1
|
3-Dimensional personalized planning for transcatheter pulmonary valve implantation in a dysfunctional right ventricular outflow tract. Int J Cardiol 2020; 309:33-39. [DOI: 10.1016/j.ijcard.2019.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 11/23/2022]
|
2
|
Canè F, Selmi M, De Santis G, Redaelli A, Segers P, Degroote J. Mixed impact of torsion on LV hemodynamics: A CFD study based on the Chimera technique. Comput Biol Med 2019; 112:103363. [PMID: 31491610 DOI: 10.1016/j.compbiomed.2019.103363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/04/2019] [Accepted: 07/16/2019] [Indexed: 10/26/2022]
Abstract
Image-based patient-specific Computational Fluid Dynamics (CFD) models of the Left Ventricle (LV) can be used to quantify hemodynamics-based biomarkers that can support the clinicians in the early diagnosis, follow-up and treatment planning of patients, beyond the capabilities of the current imaging modalities. We propose a workflow to build patient-specific CFD models of the LV with moving boundaries based on the Chimera technique to overcome the convergence issues previously encountered by means of the Arbitrarian Lagrangian Eulerian approach. The workflow was tested while investigating whether the torsional motion has an impact on LV fluid dynamics. Starting from 3D cine MRI scans of a healthy volunteer, six cardiac cycles were simulated in three CFD LV models: with no, physiological, and exaggerated torsion. The Chimera technique was robust in handling the impulsive motion of the LV endocardium, allowing to notice cycle-to-cycle variations in every simulated case. Torsion affected slightly velocity, vorticity, WSS. It did not affect energy loss and induced a double-sided effect in terms of residence time: the particles ejected in one beat decreased, whereas the motility of the particles remaining in the LV was affected only in the exaggerated torsion case, indicating that implementation of torsion can be discarded in case of physiological levels. Nonetheless, caution is warranted when interpreting these results given the absence of the mitral valve, the papillary muscles, and the trabeculae. The effects of the mitral valve will be evaluated within an Fluid Structure Interaction simulation framework as further development of the current model.
Collapse
Affiliation(s)
- Federico Canè
- IBiTech - bioMMeda, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium.
| | - Matteo Selmi
- Division of Cardiac Surgery, Department of Surgery, Università di Verona, Verona, Italy; Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | | | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Patrick Segers
- IBiTech - bioMMeda, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Joris Degroote
- Department of Flow, Heat and Combustion Mechanics, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Sánchez C, D'Ambrosio G, Maffessanti F, Caiani EG, Prinzen FW, Krause R, Auricchio A, Potse M. Sensitivity analysis of ventricular activation and electrocardiogram in tailored models of heart-failure patients. Med Biol Eng Comput 2017; 56:491-504. [PMID: 28823052 DOI: 10.1007/s11517-017-1696-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 07/20/2017] [Indexed: 01/13/2023]
Abstract
Cardiac resynchronization therapy is not effective in a variable proportion of heart failure patients. An accurate knowledge of each patient's electroanatomical features could be helpful to determine the most appropriate treatment. The goal of this study was to analyze and quantify the sensitivity of left ventricular (LV) activation and the electrocardiogram (ECG) to changes in 39 parameters used to tune realistic anatomical-electrophysiological models of the heart. Electrical activity in the ventricles was simulated using a reaction-diffusion equation. To simulate cellular electrophysiology, the Ten Tusscher-Panfilov 2006 model was used. Intracardiac electrograms and 12-lead ECGs were computed by solving the bidomain equation. Parameters showing the highest sensitivity values were similar in the six patients studied. QRS complex and LV activation times were modulated by the sodium current, the cell surface-to-volume ratio in the LV, and tissue conductivities. The T-wave was modulated by the calcium and rectifier-potassium currents, and the cell surface-to-volume ratio in both ventricles. We conclude that homogeneous changes in ionic currents entail similar effects in all ECG leads, whereas the effects of changes in tissue properties show larger inter-lead variability. The effects of parameter variations are highly consistent between patients and most of the model tuning could be performed with only ~10 parameters.
Collapse
Affiliation(s)
- C Sánchez
- Center for Computational Medicine in Cardiology (CCMC), Institute of Computational Science, Università della Svizzera italiana, Lugano, Switzerland.
- General Military Academy of Zaragoza (AGM), Defense University Centre (CUD), Zaragoza, Spain.
- Present address: Biosignal Interpretation and Computational Simulation Group (BSICoS), Engineering Research Institute of Aragon (I3A), University of Zaragoza, Zaragoza, Spain.
| | - G D'Ambrosio
- Division of Cardiology, Cardiocentro Ticino, Lugano, Switzerland
| | - F Maffessanti
- Center for Computational Medicine in Cardiology (CCMC), Institute of Computational Science, Università della Svizzera italiana, Lugano, Switzerland
| | - E G Caiani
- Electronics, Information, and Bioengineering Department, Politecnico di Milano, Milan, Italy
| | - F W Prinzen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - R Krause
- Center for Computational Medicine in Cardiology (CCMC), Institute of Computational Science, Università della Svizzera italiana, Lugano, Switzerland
| | - A Auricchio
- Center for Computational Medicine in Cardiology (CCMC), Institute of Computational Science, Università della Svizzera italiana, Lugano, Switzerland
- Division of Cardiology, Cardiocentro Ticino, Lugano, Switzerland
| | - M Potse
- Center for Computational Medicine in Cardiology (CCMC), Institute of Computational Science, Università della Svizzera italiana, Lugano, Switzerland
- IHU LIRYC, Université de Bordeaux, Pessac, France
- Inria Bordeaux Sud-Ouest, Talence, France
| |
Collapse
|
4
|
Piantadosi S. Three dimensional mathematical modeling of violin plate surfaces: An approach based on an ensemble of contour lines. PLoS One 2017; 12:e0171167. [PMID: 28166230 PMCID: PMC5293195 DOI: 10.1371/journal.pone.0171167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/15/2017] [Indexed: 11/19/2022] Open
Abstract
This paper presents an approach to describing the three dimensional shape of a violin plate in mathematical form. The shape description begins with standard contour lines and ends with an equation for a surface in three dimensional space. The traditional specification of cross sectional arching is unnecessary. Advantages of this approach are that it employs simple and universal description of plate geometry and yields a complete, smoothed, precise mathematical equation of the plate that is suitable for modern three dimensional production. It is quite general and suitable for both exterior and interior plate surfaces, yielding the ability to control thicknesses along with shape. This method can produce mathematical descriptions with tolerances easily less than 0.001 millimeters suitable for modern computerized numerical control carving and hand finishing.
Collapse
Affiliation(s)
- Steven Piantadosi
- Cedars-Sinai Medical Center, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
5
|
Redaelli A. A Model of Health: Mathematical modeling tools play an important role in optimizing new treatment options for heart disease. IEEE Pulse 2015; 6:27-32. [PMID: 26186050 DOI: 10.1109/mpul.2015.2428683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Models are crucial in the biomedical sciences since they provide information that is not otherwise accessible and help in discriminating among possible schemes of interpretation of complex phenomena. Italian research teams have been very active in this field with important contributions in the area of heart mechanics, which typically requires sophisticated three-dimensional (3-D) approaches to simulate wall and blood fluid mechanics. These models are increasingly being used to assess the patient-specific pathological scenario and to predict possible therapy outcomes.
Collapse
|
6
|
Caiani EG, Colombo A, Pepi M, Piazzese C, Maffessanti F, Lang RM, Carminati MC. Three-dimensional left ventricular segmentation from magnetic resonance imaging for patient-specific modelling purposes. Europace 2014; 16 Suppl 4:iv96-iv101. [PMID: 25362176 DOI: 10.1093/europace/euu232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS To propose a nearly automated left ventricular (LV) three-dimensional (3D) surface segmentation procedure, based on active shape modelling (ASM) and built on a database of 3D echocardiographic (3DE) LV surfaces, for cardiac magnetic resonance (CMR) images, and to test its accuracy for LV volumes computation compared with 'gold standard' manual tracings and discs-summation method. METHODS AND RESULTS The ASM was created based on segmented LV surfaces (4D LV analysis, Tomtec) from 3DE datasets of 205 patients. Then, it was applied to the cardiac magnetic resonance imaging short-axis (SAX) images stack of 12 consecutive patients. After proper realignment using two- and four-chambers CMR long-axis views both as reference and for initializing LV apex and base (six points in total), the ASM was iteratively and automatically updated to match the information of all the SAX planes contemporaneously, resulting in an endocardial LV 3D mesh from which volume was directly derived. The same CMR images were analysed by an experienced cardiologist to derive end-diastolic and end-systolic volumes. Linear correlation and Bland-Altman analyses were applied vs. the manual 'gold standard'. Active shape modelling results showed high correlations with manual values both for LV volumes (r(2) > 0.98) and ejection fraction (EF) (r(2) > 0.90), non-significant biases and narrow limits of agreement. CONCLUSION The proposed method resulted in accurate detection of 3D LV endocardial surfaces, which lead to fast and reliable measurements of LV volumes and EF when compared with manual tracing of CMR SAX images. The segmented 3D mesh, including a realistic LV apex and base, could constitute a novel starting point for more realistic patient-specific finite element modelling.
Collapse
Affiliation(s)
- Enrico G Caiani
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milan, Italy
| | - Andrea Colombo
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milan, Italy
| | - Mauro Pepi
- IRCCS Centro Cardiologico Monzino, 20138 Milan, Italy
| | - Concetta Piazzese
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milan, Italy Center for Computational Medicine in Cardiology, Universitá della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Francesco Maffessanti
- Noninvasive imaging Laboratories, University of Chicago Medical Center, 60637 Chicago, USA
| | - Roberto M Lang
- Noninvasive imaging Laboratories, University of Chicago Medical Center, 60637 Chicago, USA
| | - Maria Chiara Carminati
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milan, Italy IRCCS Centro Cardiologico Monzino, 20138 Milan, Italy
| |
Collapse
|
7
|
Images as drivers of progress in cardiac computational modelling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:198-212. [PMID: 25117497 PMCID: PMC4210662 DOI: 10.1016/j.pbiomolbio.2014.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/02/2014] [Indexed: 11/28/2022]
Abstract
Computational models have become a fundamental tool in cardiac research. Models are evolving to cover multiple scales and physical mechanisms. They are moving towards mechanistic descriptions of personalised structure and function, including effects of natural variability. These developments are underpinned to a large extent by advances in imaging technologies. This article reviews how novel imaging technologies, or the innovative use and extension of established ones, integrate with computational models and drive novel insights into cardiac biophysics. In terms of structural characterization, we discuss how imaging is allowing a wide range of scales to be considered, from cellular levels to whole organs. We analyse how the evolution from structural to functional imaging is opening new avenues for computational models, and in this respect we review methods for measurement of electrical activity, mechanics and flow. Finally, we consider ways in which combined imaging and modelling research is likely to continue advancing cardiac research, and identify some of the main challenges that remain to be solved.
Collapse
|
8
|
Gao H, Allan A, McComb C, Luo X, Berry C. Left ventricular strain and its pattern estimated from cine CMR and validation with DENSE. Phys Med Biol 2014; 59:3637-56. [PMID: 24922458 DOI: 10.1088/0031-9155/59/13/3637] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Measurement of local strain provides insight into the biomechanical significance of viable myocardium. We attempted to estimate myocardial strain from cine cardiovascular magnetic resonance (CMR) images by using a b-spline deformable image registration method. Three healthy volunteers and 41 patients with either recent or chronic myocardial infarction (MI) were studied at 1.5 Tesla with both cine and DENSE CMR. Regional circumferential and radial left ventricular strains were estimated from cine and DENSE acquisitions. In all healthy volunteers, there was no difference for peak circumferential strain (- 0.18 ± 0.04 versus - 0.18 ± 0.03, p = 0.76) between cine and DENSE CMR, however peak radial strain was overestimated from cine (0.84 ± 0.37 versus 0.49 ± 0.2, p < 0.01). In the patient study, the peak strain patterns predicted by cine were similar to the patterns from DENSE, including the strain evolution related to recovery time and strain patterns related to MI scar extent. Furthermore, cine-derived strain disclosed different strain patterns in MI and non-MI regions, and regions with transmural and non-transmural MI as DENSE. Although there were large variations with radial strain measurements from cine CMR images, useful circumferential strain information can be obtained from routine clinical CMR imaging. Cine strain analysis has potential to improve the diagnostic yield from routine CMR imaging in clinical practice.
Collapse
Affiliation(s)
- Hao Gao
- School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8QW, UK
| | | | | | | | | |
Collapse
|
9
|
Carminati MC, Maffessanti F, Caiani EG. Nearly automated motion artifacts correction between multi breath-hold short-axis and long-axis cine CMR images. Comput Biol Med 2014; 46:42-50. [DOI: 10.1016/j.compbiomed.2013.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 12/27/2013] [Accepted: 12/28/2013] [Indexed: 10/25/2022]
|
10
|
Abstract
The Virtual Physiological Human is synonymous with a programme in computational biomedicine that aims to develop a framework of methods and technologies to investigate the human body as a whole. It is predicated on the transformational character of information technology, brought to bear on that most crucial of human concerns, our own health and well-being.
Collapse
Affiliation(s)
- Peter V. Coveney
- Centre for Computational Science, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Vanessa Diaz
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Peter Hunter
- Auckland Bioengineering Institute, The University of Auckland, Auckland 1142, New Zealand
| | - Peter Kohl
- Heart Science Centre, Imperial College, Harefield Hospital, Hill End Road, Harefield UB9 6JH, UK
| | - Marco Viceconti
- Medical Technology Laboratory, Instituto Orthopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| |
Collapse
|