1
|
Ragauskas A, Ignatavičienė I, Rakauskas V, Grauda D, Prakas P, Butkauskas D. Trends of Eurasian Perch ( Perca fluviatilis) mtDNA ATP6 Region Genetic Diversity within the Hydro-Systems of the Eastern Part of the Baltic Sea in the Anthropocene. Animals (Basel) 2023; 13:3057. [PMID: 37835663 PMCID: PMC10571732 DOI: 10.3390/ani13193057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The intraspecific genetic diversity of freshwater fish inhabiting hydro-systems of the macrogeographic area spreading from the Black to Baltic Seas requires comprehensive investigation from fundamental and practical perspectives. The current study focused on the involvement of the mtDNA ATP6 region in the adaptability and microevolution of Perca fluviatilis within phylogeographic and anthropogenic contexts. We sequenced a 627 bp fragment encompassing the ATP6 region and used it for genetic analysis of 193 perch caught in Latvia, Lithuania, Belarus, and Ukraine, representing natural and anthropogenically impacted populations. We evaluated patterns of intraspecific genetic diversity in the ATP6 region and phylogeographic trends within the studied area compared with previously established D-loop trends. Evaluation of ATP6 coding sequence variability revealed that among 13 newly detected haplotypes, only two were caused by non-synonymous substitutions of amino acids of the protein. PCoA revealed three genetic groups (I-III) based on the ATP6 region that encompassed four previously described genetic groups established based on the mtDNA D-loop. The two mtDNA regions (D-loop and ATP6) have microevolved at least partially independently. Prolonged anthropogenic impacts may generate new point mutations at the ATP6 locus, but this phenomenon could be mainly concealed by natural selection and reparation processes.
Collapse
Affiliation(s)
- Adomas Ragauskas
- Nature Research Centre, Akademijos Str. 2, 08412 Vilnius, Lithuania; (I.I.); (V.R.); (P.P.); (D.B.)
| | - Ieva Ignatavičienė
- Nature Research Centre, Akademijos Str. 2, 08412 Vilnius, Lithuania; (I.I.); (V.R.); (P.P.); (D.B.)
| | - Vytautas Rakauskas
- Nature Research Centre, Akademijos Str. 2, 08412 Vilnius, Lithuania; (I.I.); (V.R.); (P.P.); (D.B.)
| | - Dace Grauda
- Institute of Biology, University of Latvia, Jelgavas Str. 1, LV-1004 Riga, Latvia;
| | - Petras Prakas
- Nature Research Centre, Akademijos Str. 2, 08412 Vilnius, Lithuania; (I.I.); (V.R.); (P.P.); (D.B.)
| | - Dalius Butkauskas
- Nature Research Centre, Akademijos Str. 2, 08412 Vilnius, Lithuania; (I.I.); (V.R.); (P.P.); (D.B.)
| |
Collapse
|
2
|
Andersen LW, Jacobsen MW, Frydenberg J, Møller JD, Jensen TS. Phylogeography using mitogenomes: A rare Dipodidae,
Sicista betulina
, in North‐western Europe. Ecol Evol 2022; 12:e8865. [PMID: 35475180 PMCID: PMC9022092 DOI: 10.1002/ece3.8865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/11/2022] Open
Abstract
Repeated climatic and vegetation changes during the Pleistocene have shaped biodiversity in Northern Europe including Denmark. The Northern Birch Mouse (Sicista betulina) was one of the first small rodent species to colonize Denmark after the Late Glacial Maximum. This study analyses complete mitochondrial genomes and two nuclear genes of the Northern Birch Mouse to investigate the phylogeographical pattern in North‐western Europe and test whether the species colonized Denmark through several colonization events. The latter was prompt by (i) the present‐day distinct northern and southern Danish distribution and (ii) the subfossil record of Northern Birch Mouse, supporting early Weichselian colonization. Samples from Denmark, Norway, Sweden, Russia, Latvia, Estonia, and Slovakia were included. Mitogenomes were obtained from 54 individuals, all representing unique mitogenomes supporting high genetic variation. Bayesian phylogenetic analysis identified two distinct evolutionary linages in Northern Europe diverging within the Elster glaciation period. The results of the two nuclear genomes showed lower genetic differentiation but supported the same evolutionary history. This suggests an allopatric origin of the clades followed by secondary contact. Individuals from southern Denmark were only found in one clade, while individuals from other areas, including northern Denmark, were represented in both clades. Nevertheless, we found no evidence for repeated colonization's explaining the observed fragmented distribution of the species today. The results indicated that the mitogenome pattern of the Northern Birch Mouse population in southern Denmark was either (i) due to the population being founded from northern Denmark, (ii) a result of climatic and anthropogenic effects reducing population size increasing genetic drift or (iii) caused by sampling bias.
Collapse
Affiliation(s)
| | - Magnus W. Jacobsen
- Department of Ecoscience Aarhus University Aarhus C Denmark
- Section for Marine Living Resources National Institute of Aquatic Resources Technical University of Denmark Silkeborg Denmark
| | | | | | | |
Collapse
|
3
|
Pujolar JM, Jacobsen MW, Bertolini F. Comparative genomics and signatures of selection in North Atlantic eels. Mar Genomics 2022; 62:100933. [PMID: 35182837 DOI: 10.1016/j.margen.2022.100933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 11/17/2022]
Abstract
Comparative genomic approaches can identify putative private and shared signatures of selection. We performed a comparative genomic study of North Atlantic eels, European eel (Anguilla Anguilla) and American eel (A. rostrata). The two sister species are nearly undistinguishable at the phenotypic level and despite a wide non-overlapping continental distribution, they spawn in partial sympatry in the Sargasso Sea. Taking advantage of the newly assembled and annotated genome, we used genome wide RAD sequencing data of 359 individuals retrieved from Sequence Nucleotide Archive and state-of-the-art statistic tests to identify putative genomic signatures of selection in North Atlantic eels. First, using the FST and XP-EHH methods, we detected apparent islands of divergence on a total of 7 chromosomes, particularly on chromosomes 6 and 10. Gene ontology analyses suggested candidate genes mainly related to energy production, development and regulation, which could reflect strong selection on traits related to eel migration and larval duration time. Gene effect prediction using SNPeff showed a high number of SNPs in noncoding regions, pointing to a possible regulatory role. Second, using the iHS method we detected shared regions under selection on a total of 11 chromosomes. Several hypotheses might account for the detection of shared islands of selection in North Atlantic eels, including parallel evolution due to adaptation to similar environments and introgression. Future comparative genomic studies will be needed to further clarify the causes and consequences of introgression, including the directionality of these introgression events.
Collapse
Affiliation(s)
- Jose Martin Pujolar
- Centre for Gelatinous Plankton Ecology and Evolution, National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Magnus Wulff Jacobsen
- Section for Marine Living Resources, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Francesca Bertolini
- Section for Marine Living Resources, National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
4
|
Sun JT, Jin PY, Hoffmann AA, Duan XZ, Dai J, Hu G, Xue XF, Hong XY. Evolutionary divergence of mitochondrial genomes in two Tetranychus species distributed across different climates. INSECT MOLECULAR BIOLOGY 2018; 27:698-709. [PMID: 29797479 DOI: 10.1111/imb.12501] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
There is increasing evidence that mitochondrial genomes (mitogenomes) can be under selection, whereas the selective regimes shaping mitogenome evolution remain largely unclear. To test for mitogenome evolution in relation to the climate adaptation, we explored mtDNA variation in two spider mite (Tetranychus) species that distribute across different climates. We sequenced 26 complete mitogenomes of Tetranychus truncates, which occurs in both warm and cold regions, and nine complete mitogenomes of Tetranychus pueraricola, which is restricted to warm regions. Patterns of evolution in the two species' mitogenomes were compared through a series of dN /dS methods and physicochemical profiles of amino acid replacements. We found that: (1) the mitogenomes of both species were under widespread purifying selection; (2) elevated directional adaptive selection was observed in the T. truncatus mitogenome, perhaps linked to the cold climates adaptation of T. truncatus; and (3) the strength of selection varied across genes, and diversifying positive selection detected on ND4 and ATP6 pointed to their crucial roles during adaptation to different climatic conditions. This study gained insight into the mitogenome evolution in relation to the climate adaptation.
Collapse
Affiliation(s)
- J-T Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - P-Y Jin
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - A A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Victoria, Australia
| | - X-Z Duan
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - J Dai
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - G Hu
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - X-F Xue
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - X-Y Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Pavlova A, Gan HM, Lee YP, Austin CM, Gilligan DM, Lintermans M, Sunnucks P. Purifying selection and genetic drift shaped Pleistocene evolution of the mitochondrial genome in an endangered Australian freshwater fish. Heredity (Edinb) 2017; 118:466-476. [PMID: 28051058 PMCID: PMC5520527 DOI: 10.1038/hdy.2016.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/20/2016] [Accepted: 11/02/2016] [Indexed: 11/08/2022] Open
Abstract
Genetic variation in mitochondrial genes could underlie metabolic adaptations because mitochondrially encoded proteins are directly involved in a pathway supplying energy to metabolism. Macquarie perch from river basins exposed to different climates differ in size and growth rate, suggesting potential presence of adaptive metabolic differences. We used complete mitochondrial genome sequences to build a phylogeny, estimate lineage divergence times and identify signatures of purifying and positive selection acting on mitochondrial genes for 25 Macquarie perch from three basins: Murray-Darling Basin (MDB), Hawkesbury-Nepean Basin (HNB) and Shoalhaven Basin (SB). Phylogenetic analysis resolved basin-level clades, supporting incipient speciation previously inferred from differentiation in allozymes, microsatellites and mitochondrial control region. The estimated time of lineage divergence suggested an early- to mid-Pleistocene split between SB and the common ancestor of HNB+MDB, followed by mid-to-late Pleistocene splitting between HNB and MDB. These divergence estimates are more recent than previous ones. Our analyses suggested that evolutionary drivers differed between inland MDB and coastal HNB. In the cooler and more climatically variable MDB, mitogenomes evolved under strong purifying selection, whereas in the warmer and more climatically stable HNB, purifying selection was relaxed. Evidence for relaxed selection in the HNB includes elevated transfer RNA and 16S ribosomal RNA polymorphism, presence of potentially mildly deleterious mutations and a codon (ATP6113) displaying signatures of positive selection (ratio of nonsynonymous to synonymous substitution rates (dN/dS) >1, radical change of an amino-acid property and phylogenetic conservation across the Percichthyidae). In addition, the difference could be because of stronger genetic drift in the smaller and historically more subdivided HNB with low per-population effective population sizes.
Collapse
Affiliation(s)
- A Pavlova
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| | - H M Gan
- School of Science, Monash University Malaysia, Petaling Jaya, Selangor, Malaysia
- Genomics Facility, Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Petaling Jaya, Selangor, Malaysia
| | - Y P Lee
- School of Science, Monash University Malaysia, Petaling Jaya, Selangor, Malaysia
- Genomics Facility, Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Petaling Jaya, Selangor, Malaysia
| | - C M Austin
- School of Science, Monash University Malaysia, Petaling Jaya, Selangor, Malaysia
- Genomics Facility, Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Petaling Jaya, Selangor, Malaysia
| | - D M Gilligan
- NSW Department of Primary Industries, Batemans Bay, New South Wales, Australia
| | - M Lintermans
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - P Sunnucks
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Xia JH, Li HL, Zhang Y, Meng ZN, Lin HR. Identifying selectively important amino acid positions associated with alternative habitat environments in fish mitochondrial genomes. Mitochondrial DNA A DNA Mapp Seq Anal 2017; 29:511-524. [PMID: 28423967 DOI: 10.1080/24701394.2017.1315567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Fish species inhabitating seawater (SW) or freshwater (FW) habitats have to develop genetic adaptations to alternative environment factors, especially salinity. Functional consequences of the protein variations associated with habitat environments in fish mitochondrial genomes have not yet received much attention. We analyzed 829 complete fish mitochondrial genomes and compared the amino acid differences of 13 mitochondrial protein families between FW and SW fish groups. We identified 47 specificity determining sites (SDS) that associated with FW or SW environments from 12 mitochondrial protein families. Thirty-two (68%) of the SDS sites are hydrophobic, 13 (28%) are neutral, and the remaining sites are acidic or basic. Seven of those SDS from ND1, ND2 and ND5 were scored as probably damaging to the protein structures. Furthermore, phylogenetic tree based Bayes Empirical Bayes analysis also detected 63 positive sites associated with alternative habitat environments across ten mtDNA proteins. These signatures could be important for studying mitochondrial genetic variation relevant to fish physiology and ecology.
Collapse
Affiliation(s)
- Jun Hong Xia
- a State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Sun Yat-Sen University , Guangzhou , PR China.,b Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University , Guangzhou , PR China
| | - Hong Lian Li
- a State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Sun Yat-Sen University , Guangzhou , PR China.,b Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University , Guangzhou , PR China
| | - Yong Zhang
- a State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Sun Yat-Sen University , Guangzhou , PR China.,b Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University , Guangzhou , PR China
| | - Zi Ning Meng
- a State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Sun Yat-Sen University , Guangzhou , PR China.,b Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University , Guangzhou , PR China
| | - Hao Ran Lin
- a State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Sun Yat-Sen University , Guangzhou , PR China.,b Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-Sen University , Guangzhou , PR China
| |
Collapse
|
7
|
Jacobsen MW, Smedegaard L, Sørensen SR, Pujolar JM, Munk P, Jónsson B, Magnussen E, Hansen MM. Assessing pre- and post-zygotic barriers between North Atlantic eels (Anguilla anguilla and A. rostrata). Heredity (Edinb) 2016; 118:266-275. [PMID: 27827390 DOI: 10.1038/hdy.2016.96] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/13/2016] [Accepted: 08/22/2016] [Indexed: 12/21/2022] Open
Abstract
Elucidating barriers to gene flow is important for understanding the dynamics of speciation. Here we investigate pre- and post-zygotic mechanisms acting between the two hybridizing species of Atlantic eels: Anguilla anguilla and A. rostrata. Temporally varying hybridization was examined by analyzing 85 species-diagnostic single-nucleotide polymorphisms (SNPs; FST ⩾0.95) in eel larvae sampled in the spawning region in the Sargasso Sea in 2007 (N=92) and 2014 (N=460). We further investigated whether genotypes at these SNPs were nonrandomly distributed in post-F1 hybrids, indicating selection. Finally, we sequenced the mitochondrial ATP6 and nuclear ATP5c1 genes in 19 hybrids, identified using SNP and restriction site associated DNA (RAD) sequencing data, to test a previously proposed hypothesis of cytonuclear incompatibility leading to adenosine triphosphate (ATP) synthase dysfunction and selection against hybrids. No F1 hybrids but only later backcrosses were observed in the Sargasso Sea in 2007 and 2014. This suggests that interbreeding between the two species only occurs in some years, possibly controlled by environmental conditions at the spawning grounds, or that interbreeding has diminished through time as a result of a declining number of spawners. Moreover, potential selection was found at the nuclear and the cytonuclear levels. Nonetheless, one glass eel individual showed a mismatch, involving an American ATP6 haplotype and European ATP5c1 alleles. This contradicted the presence of cytonuclear incompatibility but may be explained by that (1) cytonuclear incompatibility is incomplete, (2) selection acts at a later life stage or (3) other genes are important for protein function. In total, the study demonstrates the utility of genomic data when examining pre- and post-zyotic barriers in natural hybrids.
Collapse
Affiliation(s)
- M W Jacobsen
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - L Smedegaard
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - S R Sørensen
- National Institute of Aquatic Resources, Charlottenlund, Denmark
| | - J M Pujolar
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - P Munk
- National Institute of Aquatic Resources, Charlottenlund, Denmark
| | - B Jónsson
- Northwest Iceland Nature Research Centre, Saudárkrókur, Iceland
| | - E Magnussen
- Faculty of Science and Technology, University of the Faroe Islands, Torshavn, Faroe Islands
| | - M M Hansen
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Jacobsen MW, da Fonseca RR, Bernatchez L, Hansen MM. Comparative analysis of complete mitochondrial genomes suggests that relaxed purifying selection is driving high nonsynonymous evolutionary rate of the NADH2 gene in whitefish (Coregonus ssp.). Mol Phylogenet Evol 2015; 95:161-70. [PMID: 26654959 DOI: 10.1016/j.ympev.2015.11.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/06/2015] [Accepted: 11/13/2015] [Indexed: 11/29/2022]
Abstract
Several studies have recently reported evidence for positive selection acting on the mitochondrial genome (mitogenome), emphasizing its potential role in adaptive divergence and speciation. In this study we searched 107 full mitogenomes of recently diverged species and lineages of whitefish (Coregonus ssp.) for signals of positive selection. These salmonids show several distinct morphological and ecological differences that may be associated with energetics and therefore potentially positive selection at the mitogenome level. We found that purifying selection and genetic drift were the predominant evolutionary forces acting on the analyzed mitogenomes. However, the NADH dehydrogenase 2 gene (ND2) showed a highly elevated dN/dS ratio compared to the other mitochondrial genes, which was significantly higher in whitefish compared to other salmonids. We therefore further examined nonsynonymous evolution in ND2 by (i) mapping amino acid changes to a protein model structure which showed that they were located away from key functional residues of the protein, (ii) locating them in the sequences of other species of fish (Salmonidae, Anguillidae, Scombridae and Percidae) only to find pronounced overlap of nonsynonymous regions. We thus conclude that relaxed purifying selection is driving the evolution of ND2 by affecting mostly regions that have lower functional relevance.
Collapse
Affiliation(s)
- Magnus W Jacobsen
- Department of Bioscience, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark.
| | - Rute R da Fonseca
- Department of Bioinformatics and RNA Biology, University of Copenhagen, Ole Maaløesvej 5, 2200 København N, Denmark
| | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, 1030, Avenue de la Médecine, Université Laval, Québec, Québec, Canada G1V 0A6
| | - Michael M Hansen
- Department of Bioscience, Aarhus University, Ny Munkegade 114, DK-8000 Aarhus C, Denmark
| |
Collapse
|