1
|
Slack KL, Groffen J, Davis AK, Hopkins WA. Parasite Infections Influence Immunological Responses But Not Reproductive Success of Male Hellbender Salamanders ( Cryptobranchus alleganiensis). Integr Org Biol 2025; 7:obaf006. [PMID: 40248315 PMCID: PMC12004113 DOI: 10.1093/iob/obaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/08/2025] [Indexed: 04/19/2025] Open
Abstract
The emergence and spread of infectious diseases is a significant contributor to global amphibian declines, requiring increased surveillance and research. We assessed host-vector-parasite dynamics using a population of eastern hellbender salamanders (Cryptobranchus alleganiensis) that harbor leeches (Placobdella appalachiensis) that transmit endoparasitic blood parasites (Trypanosoma spp) to the host, with coinfection frequently occurring. We centered our study on adult males throughout their extended 8-month paternal care period because recent research indicates that nest failure caused by lack of paternal care and filial cannibalism is contributing to hellbender population declines. Recognizing the potential for parasites to modulate host physiology and behavior, we explored how infection severity influences paternal health and reproductive success. We assessed white blood cell profiles of adult male hellbenders in response to parasites, coinfection, and seasonal temperature fluctuations, while also investigating whether parasite infection or coinfection was predictive of nest success. We found that hellbenders exhibited seasonal shifts in white blood cell indices; as temperatures increased across seasons (from 5°C to 20°C), the proportion of neutrophils and eosinophils decreased (by 14% and 46%, respectively) in circulation while the proportion of lymphocytes and basophils increased (by 8% and 101%, respectively). Moreover, the proportion of neutrophil precursors increased by 80% under colder temperatures, which signifies seasonal immune cell recruitment. We demonstrated that neutrophils and eosinophils increased while lymphocytes decreased in response to leech infection. However, as leech and trypanosome infection intensity increased together, the proportion of lymphocytes increased while neutrophils and eosinophils decreased, underscoring the complex interactions between coinfection and immune responses of hellbenders that warrant future research. Despite the influence of infection and coinfection on hellbender physiology, we detected no evidence to support the hypothesis that parasites influence the likelihood of nest failure or whole-clutch filial cannibalism. In light of amphibian declines being exacerbated by climate change and disease, our study emphasizes the need to establish hematological reference values that account for physiological adaptations to seasonal fluctuations in temperature and different life history stages and to study the physiological responses of imperiled amphibian species to parasites.
Collapse
Affiliation(s)
- K L Slack
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061, USA
| | - J Groffen
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061, USA
| | - A K Davis
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - W A Hopkins
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
2
|
Pollo P, Lagisz M, Yang Y, Culina A, Nakagawa S. Synthesis of sexual selection: a systematic map of meta-analyses with bibliometric analysis. Biol Rev Camb Philos Soc 2024; 99:2134-2175. [PMID: 38982618 DOI: 10.1111/brv.13117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Sexual selection has been a popular subject within evolutionary biology because of its central role in explaining odd and counterintuitive traits observed in nature. Consequently, the literature associated with this field of study became vast. Meta-analytical studies attempting to draw inferences from this literature have now accumulated, varying in scope and quality, thus calling for a synthesis of these syntheses. We conducted a systematic literature search to create a systematic map with a report appraisal of meta-analyses on topics associated with sexual selection, aiming to identify the conceptual and methodological gaps in this secondary literature. We also conducted bibliometric analyses to explore whether these gaps are associated with the gender and origin of the authors of these meta-analyses. We included 152 meta-analytical studies in our systematic map. We found that most meta-analyses focused on males and on certain animal groups (e.g. birds), indicating severe sex and taxonomic biases. The topics in these studies varied greatly, from proximate (e.g. relationship of ornaments with other traits) to ultimate questions (e.g. formal estimates of sexual selection strength), although the former were more common. We also observed several common methodological issues in these studies, such as lack of detailed information regarding searches, screening, and analyses, which ultimately impairs the reliability of many of these meta-analyses. In addition, most of the meta-analyses' authors were men affiliated to institutions from developed countries, pointing to both gender and geographical authorship biases. Most importantly, we found that certain authorship aspects were associated with conceptual and methodological issues in meta-analytical studies. Many of our findings might simply reflect patterns in the current state of the primary literature and academia, suggesting that our study can serve as an indicator of issues within the field of sexual selection at large. Based on our findings, we provide both conceptual and analytical recommendations to improve future studies in the field of sexual selection.
Collapse
Affiliation(s)
- Pietro Pollo
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Gate 9 High St., Kensington, Sydney, NSW, 2052, Australia
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Gate 9 High St., Kensington, Sydney, NSW, 2052, Australia
| | - Yefeng Yang
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Gate 9 High St., Kensington, Sydney, NSW, 2052, Australia
| | - Antica Culina
- Ruđer Bošković Institute, Bijenička Cesta 54, Zagreb, 10000, Croatia
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales, Gate 9 High St., Kensington, Sydney, NSW, 2052, Australia
| |
Collapse
|
3
|
Love AE, Heckley AM, Webber QMR. Taking cues from ecological and evolutionary theories to expand the landscape of disgust. Proc Biol Sci 2024; 291:20241919. [PMID: 39626751 PMCID: PMC11614535 DOI: 10.1098/rspb.2024.1919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/10/2024] [Accepted: 11/01/2024] [Indexed: 12/08/2024] Open
Abstract
Behavioural avoidance of parasites in the environment generates what is known as the 'landscape of disgust' (analogous to the predator-induced 'landscape of fear'). Despite the potential for improving our inference of host-parasite dynamics, three limitations of the landscape of disgust restrict the insight that is gained from current research: (i) many host-parasite systems will not be appropriate for invoking the landscape of disgust framework; (ii) existing research has primarily focused on immediate choices made by hosts on small scales, limiting predictive power, generalizability, and the value of the insight obtained; and (iii) relevant ecological and evolutionary theory has yet to be integrated into the framework, challenging our ability to interpret the landscape of disgust within the context of most host-parasite systems. In this review, we explore the specific requirements for implementing a landscape of disgust framework in empirical systems. We also propose greater integration of habitat selection and evolutionary theories, aiming to generate novel insight, by exploring how the landscape of disgust varies within and across generations, presenting opportunities for future research. Despite interest in the impacts of parasitism on animal movement and behaviour, many unanswered questions remain.
Collapse
Affiliation(s)
- A. E. Love
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - A. M. Heckley
- Department of Biology and the Redpath Museum, McGill University, Montreal, Quebec, Canada
| | - Q. M. R. Webber
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
4
|
Cabrini TMB, Machado BN, Neves RAF, Vianna RT, Silva DS, Mirella da Silva P. Acanthocephalan Profilicollis altmani infecting the mole crab Emerita brasiliensis in southeastern Brazil. J Invertebr Pathol 2024; 207:108211. [PMID: 39343127 DOI: 10.1016/j.jip.2024.108211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Acanthocephalan parasites, specifically from the genus Profilicollis, are known to infect decapod crustaceans, including mole crabs like Emerita brasiliensis, which serve as intermediate hosts in their complex life cycles. This study reports the first occurrence of the acanthocephalan parasite Profilicollis altmani infecting the mole crab Emerita brasiliensis on a sandy beach in southeastern Brazil, thereby expanding the known geographic range of this parasite. Additionally, the study provides novel molecular data that enhance our understanding of the parasite's taxonomy and distribution, including the first evidence of genetic variation within populations of the intermediate host E. brasiliensis. Phylogenetic analysis based on mitochondrial COX1 gene sequences confirmed the identification of the parasite and underlined small genetic differences among P. altmani populations. These findings suggest a weak genetic population structure of the parasite and underscore the need for further studies to understand gene flow among these populations. This work contributes to the knowledge of parasite-host interactions in sandy beach ecosystems. It highlights the importance of monitoring parasitic infections in species like E. brasiliensis, which play a crucial ecological role in these environments.
Collapse
Affiliation(s)
- Tatiana Medeiros Barbosa Cabrini
- Marine Ecology Laboratory, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil.
| | - Bruna N Machado
- University of the State of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil.
| | - Raquel A F Neves
- Research Group of Experimental and Applied Aquatic Ecology, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil.
| | - Rogério T Vianna
- Biology of Parasites of Aquatic Organisms Laboratory, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande do Sul, Brazil.
| | - Darlânia S Silva
- Invertebrate Immunology and Pathology Laboratory, Department of Molecular Biology, Federal University of Paraíba, João Pessoa, Paraíba, Brazil.
| | - Patricia Mirella da Silva
- Invertebrate Immunology and Pathology Laboratory, Department of Molecular Biology, Federal University of Paraíba, João Pessoa, Paraíba, Brazil.
| |
Collapse
|
5
|
Zilio G, Deshpande JN, Duncan AB, Fronhofer EA, Kaltz O. Dispersal evolution and eco-evolutionary dynamics in antagonistic species interactions. Trends Ecol Evol 2024; 39:666-676. [PMID: 38637209 DOI: 10.1016/j.tree.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/20/2024]
Abstract
Dispersal evolution modifies diverse spatial processes, such as range expansions or biological invasions of single species, but we are currently lacking a realistic vision for metacommunities. Focusing on antagonistic species interactions, we review existing theory of dispersal evolution between natural enemies, and explain how this might be relevant for classic themes in host-parasite evolutionary ecology, namely virulence evolution or local adaptation. Specifically, we highlight the importance of considering the simultaneous (co)evolution of dispersal and interaction traits. Linking such multi-trait evolution with reciprocal demographic and epidemiological feedbacks might change basic predictions about coevolutionary processes and spatial dynamics of interacting species. Future challenges concern the integration of system-specific disease ecology or spatial modifiers, such as spatial network structure or environmental heterogeneity.
Collapse
Affiliation(s)
- Giacomo Zilio
- Institut des Sciences de l'Evolution - Montpellier (ISEM), University of Montpellier, CNRS, IRD, Montpellier, France; Centre d'Ecologie Fonctionelle et Evolutive (CEFE), University of Montpellier, CNRS, Montpellier, France.
| | - Jhelam N Deshpande
- Institut des Sciences de l'Evolution - Montpellier (ISEM), University of Montpellier, CNRS, IRD, Montpellier, France
| | - Alison B Duncan
- Institut des Sciences de l'Evolution - Montpellier (ISEM), University of Montpellier, CNRS, IRD, Montpellier, France
| | - Emanuel A Fronhofer
- Institut des Sciences de l'Evolution - Montpellier (ISEM), University of Montpellier, CNRS, IRD, Montpellier, France
| | - Oliver Kaltz
- Institut des Sciences de l'Evolution - Montpellier (ISEM), University of Montpellier, CNRS, IRD, Montpellier, France.
| |
Collapse
|
6
|
Gutiérrez-Ramos NA, Acevedo MA. Higher body condition with infection by Haemoproteus parasites in Bananaquits ( Coereba flaveola). PeerJ 2024; 12:e16361. [PMID: 38563018 PMCID: PMC10984167 DOI: 10.7717/peerj.16361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 10/05/2023] [Indexed: 04/04/2024] Open
Abstract
Parasite transmission is a heterogenous process in host-parasite interactions. This heterogeneity is particularly apparent in vector-borne parasite transmission where the vector adds an additional level of complexity. Haemosporidian parasites, a widespread protist, cause a malaria-like disease in birds globally, but we still have much to learn about the consequences of infection to hosts' health. In the Caribbean, where malarial parasites are endemic, studying host-parasites interactions may give us important insights about energetic trade-offs involved in malarial parasites infections in birds. In this study, we tested the consequences of Haemoproteus infection on the Bananaquit, a resident species of Puerto Rico. We also tested for potential sources of individual heterogeneity in the consequences of infection such as host age and sex. To quantify the consequences of infection to hosts' health we compared three complementary body condition indices between infected and uninfected individuals. Our results showed that Bananaquits infected by Haemoproteus had higher body condition than uninfected individuals. This result was consistent among the three body condition indices. Still, we found no clear evidence that this effect was mediated by host age or sex. We discuss a set of non-mutually exclusive hypotheses that may explain this pattern including metabolic syndrome, immunological responses leading to host tolerance or resistance to infection, and potential changes in consumption rates. Overall, our results suggest that other mechanisms, may drive the consequences of avian malarial infection.
Collapse
Affiliation(s)
| | - Miguel A. Acevedo
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
7
|
Conrad H, Pollock NB, John‐Alder H. Chigger mite ( Eutrombicula alfreddugesi) ectoparasitism does not contribute to sex differences in growth rate in eastern fence lizards ( Sceloporus undulatus). Ecol Evol 2023; 13:e10590. [PMID: 37829181 PMCID: PMC10565727 DOI: 10.1002/ece3.10590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023] Open
Abstract
Parasitism is nearly ubiquitous in animals and is frequently associated with fitness costs in host organisms, including reduced growth, foraging, and reproduction. In many species, males tend to be more heavily parasitized than females and thus may bear greater costs of parasitism. Sceloporus undulatus is a female-larger, sexually size dimorphic lizard species that is heavily parasitized by chigger mites (Eutrombicula alfreddugesi). In particular, the intensity of mite parasitism is higher in male than in female juveniles during the period of time when sex differences in growth rate lead to the development of sexual size dimorphism (SSD). Sex-biased differences in fitness costs of parasitism have been documented in other species. We investigated whether there are growth costs of mite ectoparasitism, at a time coinciding with sex differences in growth rate and the onset of SSD. If there are sex-biased growth costs of parasitism, then this could suggest a contribution to the development of SSD in S. undulatus. We measured growth and mite loads in two cohorts of unmanipulated, field-active yearlings by conducting descriptive mark-recapture studies during the activity seasons of 2016 and 2019. Yearling males had consistently higher mid-summer mite loads and consistently lower growth rates than females. However, we found that growth rate and body condition were independent of mite load in both sexes. Furthermore, growth rates and mite loads were higher in 2019 than in 2016. Our findings suggest that juveniles of S. undulatus are highly tolerant of chigger mites and that any costs imposed by mites may be at the expense of functions other than growth. We conclude that sex-biased mite ectoparasitism does not contribute to sex differences in growth rate and, therefore, does not contribute to the development of SSD.
Collapse
Affiliation(s)
- Hailey Conrad
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNew JerseyUSA
- Present address:
Department of Biological SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| | - Nicholas B. Pollock
- Graduate Program in Ecology and EvolutionRutgers UniversityNew BrunswickNew JerseyUSA
- Present address:
Department of BiologyUniversity of Texas at ArlingtonArlingtonTexasUSA
| | - Henry John‐Alder
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNew JerseyUSA
- Rutgers Pinelands Field StationRutgers UniversityNew LisbonNew JerseyUSA
| |
Collapse
|
8
|
Coupé S, Giantsis IA, Vázquez Luis M, Scarpa F, Foulquié M, Prévot J, Casu M, Lattos A, Michaelidis B, Sanna D, García‐March JR, Tena‐Medialdea J, Vicente N, Bunet R. The characterization of toll-like receptor repertoire in Pinna nobilis after mass mortality events suggests adaptive introgression. Ecol Evol 2023; 13:e10383. [PMID: 37546570 PMCID: PMC10401143 DOI: 10.1002/ece3.10383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
The fan mussel Pinna nobilis is currently on the brink of extinction due to a multifactorial disease mainly caused to the highly pathogenic parasite Haplosporidium pinnae, meaning that the selection pressure outweighs the adaptive potential of the species. Hopefully, rare individuals have been observed somehow resistant to the parasite, stretching the need to identify the traits underlying this better fitness. Among the candidate to explore at first intention are fast-evolving immune genes, of which toll-like receptor (TLR). In this study, we examined the genetic diversity at 14 TLR loci across P. nobilis, Pinna rudis and P. nobilis × P. rudis hybrid genomes, collected at four physically distant regions, that were found to be either resistant or sensitive to the parasite H. pinnae. We report a high genetic diversity, mainly observed at cell surface TLRs compared with that of endosomal TLRs. However, the endosomal TLR-7 exhibited unexpected level of diversity and haplotype phylogeny. The lack of population structure, associated with a high genetic diversity and elevated dN/dS ratio, was interpreted as balancing selection, though both directional and purifying selection were detected. Interestingly, roughly 40% of the P. nobilis identified as resistant to H. pinnae were introgressed with P. rudis TLR. Specifically, they all carried a TLR-7 of P. rudis origin, whereas sensitive P. nobilis were not introgressed, at least at TLR loci. Small contributions of TLR-6 and TLR-4 single-nucleotide polymorphisms to the clustering of resistant and susceptible individuals could be detected, but their specific role in resistance remains highly speculative. This study provides new information on the diversity of TLR genes within the P. nobilis species after MME and additional insights into adaptation to H. pinnae that should contribute to the conservation of this Mediterranean endemic species.
Collapse
Affiliation(s)
- Stéphane Coupé
- Université de Toulon, Aix Marseille Univ, CNRS, IRD, MIOMarseilleFrance
| | | | - Maite Vázquez Luis
- Instituto Español de Oceanografía (IEO, CSIC), Centro Oceanográfico de BalearesPalma de MallorcaSpain
| | - Fabio Scarpa
- Department of Biomedical SciencesFabio Scarpa, Daria Sanna: University of SassariSassariItaly
| | - Mathieu Foulquié
- Université de Toulon, Aix Marseille Univ, CNRS, IRD, MIOMarseilleFrance
- Institut océanographique Paul RicardIle des Embiez, VarFrance
| | | | - Marco Casu
- Department of Veterinary MedicineUniversity of SassariSassariItaly
| | - Athanasios Lattos
- Faculty of Agricultural SciencesUniversity of Western MacedoniaKozaniGreece
| | - Basile Michaelidis
- Faculty of Agricultural SciencesUniversity of Western MacedoniaKozaniGreece
| | - Daria Sanna
- Department of Biomedical SciencesFabio Scarpa, Daria Sanna: University of SassariSassariItaly
| | - José Rafa García‐March
- IMEDMAR‐UCV, Institute of Environment and Marine Science ResearchUniversidad Católica de Valencia SVMCalpe, AlicanteSpain
| | - José Tena‐Medialdea
- IMEDMAR‐UCV, Institute of Environment and Marine Science ResearchUniversidad Católica de Valencia SVMCalpe, AlicanteSpain
| | - Nardo Vicente
- Institut Méditerranéen de Biodiversité et Ecologie marine et continentale (IMBE), Aix‐Marseille Université, CNRS, IRD, Avignon UniversitéAvignonFrance
| | - Robert Bunet
- Institut océanographique Paul RicardIle des Embiez, VarFrance
| |
Collapse
|
9
|
Rózsa L, Garay J. Definitions of parasitism, considering its potentially opposing effects at different levels of hierarchical organization. Parasitology 2023; 150:761-768. [PMID: 37458178 PMCID: PMC10478066 DOI: 10.1017/s0031182023000598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 08/19/2023]
Abstract
An annotated synthesis of textbook definitions of parasitism is presented. Most definitions declare parasitism is a long-lasting relationship between individuals of different species harming the hosts. The infection-induced costs are interpreted as diseases in the medical-veterinary literature. Alternatively, evolutionary ecologists interpret it as a reduction of host's fitness (longevity, fertility or both). Authors often assume that such effects decrease host population growth and select for antiparasitic defences, which is not necessarily true because infections may simultaneously express opposite effects at different levels of biological organization. (i) At the cellular level, infection-induced cell growth, longevity and multiplication may yield tumours maladaptive at higher levels. (ii) At the individual level, reduced host longevity, fertility or both are interpreted as disease symptoms or reduced fitness. (iii) Contrary to common sense, the growth rate of infected host lineages may increase in parallel with the individuals' reduced survival and fertility. This is because selection favours not only the production of more offspring but also their faster production. (iv) Finally, infections that reduce host individuals' or lineages' fitness may still increase infected host populations' growth rate in the context of ecological competition. Therefore, differences between parasitism and mutualism may depend on which level of organization one focuses on.
Collapse
Affiliation(s)
- Lajos Rózsa
- Institute of Evolution, Centre for Ecological Research, Budapest H-1121, Hungary
- Centre for Eco-Epidemiology, National Laboratory for Health Security, Budapest, Hungary
| | - József Garay
- Institute of Evolution, Centre for Ecological Research, Budapest H-1121, Hungary
| |
Collapse
|
10
|
Hasik AZ, King KC, Hawlena H. Interspecific host competition and parasite virulence evolution. Biol Lett 2023; 19:20220553. [PMID: 37130550 PMCID: PMC10734695 DOI: 10.1098/rsbl.2022.0553] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/17/2023] [Indexed: 05/04/2023] Open
Abstract
Virulence, the harm to hosts caused by parasite infection, can be selected for by several ecological factors acting synergistically or antagonistically. Here, we focus on the potential for interspecific host competition to shape virulence through such a network of effects. We first summarize how host natural mortality, body mass changes, population density and community diversity affect virulence evolution. We then introduce an initial conceptual framework highlighting how these host factors, which change during host competition, may drive virulence evolution via impacts on life-history trade-offs. We argue that the multi-faceted nature of both interspecific host competition and virulence evolution still requires consideration and experimentation to disentangle contrasting mechanisms. It also necessitates a differential treatment for parasites with various transmission strategies. However, such a comprehensive approach focusing on the role of interspecific host competition is essential to understand the processes driving the evolution of virulence in a tangled bank.
Collapse
Affiliation(s)
- Adam Z. Hasik
- Jacob Blaustein Center for
Scientific Cooperation, Ben-Gurion University of the
Negev, 8499000 Midreshet Ben-Gurion,
Israel
| | - Kayla C. King
- Department of Biology,
University of Oxford, 11a Mansfield Road,
Oxford OX1 3SZ, UK
| | - Hadas Hawlena
- Mitrani Department of Desert
Ecology, Swiss Institute for Dryland Environmental and Energy Research, The
Jacob Blaustein Institutes for Desert Research, Ben-Gurion
University of the Negev, 849900 Midreshet Ben-Gurion,
Israel
| |
Collapse
|