1
|
Cantera I, Giachello S, Münkemüller T, Caccianiga M, Gobbi M, Losapio G, Marta S, Valle B, Zawierucha K, Thuiller W, Ficetola GF. Describing functional diversity of communities from environmental DNA. Trends Ecol Evol 2025; 40:170-179. [PMID: 39572353 DOI: 10.1016/j.tree.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/04/2024] [Accepted: 10/18/2024] [Indexed: 02/07/2025]
Abstract
Comprehensive assessments of functional diversity are needed to understand ecosystem alterations under global changes. The 'Fun-eDNA' approach characterises functional diversity by assigning traits to taxonomic units obtained through environmental DNA (eDNA) sampling. By simultaneously analysing an unprecedented number of taxa over broad spatial scales, the approach provides a whole-ecosystem perspective of functional diversity. Fun-eDNA is increasingly used to tackle multiple questions, but aligning eDNA with traits poses several conceptual and technical challenges. Enhancing trait databases, improving the annotation of eDNA-based taxonomic inventories, interdisciplinary collaboration, and conceptual harmonisation of traits are key steps to achieve a comprehensive assessment of diverse taxa. Overcoming these challenges can unlock the full potential of eDNA in leveraging measures of ecosystem functions from multi-taxa assessments.
Collapse
Affiliation(s)
- Isabel Cantera
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy.
| | - Simone Giachello
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy; Department of Sciences, Technologies and Society, University School for Advanced Studies IUSS Pavia, Pavia, Italy
| | - Tamara Münkemüller
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Marco Caccianiga
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Mauro Gobbi
- Research and Museum Collections Office, Climate and Ecology Unit, MUSE-Science Museum of Trento, Trento, Italy
| | - Gianalberto Losapio
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Silvio Marta
- Institute of Geosciences and Earth Resources, CNR, Via Moruzzi 1, 56124, Pisa, Italy
| | - Barbara Valle
- Università degli Studi di Siena, Siena, Italy; NBFC- Nature Biodiversity Future Center, Palermo, Italy
| | - Krzysztof Zawierucha
- Department of Animal Taxonomy and Ecology, Adam Mickiewicz University, Poznań, Poland
| | - Wilfried Thuiller
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Gentile Francesco Ficetola
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy; Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| |
Collapse
|
2
|
Ficetola GF, Marta S, Guerrieri A, Cantera I, Bonin A, Cauvy-Fraunié S, Ambrosini R, Caccianiga M, Anthelme F, Azzoni RS, Almond P, Alviz Gazitúa P, Ceballos Lievano JL, Chand P, Chand Sharma M, Clague JJ, Cochachín Rapre JA, Compostella C, Encarnación RC, Dangles O, Deline P, Eger A, Erokhin S, Franzetti A, Gielly L, Gili F, Gobbi M, Hågvar S, Kaufmann R, Khedim N, Meneses RI, Morales-Martínez MA, Peyre G, Pittino F, Proietto A, Rabatel A, Sieron K, Tielidze L, Urseitova N, Yang Y, Zaginaev V, Zerboni A, Zimmer A, Diolaiuti GA, Taberlet P, Poulenard J, Fontaneto D, Thuiller W, Carteron A. The development of terrestrial ecosystems emerging after glacier retreat. Nature 2024; 632:336-342. [PMID: 39085613 DOI: 10.1038/s41586-024-07778-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
The global retreat of glaciers is dramatically altering mountain and high-latitude landscapes, with new ecosystems developing from apparently barren substrates1-4. The study of these emerging ecosystems is critical to understanding how climate change interacts with microhabitat and biotic communities and determines the future of ice-free terrains1,5. Here, using a comprehensive characterization of ecosystems (soil properties, microclimate, productivity and biodiversity by environmental DNA metabarcoding6) across 46 proglacial landscapes worldwide, we found that all the environmental properties change with time since glaciers retreated, and that temperature modulates the accumulation of soil nutrients. The richness of bacteria, fungi, plants and animals increases with time since deglaciation, but their temporal patterns differ. Microorganisms colonized most rapidly in the first decades after glacier retreat, whereas most macroorganisms took longer. Increased habitat suitability, growing complexity of biotic interactions and temporal colonization all contribute to the increase in biodiversity over time. These processes also modify community composition for all the groups of organisms. Plant communities show positive links with all other biodiversity components and have a key role in ecosystem development. These unifying patterns provide new insights into the early dynamics of deglaciated terrains and highlight the need for integrated surveillance of their multiple environmental properties5.
Collapse
Affiliation(s)
- Gentile Francesco Ficetola
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy.
- University of Grenoble Alpes, University of Savoie Mont Blanc, CNRS, LECA, Grenoble, France.
| | - Silvio Marta
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy.
- CNR - Institute of Geosciences and Earth Resources, Pisa, Italy.
| | - Alessia Guerrieri
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy
- Argaly, Bâtiment CleanSpace, Sainte-Hélène-du-Lac, France
| | - Isabel Cantera
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Aurélie Bonin
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy
- Argaly, Bâtiment CleanSpace, Sainte-Hélène-du-Lac, France
| | | | - Roberto Ambrosini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Marco Caccianiga
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Fabien Anthelme
- AMAP, University of Montpellier, IRD, CIRAD, CNRS, INRAE, Montpellier, France
| | - Roberto Sergio Azzoni
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy
- Dipartimento di Scienze della Terra "Ardito Desio", Università degli Studi di Milano, Milan, Italy
| | - Peter Almond
- Department of Soil and Physical Sciences, Lincoln University, Lincoln, New Zealand
| | - Pablo Alviz Gazitúa
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Osorno, Chile
| | | | - Pritam Chand
- Department of Geography, School of Environment and Earth Sciences, Central University of Punjab, VPO-Ghudda, Bathinda, India
| | - Milap Chand Sharma
- Centre for the Study of Regional Development, School of Social Sciences, Jawaharlal Nehru University, New Delhi, India
| | - John J Clague
- Department of Earth Sciences, Simon Fraser University, Burnaby, British Colombia, Canada
| | | | - Chiara Compostella
- Dipartimento di Scienze della Terra "Ardito Desio", Università degli Studi di Milano, Milan, Italy
| | | | - Olivier Dangles
- CEFE, University of Montpellier, CNRS, EPHE, IRD, University of Paul Valéry Montpellier 3, Montpellier, France
| | - Philip Deline
- University of Savoie Mont Blanc, University of Grenoble Alpes, EDYTEM, Chambéry, France
| | - Andre Eger
- Mannaki Whenua - Landcare Research, Soils and Landscapes, Lincoln, New Zealand
| | - Sergey Erokhin
- Institute of Water Problems and Hydro-Energy, Kyrgyz National Academy of Sciences, Bishkek, Kyrgyzstan
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Milan, Italy
| | - Ludovic Gielly
- University of Grenoble Alpes, University of Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Fabrizio Gili
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Mauro Gobbi
- Research and Museum Collections Office, Climate and Ecology Unit, MUSE-Science Museum, Trento, Italy
| | - Sigmund Hågvar
- Faculty of Environmental Sciences and Natural Resource Management (INA), Norwegian University of Life Sciences, Ås, Norway
| | - Rüdiger Kaufmann
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Norine Khedim
- University of Savoie Mont Blanc, University of Grenoble Alpes, EDYTEM, Chambéry, France
| | - Rosa Isela Meneses
- Herbario Nacional de Bolivia: La Paz, La Paz, Bolivia
- Millenium Nucleus in Andean Peatlands, Arica, Chile
| | | | - Gwendolyn Peyre
- Department of Civil and Environmental Engineering, University of the Andes, Bogotá, Colombia
| | - Francesca Pittino
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Milan, Italy
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Angela Proietto
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Antoine Rabatel
- University of Grenoble Alpes, CNRS, IRD, INRAE, Grenoble-INP, Institut des Géosciences de l'Environnement (IGE UMR 5001), Grenoble, France
| | - Katrin Sieron
- Universidad Veracruzana, Centro de Ciencias de la Tierra, Xalapa, Veracruz, Mexico
| | - Levan Tielidze
- Securing Antarctica's Environmental Future, School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, Australia
- School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
| | - Nurai Urseitova
- Institute of Water Problems and Hydro-Energy, Kyrgyz National Academy of Sciences, Bishkek, Kyrgyzstan
| | - Yan Yang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| | - Vitalii Zaginaev
- Institute of Water Problems and Hydro-Energy, Kyrgyz National Academy of Sciences, Bishkek, Kyrgyzstan
- Mountain Societies Research Institute, University of Central Asia, Bishkek, Kyrgyzstan
| | - Andrea Zerboni
- Dipartimento di Scienze della Terra "Ardito Desio", Università degli Studi di Milano, Milan, Italy
| | - Anaïs Zimmer
- Department of Geography and the Environment, University of Texas at Austin, Austin, TX, USA
| | | | - Pierre Taberlet
- University of Grenoble Alpes, University of Savoie Mont Blanc, CNRS, LECA, Grenoble, France
- UiT - The Arctic University of Norway, Tromsø Museum, Tromsø, Norway
| | - Jerome Poulenard
- University of Savoie Mont Blanc, University of Grenoble Alpes, EDYTEM, Chambéry, France
| | - Diego Fontaneto
- CNR - Water Research Institute, Verbania, Italy
- NBFC - National Biodiversity Future Center, Palermo, Italy
| | - Wilfried Thuiller
- University of Grenoble Alpes, University of Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Alexis Carteron
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy.
- Université de Toulouse, École d'Ingénieurs de PURPAN, UMR INRAE-INPT DYNAFOR, Toulouse, France.
| |
Collapse
|
3
|
Ficetola GF, Taberlet P. Towards exhaustive community ecology via DNA metabarcoding. Mol Ecol 2023; 32:6320-6329. [PMID: 36762839 DOI: 10.1111/mec.16881] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Exhaustive biodiversity data, covering all the taxa in an environment, would be fundamental to understand how global changes influence organisms living at different trophic levels, and to evaluate impacts on interspecific interactions. Molecular approaches such as DNA metabarcoding are boosting our ability to perform biodiversity inventories. Nevertheless, even though a few studies have recently attempted exhaustive reconstructions of communities, holistic assessments remain rare. The majority of metabarcoding studies published in the last years used just one or two markers and analysed a limited number of taxonomic groups. Here, we provide an overview of emerging approaches that can allow all-taxa biological inventories. Exhaustive biodiversity assessments can be attempted by combining a large number of specific primers, by exploiting the power of universal primers, or by combining specific and universal primers to obtain good information on key taxa while limiting the overlooked biodiversity. Multiplexes of primers, shotgun sequencing and capture enrichment may provide a better coverage of biodiversity compared to standard metabarcoding, but still require major methodological advances. Here, we identify the strengths and limitations of different approaches, and suggest new development lines that might improve broad scale biodiversity analyses in the near future. More holistic reconstructions of ecological communities can greatly increase the value of metabarcoding studies, improving understanding of the consequences of ongoing environmental changes on the multiple components of biodiversity.
Collapse
Affiliation(s)
- Gentile Francesco Ficetola
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Écologie Alpine, Grenoble, France
| | - Pierre Taberlet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Écologie Alpine, Grenoble, France
- UiT - The Arctic University of Norway, Tromsø Museum, Tromsø, Norway
| |
Collapse
|
4
|
Lunghi E, Valle B, Guerrieri A, Bonin A, Cianferoni F, Manenti R, Ficetola GF. Environmental DNA of insects and springtails from caves reveals complex processes of eDNA transfer in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154022. [PMID: 35202680 DOI: 10.1016/j.scitotenv.2022.154022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/01/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Subterranean environments host a substantial amount of biodiversity, however assessing the distribution of species living underground is still extremely challenging. Environmental DNA (eDNA) metabarcoding is a powerful tool to estimate biodiversity in poorly known environments and has excellent performance for soil organisms. Here, we tested 1) whether eDNA metabarcoding from cave soils/sediments allows to successfully detect springtails (Hexapoda: Collembola) and insects (Hexapoda: Insecta); 2) whether eDNA mostly represents autochthonous (cave-dwelling) organisms or it also incorporates information from species living in surface environments; 3) whether eDNA detection probability changes across taxa with different ecology. Environmental DNA metabarcoding analyses detected a large number of Molecular Operational Taxonomic Units (MOTUs) for both insects and springtails. For springtails, detection probability was high, with a substantial proportion of hypogean species, suggesting that eDNA provides good information on the distribution of these organisms in caves. Conversely, for insects most of MOTUs represented taxa living outside caves, and the majority of them represented taxa/organisms living in freshwater environments (Ephemeroptera, Plecoptera and Trichoptera). The eDNA of freshwater insects was particularly abundant in deep sectors of caves, far from the entrance. Furthermore, average detection probability of insects was significantly lower than the one of springtails. This suggests that cave soils/sediments act as "conveyer belts of biodiversity information", possibly because percolating water lead to the accumulation of eDNA of organisms living in nearby areas. Cave soils hold a complex mix of autochthonous and allochthonous eDNA. eDNA provided unprecedented information on the understudied subterranean cave organisms; analyses of detection probability and occupancy can help teasing apart local eDNA from the eDNA representing spatially-integrated biodiversity for whole landscape.
Collapse
Affiliation(s)
- Enrico Lunghi
- Division of Molecular Biology Ruđer Bošković Institute, Zagreb, Croatia; Natural Oasis, Prato, Italy.
| | - Barbara Valle
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy; Unità di Climatologia ed Ecologia, MUSE-Museo delle Scienze di Trento, Italy
| | - Alessia Guerrieri
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Aurélie Bonin
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Fabio Cianferoni
- Istituto di Ricerca sugli Ecosistemi Terrestri (IRET), Consiglio Nazionale delle Ricerche (CNR), Sesto Fiorentino (Firenze), Italy; Zoologia, La Specola, Museo di Storia Naturale, Università degli Studi di Firenze, Firenze, Italy
| | - Raoul Manenti
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy; Laboratorio di Biologia Sotterranea "Enrico Pezzoli", Parco Regionale del Monte Barro, Galbiate, Italy
| | - Gentile Francesco Ficetola
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milano, Italy; Laboratoire d'Écologie Alpine (LECA), Université Grenoble Alpes, CNRS, Grenoble, France
| |
Collapse
|
5
|
Cavigelli S, Leips J, Jenny Xiang QY, Lemke D, Konow N. Next Steps in Integrative Biology: Mapping Interactive Processes Across Levels of Biological Organization. Integr Comp Biol 2021; 61:2066-2074. [PMID: 34259855 DOI: 10.1093/icb/icab161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 01/03/2023] Open
Abstract
Emergent biological processes result from complex interactions within and across levels of biological organization, ranging from molecular to environmental dynamics. Powerful theories, database tools, and modeling methods have been designed to characterize network connections within levels, such as those among genes, proteins, biochemicals, cells, organisms and species. Here, we propose that developing integrative models of organismal function in complex environments can be facilitated by taking advantage of these methods to identify key nodes of communication across levels of organization. Mapping key drivers or connections among levels of organization will provide data and leverage to model potential rule-sets by which organisms respond and adjust to perturbations at any level of biological organization.
Collapse
Affiliation(s)
- Sonia Cavigelli
- Department of Biobehavioral Health, Pennsylvania State University, University Park PA 16802
| | - Jeff Leips
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore MD 21250
| | - Qiu-Yun Jenny Xiang
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695
| | - Dawn Lemke
- Department of Biological and Environmental Sciences, Alabama A&M University, Huntsville AL 35811
| | - Nicolai Konow
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell MA 01854
| |
Collapse
|
6
|
Howell L, LaRue M, Flanagan SP. Environmental DNA as a tool for monitoring Antarctic vertebrates. NEW ZEALAND JOURNAL OF ZOOLOGY 2021. [DOI: 10.1080/03014223.2021.1900299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lucy Howell
- Gateway Antarctica, School of Earth and Environment, University of Canterbury, Christchurch, New Zealand
| | - Michelle LaRue
- Gateway Antarctica, School of Earth and Environment, University of Canterbury, Christchurch, New Zealand
- School of Earth and Environment, University of Canterbury, Christchurch, New Zealand
| | - Sarah P. Flanagan
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
7
|
Persistence of environmental DNA in cultivated soils: implication of this memory effect for reconstructing the dynamics of land use and cover changes. Sci Rep 2020; 10:10502. [PMID: 32601368 PMCID: PMC7324595 DOI: 10.1038/s41598-020-67452-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/19/2020] [Indexed: 11/08/2022] Open
Abstract
eDNA refers to DNA extracted from an environmental sample with the goal of identifying the occurrence of past or current biological communities in aquatic and terrestrial environments. However, there is currently a lack of knowledge regarding the soil memory effect and its potential impact on lake sediment eDNA records. To investigate this issue, two contrasted sites located in cultivated environments in France were studied. In the first site, soil samples were collected (n = 30) in plots for which the crop rotation history was documented since 1975. In the second site, samples were collected (n = 40) to compare the abundance of currently observed taxa versus detected taxa in cropland and other land uses. The results showed that the last cultivated crop was detected in 100% of the samples as the most abundant. In addition, weeds were the most abundant taxa identified in both sites. Overall, these results illustrate the potential of eDNA analyses for identifying the recent (< 10 years) land cover history of soils and outline the detection of different taxa in cultivated plots. The capacity of detection of plant species grown on soils delivering sediments to lacustrine systems is promising to improve our understanding of sediment transfer processes over short timescales.
Collapse
|
8
|
Dickie IA, Boyer S, Buckley HL, Duncan RP, Gardner PP, Hogg ID, Holdaway RJ, Lear G, Makiola A, Morales SE, Powell JR, Weaver L. Towards robust and repeatable sampling methods in eDNA-based studies. Mol Ecol Resour 2018; 18:940-952. [PMID: 29802793 DOI: 10.1111/1755-0998.12907] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 05/10/2018] [Accepted: 05/14/2018] [Indexed: 01/28/2023]
Abstract
DNA-based techniques are increasingly used for measuring the biodiversity (species presence, identity, abundance and community composition) of terrestrial and aquatic ecosystems. While there are numerous reviews of molecular methods and bioinformatic steps, there has been little consideration of the methods used to collect samples upon which these later steps are based. This represents a critical knowledge gap, as methodologically sound field sampling is the foundation for subsequent analyses. We reviewed field sampling methods used for metabarcoding studies of both terrestrial and freshwater ecosystem biodiversity over a nearly three-year period (n = 75). We found that 95% (n = 71) of these studies used subjective sampling methods and inappropriate field methods and/or failed to provide critical methodological information. It would be possible for researchers to replicate only 5% of the metabarcoding studies in our sample, a poorer level of reproducibility than for ecological studies in general. Our findings suggest greater attention to field sampling methods, and reporting is necessary in eDNA-based studies of biodiversity to ensure robust outcomes and future reproducibility. Methods must be fully and accurately reported, and protocols developed that minimize subjectivity. Standardization of sampling protocols would be one way to help to improve reproducibility and have additional benefits in allowing compilation and comparison of data from across studies.
Collapse
Affiliation(s)
- Ian A Dickie
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Stephane Boyer
- Institut de Recherche sur la Biologie de l'Insecte - UMR 7261 CNRS, Université de Tours, Tours, France
- Applied Molecular Solutions Research Group, Environmental and Animal Sciences, Unitec Institute of Technology, Auckland, New Zealand
| | - Hannah L Buckley
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Richard P Duncan
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, Australia
| | - Paul P Gardner
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Ian D Hogg
- School of Science, University of Waikato, Hamilton, New Zealand
- Polar Knowledge Canada, CHARS Campus, Cambridge Bay, NU, Canada
| | | | - Gavin Lear
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Andreas Makiola
- Bio-Protection Research Centre, Lincoln University, Lincoln, New Zealand
| | - Sergio E Morales
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Jeff R Powell
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Louise Weaver
- Institute of Environmental Science and Research Ltd., Christchurch, New Zealand
| |
Collapse
|
9
|
Ficetola GF, Poulenard J, Sabatier P, Messager E, Gielly L, Leloup A, Etienne D, Bakke J, Malet E, Fanget B, Støren E, Reyss JL, Taberlet P, Arnaud F. DNA from lake sediments reveals long-term ecosystem changes after a biological invasion. SCIENCE ADVANCES 2018; 4:eaar4292. [PMID: 29750197 PMCID: PMC5942909 DOI: 10.1126/sciadv.aar4292] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/22/2018] [Indexed: 05/30/2023]
Abstract
What are the long-term consequences of invasive species? After invasion, how long do ecosystems require to reach a new equilibrium? Answering these questions requires long-term, high-resolution data that are vanishingly rare. We combined the analysis of environmental DNA extracted from a lake sediment core, coprophilous fungi, and sedimentological analyses to reconstruct 600 years of ecosystem dynamics on a sub-Antarctic island and to identify the impact of invasive rabbits. Plant communities remained stable from AD 1400 until the 1940s, when the DNA of invasive rabbits was detected in sediments. Rabbit detection corresponded to abrupt changes of plant communities, with a continuous decline of a dominant plant species. Furthermore, erosion rate abruptly increased with rabbit abundance. Rabbit impacts were very fast and were stronger than the effects of climate change during the 20th century. Lake sediments can allow an integrated temporal analysis of ecosystems, revealing the impact of invasive species over time and improving our understanding of underlying mechanisms.
Collapse
Affiliation(s)
- Gentile Francesco Ficetola
- Université Grenoble Alpes, CNRS, Laboratoire d’Écologie Alpine, F-38000 Grenoble, France
- Departement of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Jérôme Poulenard
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, EDYTEM (Centre national de la recherche scientifique, Environnements, DYnamiques et TErritoires de la Montagne), 73000 Chambéry, France
| | - Pierre Sabatier
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, EDYTEM (Centre national de la recherche scientifique, Environnements, DYnamiques et TErritoires de la Montagne), 73000 Chambéry, France
| | - Erwan Messager
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, EDYTEM (Centre national de la recherche scientifique, Environnements, DYnamiques et TErritoires de la Montagne), 73000 Chambéry, France
| | - Ludovic Gielly
- Université Grenoble Alpes, CNRS, Laboratoire d’Écologie Alpine, F-38000 Grenoble, France
| | - Anouk Leloup
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, EDYTEM (Centre national de la recherche scientifique, Environnements, DYnamiques et TErritoires de la Montagne), 73000 Chambéry, France
| | - David Etienne
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, EDYTEM (Centre national de la recherche scientifique, Environnements, DYnamiques et TErritoires de la Montagne), 73000 Chambéry, France
| | - Jostein Bakke
- Department of Earth Science and Bjerknes Centre for Climate Research, University of Bergen, Allégaten 41, 5007 Bergen, Norway
| | - Emmanuel Malet
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, EDYTEM (Centre national de la recherche scientifique, Environnements, DYnamiques et TErritoires de la Montagne), 73000 Chambéry, France
| | - Bernard Fanget
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, EDYTEM (Centre national de la recherche scientifique, Environnements, DYnamiques et TErritoires de la Montagne), 73000 Chambéry, France
| | - Eivind Støren
- Department of Earth Science and Bjerknes Centre for Climate Research, University of Bergen, Allégaten 41, 5007 Bergen, Norway
| | - Jean-Louis Reyss
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, EDYTEM (Centre national de la recherche scientifique, Environnements, DYnamiques et TErritoires de la Montagne), 73000 Chambéry, France
| | - Pierre Taberlet
- Université Grenoble Alpes, CNRS, Laboratoire d’Écologie Alpine, F-38000 Grenoble, France
| | - Fabien Arnaud
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, EDYTEM (Centre national de la recherche scientifique, Environnements, DYnamiques et TErritoires de la Montagne), 73000 Chambéry, France
| |
Collapse
|
10
|
Mills JG, Weinstein P, Gellie NJC, Weyrich LS, Lowe AJ, Breed MF. Urban habitat restoration provides a human health benefit through microbiome rewilding: the Microbiome Rewilding Hypothesis. Restor Ecol 2017. [DOI: 10.1111/rec.12610] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jacob G. Mills
- School of Biological Sciences and the Environment Institute University of Adelaide Adelaide SA 5005 Australia
| | - Philip Weinstein
- School of Biological Sciences and the Environment Institute University of Adelaide Adelaide SA 5005 Australia
| | - Nicholas J. C. Gellie
- School of Biological Sciences and the Environment Institute University of Adelaide Adelaide SA 5005 Australia
| | - Laura S. Weyrich
- School of Biological Sciences and the Australian Centre for Ancient DNA University of Adelaide Adelaide SA 5005 Australia
| | - Andrew J. Lowe
- School of Biological Sciences and the Environment Institute University of Adelaide Adelaide SA 5005 Australia
| | - Martin F. Breed
- School of Biological Sciences and the Environment Institute University of Adelaide Adelaide SA 5005 Australia
| |
Collapse
|
11
|
Nuske S, Vernes K, May T, Claridge A, Congdon B, Krockenberger A, Abell S. Redundancy among mammalian fungal dispersers and the importance of declining specialists. FUNGAL ECOL 2017. [DOI: 10.1016/j.funeco.2017.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
12
|
O'Rorke R, Tooman L, Gaughen K, Holland BS, Amend AS. Not just browsing: an animal that grazes phyllosphere microbes facilitates community heterogeneity. ISME JOURNAL 2017; 11:1788-1798. [PMID: 28452997 DOI: 10.1038/ismej.2017.52] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 02/18/2017] [Accepted: 03/03/2017] [Indexed: 01/10/2023]
Abstract
Although grazers have long been recognized as top-down architects of plant communities, animal roles in determining microbial community composition have seldom been examined, particularly in aboveground systems. To determine the extent to which an animal can shape microbial communities, we conducted a controlled mesocosm study in situ to see if introducing mycophageous tree snails changed phyllosphere fungal community composition relative to matched control mesocosms. Fungal community composition and change was determined by Illumina sequencing of DNA collected from leaf surfaces before snails were introduced, daily for 3 days and weekly for 6 weeks thereafter. Scanning electron microscopy was used to confirm that grazing had occurred, and we recorded 3.5 times more cover of fungal hyphae in control mesocosms compared with those containing snails. Snails do not appear to vector novel microbes and despite grazing, a significant proportion of the initial leaf phyllosphere persisted in the mesocosms. Within-mesocosm diversities of fungi were similar regardless of whether or not snails were added. The greatest differences between the snail-treated and control mesocosms was that grazed mesocosms showed greater infiltration of microbes that were not sampled when the experiment commenced and that the variance in fungal community composition (beta diversity) was greater between leaves in snail-treated mesocosms indicating increased community heterogeneity and ecosystem fragmentation.
Collapse
Affiliation(s)
- Richard O'Rorke
- Department of Botany, University of Hawaii, Honolulu, HI, USA.,Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - Leah Tooman
- Department of Botany, University of Hawaii, Honolulu, HI, USA
| | - Kapono Gaughen
- Department of Botany, University of Hawaii, Honolulu, HI, USA
| | - Brenden S Holland
- Center for Conservation Research and Training, Pacific Biosciences Research Center, University of Hawaii, Honolulu, HI, USA
| | - Anthony S Amend
- Department of Botany, University of Hawaii, Honolulu, HI, USA
| |
Collapse
|
13
|
Kamenova S, Bartley T, Bohan D, Boutain J, Colautti R, Domaizon I, Fontaine C, Lemainque A, Le Viol I, Mollot G, Perga ME, Ravigné V, Massol F. Invasions Toolkit. ADV ECOL RES 2017. [DOI: 10.1016/bs.aecr.2016.10.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|