, such a robust navigational system is of some concern. Escaped individuals may have greater potential to successfully navigate, and thus invade, introduced habitats than previously suspected.
Collapse
|
13
|
Hunter ME, Johnson NA, Smith BJ, Davis MC, Butterfield JSS, Snow RW, Hart KM. Cytonuclear discordance in the Florida Everglades invasive Burmese python ( Python bivittatus) population reveals possible hybridization with the Indian python ( P. molurus). Ecol Evol 2018; 8:9034-9047. [PMID: 30271564 PMCID: PMC6157680 DOI: 10.1002/ece3.4423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 06/08/2018] [Accepted: 06/22/2018] [Indexed: 12/04/2022] Open
Abstract
The invasive Burmese python (Python bivittatus) has been reproducing in the Florida Everglades since the 1980s. These giant constrictor snakes have caused a precipitous decline in small mammal populations in southern Florida following escapes or releases from the commercial pet trade. To better understand the invasion pathway and genetic composition of the population, two mitochondrial (mtDNA) loci across 1,398 base pairs were sequenced on 426 snakes and 22 microsatellites were assessed on 389 snakes. Concatenated mtDNA sequences produced six haplotypes with an average nucleotide and haplotype diversity of π = 0.002 and h = 0.097, respectively. Samples collected in Florida from morphologically identified P. bivittatus snakes were similar to published cytochrome oxidase 1 and cytochrome b sequences from both P. bivittatus and Python molurus and were highly divergent (genetic distances of 5.4% and 4.3%, respectively). The average number of microsatellite alleles and expected heterozygosity were N A = 5.50 and H E = 0.60, respectively. Nuclear Bayesian assignment tests supported two genetically distinct groups and an admixed group, not geographically differentiated. The effective population size (N E = 315.1) was lower than expected for a population this large, but reflected the low genetic diversity overall. The patterns of genetic diversity between mtDNA and microsatellites were disparate, indicating nuclear introgression of separate mtDNA lineages corresponding to cytonuclear discordance. The introgression likely occurred prior to the invasion, but genetic information on the native range and commercial trade is needed for verification. Our finding that the Florida python population is comprised of distinct lineages suggests greater standing variation for adaptation and the potential for broader areas of suitable habitat in the invaded range.
Collapse
Affiliation(s)
- Margaret E. Hunter
- U.S. Geological SurveyWetland and Aquatic Research CenterGainesvilleFlorida
| | - Nathan A. Johnson
- U.S. Geological SurveyWetland and Aquatic Research CenterGainesvilleFlorida
| | - Brian J. Smith
- Wetland and Aquatic Research CenterCherokee Nation TechnologiesDavieFlorida
| | - Michelle C. Davis
- U.S. Geological SurveyWetland and Aquatic Research CenterGainesvilleFlorida
| | | | - Ray W. Snow
- U.S. National Park ServiceEverglades National ParkHomesteadFlorida
| | - Kristen M. Hart
- U.S. Geological SurveyWetland and Aquatic Research CenterDavieFlorida
| |
Collapse
|
14
|
Wolfe AK, Fleming PA, Bateman PW. Impacts of translocation on a large urban-adapted venomous snake. WILDLIFE RESEARCH 2018. [DOI: 10.1071/wr17166] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Translocation as a tool for management of nuisance or ‘problem’ snakes near urban areas is currently used worldwide with limited success. Translocated snakes experience modified behaviours, spatial use and survivorship, and few studies have investigated the impacts of translocation within a metropolitan area.
Aims
In the present study, we investigated the impacts of translocation on the most commonly encountered snake in Perth Western Australia, the dugite (Pseudonaja affinis, Elapidae), by comparing the space use of resident and translocated snakes.
Methods
We captured 10 dugites and attached telemetry packages, composed of a radio-telemetry transmitter and global positioning system (GPS) data-logger, externally to their tails. Snakes were either released within 200 m of their initial capture sites (residents, n = 6) or moved to new unconnected habitat at least 3 km away (translocated, n = 4). Spatial-use data were analysed using general linear models to identify differences between resident and translocated dugites.
Key results
Translocation influenced space use of dugites and detrimentally affected their survivorship. Translocated snakes had larger activity ranges than did residents, and there was a trend towards travelling greater distances over time. Mortality for all snakes was high: 100% for translocated snakes, and 50% for residents.
Conclusions
Urban dugites face many threats, and snakes were negatively affected by translocation. The GPS technology we used did not improve the quality of the data over traditional radio-telemetry methods, owing to the cryptic nature of the snakes that spent much of their time under cover or underground.
Implications
These findings support the growing body of evidence that translocating ‘problem’ snakes is a not a humane method of animal management, and alternatives such as public education, may be more appropriate.
Collapse
|
15
|
Grieves RM, Jeffery KJ. The representation of space in the brain. Behav Processes 2017; 135:113-131. [DOI: 10.1016/j.beproc.2016.12.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/09/2016] [Accepted: 12/19/2016] [Indexed: 11/16/2022]
|
16
|
LaDage LD, Cobb Irvin TE, Gould VA. Assessing Spatial Learning and Memory in Small Squamate Reptiles. J Vis Exp 2017. [PMID: 28117775 DOI: 10.3791/55103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Clinical research has leveraged a variety of paradigms to assess cognitive decline, commonly targeting spatial learning and memory abilities. However, interest in the cognitive processes of nonmodel species, typically within an ecological context, has also become an emerging field of study. In particular, interest in the cognitive processes in reptiles is growing although experimental studies on reptilian cognition are sparse. The few reptilian studies that have experimentally tested for spatial learning and memory have used rodent paradigms modified for use in reptiles. However, ecologically important aspects of the physiology and behavior of this taxonomic group must be taken into account when testing for spatially based cognition. Here, we describe modifications of the dry land Barnes maze and associated testing protocol that can improve performance when probing for spatial learning and memory ability in small squamate reptiles. The described paradigm and procedures were successfully used with male side-blotched lizards (Uta stansburiana), demonstrating that spatial learning and memory can be assessed in this taxonomic group with an ecologically relevant apparatus and protocol.
Collapse
Affiliation(s)
- Lara D LaDage
- Division of Mathematics and Natural Sciences, Penn State Altoona;
| | | | - Victoria A Gould
- Division of Mathematics and Natural Sciences, Penn State Altoona
| |
Collapse
|
17
|
Investigating movement behavior of invasive Burmese pythons on a shy–bold continuum using individual-based modeling. Perspect Ecol Conserv 2017. [DOI: 10.1016/j.pecon.2017.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
18
|
Mazzotti FJ, Rochford M, Vinci J, Jeffery BM, Eckles JK, Dove C, Sommers KP. Implications of the 2013 Python Challenge®for Ecology and Management ofPython molorus bivittatus(Burmese Python) in Florida. SOUTHEAST NAT 2016. [DOI: 10.1656/058.015.sp807] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Frank J. Mazzotti
- Fort Lauderdale Research and Education Center, University of Florida, 3205 College Avenue, Davie, FL 33314
| | - Mike Rochford
- Fort Lauderdale Research and Education Center, University of Florida, 3205 College Avenue, Davie, FL 33314
| | - Joy Vinci
- Fort Lauderdale Research and Education Center, University of Florida, 3205 College Avenue, Davie, FL 33314
| | - Brian M. Jeffery
- Fort Lauderdale Research and Education Center, University of Florida, 3205 College Avenue, Davie, FL 33314
| | | | - Carla Dove
- Smithsonian Institution, Division of Birds, NHB E-600, MRC 116, Washington, DC 20560
| | - Kristen P. Sommers
- Florida Fish and Wildlife Conservation Commission, 620 South Meridian Street, Tallahassee, FL 32399
| |
Collapse
|
19
|
Maritz B, Alexander GJ. Scale-dependent Orientation in Movement Paths: A Case Study of an African Viper. Ethology 2015. [DOI: 10.1111/eth.12459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bryan Maritz
- Department of Biodiversity and Conservation Biology; University of the Western Cape; Bellville Cape Town South Africa
- School of Animal, Plant and Environmental Sciences; University of the Witwatersrand; Johannesburg South Africa
| | - Graham J. Alexander
- School of Animal, Plant and Environmental Sciences; University of the Witwatersrand; Johannesburg South Africa
| |
Collapse
|
20
|
Krochmal AR, Roth TC, Rush S, Wachter K. Turtles outsmart rapid environmental change: The role of cognition in navigation. Commun Integr Biol 2015; 8:e1052922. [PMID: 27065017 PMCID: PMC4802741 DOI: 10.1080/19420889.2015.1052922] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 05/15/2015] [Indexed: 11/25/2022] Open
Abstract
Animals inhabiting changing environments show high levels of cognitive plasticity. Cognition may be a means by which animals buffer the impact of environmental change. However, studies examining the evolution of cognition seldom compare populations where change is rapid and selection pressures are strong. We investigated this phenomenon by radiotracking experienced and naïve Eastern painted turtles (Chrysemys picta) as they sought new habitats when their pond was drained. Resident adults repeatedly used specific routes to permanent water sources with exceptional precision, while adults translocated to the site did not. Naïve 1-3 y olds from both populations used the paths taken by resident adults, an ability lost by age 4. Experience did not, however, influence the timing of movement or the latency to begin navigation. This suggests that learning during a critical period may be important for how animals respond to changing environments, highlighting the importance of incorporating cognition into conservation.
Collapse
Affiliation(s)
| | - Timothy C Roth
- Department of Psychology; Franklin and Marshall College ; Lancaster, PA USA
| | - Sage Rush
- Department of Psychology; Franklin and Marshall College ; Lancaster, PA USA
| | - Katrina Wachter
- Department of Psychology; Franklin and Marshall College ; Lancaster, PA USA
| |
Collapse
|
21
|
Predators in training: operant conditioning of novel behavior in wild Burmese pythons (Python molurus bivitattus). Anim Cogn 2014; 18:269-78. [DOI: 10.1007/s10071-014-0797-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/31/2014] [Accepted: 08/05/2014] [Indexed: 10/24/2022]
|