1
|
Gaynor ML, Kortessis N, Soltis DE, Soltis PS, Ponciano JM. Dynamics of Mixed-Ploidy Populations under Demographic and Environmental Stochasticities. Am Nat 2025; 205:413-434. [PMID: 40179426 DOI: 10.1086/734411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
AbstractThe population dynamics of autopolyploids-organisms with more than two genome copies of a single species-and their diploid progenitors have been extensively studied. The acquisition of multiple genome copies is heavily influenced by stochasticity, which strongly suggests the efficacy of a probabilistic approach to examine the long-term dynamics of a population with multiple cytotypes. Yet our current understanding of the dynamics of autopolyploid populations has not incorporated stochastic population dynamics and coexistence theory. To investigate the factors contributing to the probability and stability of coexisting cytotypes, we designed a new population dynamics model that incorporates demographic and environmental stochasticities to simulate the formation, establishment, and persistence of diploids, triploids, and autotetraploids in the face of gene flow among cytotypes. We found that increased selfing rates and pronounced reproductive isolation promote coexistence of multiple cytotypes. In stressful environments and with strong competitive effects among cytotypes, these dynamics are more complex; our stochastic modeling approach reveals the resulting intricacies that give autotetraploids competitive advantage over their diploid progenitors. Our work is foundational for a better understanding of the dynamics of coexistence of multiple cytotypes.
Collapse
|
2
|
Osterman WHA, Hagan JG, Whitton J, Bjorkman AD. The ecology of polyploid establishment and exclusion, with implications for polyploid biogeography. THE NEW PHYTOLOGIST 2025; 246:47-60. [PMID: 39925339 PMCID: PMC11883057 DOI: 10.1111/nph.20451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/15/2025] [Indexed: 02/11/2025]
Abstract
The relationship between polyploid formation, triploid fitness and plant reproduction has been studied for over a century, and uniparental reproduction has long been recognized to play a crucial role in polyploid establishment. Yet, we lack a synthesized framework of how polyploid establishment is expected to be influenced by different reproductive modes among angiosperms. Here, we provide new perspectives on how uniparental reproduction, pollination ecology, triploid fitness and assortative mating can impact minority cytotype exclusion (MCE) and, thereby, the likelihood of polyploid establishment. We review the current state of knowledge of the reproductive mechanisms that impact polyploid establishment and discuss often overlooked aspects of these processes, such as the influence of pollinator communities on rates of self-pollination. We propose a framework for considering how variation in reproductive strategies and pollinator communities can impact the ability of a polyploid to overcome MCE. Finally, we propose links between patterns of variation in uniparental reproduction across plant communities and observed patterns in the distribution and abundance of polyploids.
Collapse
Affiliation(s)
- Wilhelm H. A. Osterman
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburg413 90Sweden
- Gothenburg Global Biodiversity CentreGothenburg413 90Sweden
| | - James G. Hagan
- Gothenburg Global Biodiversity CentreGothenburg413 90Sweden
- Department of Marine SciencesUniversity of GothenburgGothenburg413 90Sweden
| | - Jeannette Whitton
- Department of Botany and Biodiversity Research CentreThe University of British ColumbiaVancouverV6T 1Z4Canada
| | - Anne D. Bjorkman
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburg413 90Sweden
- Gothenburg Global Biodiversity CentreGothenburg413 90Sweden
| |
Collapse
|
3
|
Grünig S, Patsiou T, Parisod C. Ice age-driven range shifts of diploids and expanding autotetraploids of Biscutella laevigata within a conserved niche. THE NEW PHYTOLOGIST 2024; 244:1616-1628. [PMID: 39253771 DOI: 10.1111/nph.20103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
Early studies of the textbook mixed-ploidy system Biscutella laevigata highlighted diploids restricted to never-glaciated lowlands and tetraploids at high elevations across the European Alps, promoting the hypothesis that whole-genome duplication (WGD) is advantageous under environmental changes. Here we addressed long-held hypotheses on the role of hybridisation at the origin of the tetraploids, their single vs multiple origins, and whether a shift in climatic niche accompanied WGD. Climatic niche modelling together with spatial genetics and coalescent modelling based on ddRAD-seq genotyping of 17 diploid and 19 tetraploid populations was used to revisit the evolution of this species complex in space and time. Diploids differentiated into four genetic lineages corresponding to allopatric glacial refugia at the onset of the last ice age, whereas tetraploids displaying tetrasomic inheritance formed a uniform group that originated from southern diploids before the last glacial maximum. Derived from diploids occurring at high elevation, autotetraploids likely inherited their adaptation to high elevation rather than having evolved it through or after WGD. They further presented considerable postglacial expansion across the Alps and underwent admixture with diploids. Although the underpinnings of the successful expansion of autotetraploids remain elusive, differentiation in B. laevigata was chiefly driven by the glacial history of the Alps.
Collapse
Affiliation(s)
- Sandra Grünig
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| | - Theofania Patsiou
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| | - Christian Parisod
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| |
Collapse
|
4
|
Cheptou PO. The evolutionary ecology of inbreeding depression in wild plant populations and its impact on plant mating systems. FRONTIERS IN PLANT SCIENCE 2024; 15:1359037. [PMID: 39315378 PMCID: PMC11416937 DOI: 10.3389/fpls.2024.1359037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/21/2024] [Indexed: 09/25/2024]
Abstract
Inbreeding depression, the reduced fitness of inbred relative to outbred individuals was described more than two centuries ago, long before the development of population genetics. Its impact is central to evolutionary ecology and the evolution of mating systems, in particular self-fertilization in hermaphrodites. In the first half of the 20th century, population genetics revealed a mechanism for inbreeding depression through homozygosity. Numerous theoretical studies have modeled inbreeding depression as a function of genetic architecture and analyzed how it varies with population selfing rates. A major concept in these models is purging, i.e., the purging of recessive deleterious mutations through inbreeding. Consequently, inbreeding depression is expected to decrease with increasing population selfing rates. Along with these theoretical studies, many experimental studies, particularly on plants, have measured inbreeding depression using experimental crosses or directly in the field. The results of these studies have revealed that the evolutionary ecology of inbreeding depression is difficult to capture and that empirical data do not exactly match model predictions, specifically purging efficacy. In addition, the lability of inbreeding depression in natural populations can qualitatively affect the selective role of inbreeding depression in the evolution of mating systems. Recently, several studies have demonstrated the role of epigenetics in shedding new light on the dynamics of inbreeding depression in natural populations. This review provides a general overview of the studies on inbreeding depression and how various angles can help capture its selective role in natural populations.
Collapse
|
5
|
Osterman WHA, Hill A, Hagan JG, Whitton J, Bacon CD, Bjorkman AD. Rethinking pathways to the dioecy-polyploidy association: Genera with many dioecious species have fewer polyploids. AMERICAN JOURNAL OF BOTANY 2024; 111:e16318. [PMID: 38654555 DOI: 10.1002/ajb2.16318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/26/2024]
Abstract
PREMISE Numerous studies have found a positive association between dioecy and polyploidy; however, this association presents a theoretical conflict: While polyploids are predicted to benefit from self-reproduction for successful establishment, dioecious species cannot self-reproduce. We propose a theoretical framework to resolve this apparent conflict. We hypothesize that the inability of dioecious species to self-reproduce hinders their establishment as polyploids. We therefore expect that genera with many dioecious species have fewer polyploids, leading to a negative association between polyploidy and dioecy across genera. METHODS We used three publicly available databases to determine ploidy and sexual systems for 131 genera and 546 species. We quantified (1) the relationship between the frequency of polyploid species and the frequency of dioecious species across genera, and (2) the proportion of polyploids with hermaphroditism and dioecy across species, adjusting for phylogenetic history. RESULTS Across genera, we found a negative relationship between the proportion of polyploids and the proportion of dioecious species, a consistent trend across clades. Across all species, we found that sexual system (dioecious or not) was not associated with polyploidy. CONCLUSIONS Polyploids are rare in genera in which the majority of species are dioecious, consistent with the theory that self-reproduction favors polyploid establishment. The low frequency of polyploidy among dioecious species indicates the association is not as widespread as previously suggested. Our findings are consistent with previous studies identifying a positive relationship between the two traits, but only if polyploidy promotes a transition to dioecy, and not the reverse.
Collapse
Affiliation(s)
- Wilhelm H A Osterman
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Adrian Hill
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - James G Hagan
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jeannette Whitton
- Department of Botany and Biodiversity Research Centre, The University of British Columbia, Vancouver, Canada
| | - Christine D Bacon
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| | - Anne D Bjorkman
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
| |
Collapse
|
6
|
Barragan AC, Collenberg M, Schwab R, Kersten S, Kerstens MHL, Požárová D, Bezrukov I, Bemm F, Kolár F, Weigel D. Deleterious phenotypes in wild Arabidopsis arenosa populations are common and linked to runs of homozygosity. G3 (BETHESDA, MD.) 2024; 14:jkad290. [PMID: 38124484 PMCID: PMC10917499 DOI: 10.1093/g3journal/jkad290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/07/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
In this study, we aimed to systematically assess the frequency at which potentially deleterious phenotypes appear in natural populations of the outcrossing model plant Arabidopsis arenosa, and to establish their underlying genetics. For this purpose, we collected seeds from wild A. arenosa populations and screened over 2,500 plants for unusual phenotypes in the greenhouse. We repeatedly found plants with obvious phenotypic defects, such as small stature and necrotic or chlorotic leaves, among first-generation progeny of wild A. arenosa plants. Such abnormal plants were present in about 10% of maternal sibships, with multiple plants with similar phenotypes in each of these sibships, pointing to a genetic basis of the observed defects. A combination of transcriptome profiling, linkage mapping and genome-wide runs of homozygosity patterns using a newly assembled reference genome indicated a range of underlying genetic architectures associated with phenotypic abnormalities. This included evidence for homozygosity of certain genomic regions, consistent with alleles that are identical by descent being responsible for these defects. Our observations suggest that deleterious alleles with different genetic architectures are segregating at appreciable frequencies in wild A. arenosa populations.
Collapse
Affiliation(s)
- A Cristina Barragan
- Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
- The Sainsbury Laboratory, Norwich NR4 7UH, UK
| | - Maximilian Collenberg
- Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Catalent, 73614 Schorndorf, Germany
| | - Rebecca Schwab
- Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Sonja Kersten
- Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Institute of Plant Breeding, University of Hohenheim, 70599 Stuttgart, Germany
| | - Merijn H L Kerstens
- Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
- Department of Plant Developmental Biology, Wageningen University and Research, 6708 PB, Wageningen, Netherlands
| | - Doubravka Požárová
- Department of Botany, Faculty of Science, Charles University, 128 01 Prague, Czech Republic
- The MAMA AI, 100 00 Prague, Czech Republic
| | - Ilja Bezrukov
- Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Felix Bemm
- Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
- KWS Saat, 37574 Einbeck, Germany
| | - Filip Kolár
- Department of Botany, Faculty of Science, Charles University, 128 01 Prague, Czech Republic
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| |
Collapse
|
7
|
Yew CL, Tsuchimatsu T, Shimizu-Inatsugi R, Yasuda S, Hatakeyama M, Kakui H, Ohta T, Suwabe K, Watanabe M, Takayama S, Shimizu KK. Dominance in self-compatibility between subgenomes of allopolyploid Arabidopsis kamchatica shown by transgenic restoration of self-incompatibility. Nat Commun 2023; 14:7618. [PMID: 38030610 PMCID: PMC10687001 DOI: 10.1038/s41467-023-43275-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 11/03/2023] [Indexed: 12/01/2023] Open
Abstract
The evolutionary transition to self-compatibility facilitates polyploid speciation. In Arabidopsis relatives, the self-incompatibility system is characterized by epigenetic dominance modifiers, among which small RNAs suppress the expression of a recessive SCR/SP11 haplogroup. Although the contribution of dominance to polyploid self-compatibility is speculated, little functional evidence has been reported. Here we employ transgenic techniques to the allotetraploid plant A. kamchatica. We find that when the dominant SCR-B is repaired by removing a transposable element insertion, self-incompatibility is restored. This suggests that SCR was responsible for the evolution of self-compatibility. By contrast, the reconstruction of recessive SCR-D cannot restore self-incompatibility. These data indicate that the insertion in SCR-B conferred dominant self-compatibility to A. kamchatica. Dominant self-compatibility supports the prediction that dominant mutations increasing selfing rate can pass through Haldane's sieve against recessive mutations. The dominance regulation between subgenomes inherited from progenitors contrasts with previous studies on novel epigenetic mutations at polyploidization termed genome shock.
Collapse
Grants
- JPMJCR16O3 MEXT | JST | Core Research for Evolutional Science and Technology (CREST)
- 310030_212551, 31003A_182318, 31003A_159767, 31003A_140917, 310030_212674 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
- 310030_212674 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
- grant numbers 16H06469, 16K21727, 22H02316, 22K21352, 22H05172 and 22H05179 MEXT | Japan Society for the Promotion of Science (JSPS)
- Postdoctoral fellowship, 22K21352, 16H06467 and 17H05833 MEXT | Japan Society for the Promotion of Science (JSPS)
- 21H02162, 22H05172 and 22H05179 MEXT | Japan Society for the Promotion of Science (JSPS)
- 21H04711 and 21H05030 MEXT | Japan Society for the Promotion of Science (JSPS)
- URPP Evolutoin in Action, Global Strategy and Partnerships Funding Scheme Universität Zürich (University of Zurich)
- URPP Evolutoini in Action Universität Zürich (University of Zurich)
- fellowship European Molecular Biology Organization (EMBO)
Collapse
Affiliation(s)
- Chow-Lih Yew
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Takashi Tsuchimatsu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
- Department of Biological Sciences, University of Tokyo, Tokyo, 113-0033, Japan
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
| | - Shinsuke Yasuda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Masaomi Hatakeyama
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland
- Functional Genomics Center Zurich, 8057, Zurich, Switzerland
| | - Hiroyuki Kakui
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813, Japan
- Institute for Sustainable Agro-ecosystem Services, Graduate School of Agricultural and Life Sciences, University of Tokyo, Nishitokyo, 188-0002, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Takuma Ohta
- Graduate School of Bioresources, Mie University, Tsu, 514-0102, Japan
| | - Keita Suwabe
- Graduate School of Bioresources, Mie University, Tsu, 514-0102, Japan
| | - Masao Watanabe
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Seiji Takayama
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657, Japan
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zurich, Switzerland.
- Department of Plant and Microbial Biology, University of Zurich, 8008, Zurich, Switzerland.
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813, Japan.
| |
Collapse
|