1
|
Gittens WH, Allison RM, Wright EM, Brown GGB, Neale MJ. Osmotic disruption of chromatin induces Topoisomerase 2 activity at sites of transcriptional stress. Nat Commun 2024; 15:10606. [PMID: 39639049 PMCID: PMC11621772 DOI: 10.1038/s41467-024-54567-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Transcription generates superhelical stress in DNA that poses problems for genome stability, but determining when and where such stress arises within chromosomes is challenging. Here, using G1-arrested S. cerevisiae cells, and employing rapid fixation and ultra-sensitive enrichment, we utilise the physiological activity of endogenous topoisomerase 2 (Top2) as a probe of transcription-induced superhelicity. We demonstrate that Top2 activity is surprisingly uncorrelated with transcriptional activity, suggesting that superhelical stress is obscured from Top2 within chromatin in vivo. We test this idea using osmotic perturbation-a treatment that transiently destabilises chromatin in vivo-revealing that Top2 activity redistributes within sub-minute timescales into broad zones patterned by long genes, convergent gene arrays, and transposon elements-and also by acute transcriptional induction. We propose that latent superhelical stress is normally absorbed by the intrinsic topological buffering capacity of chromatin, helping to avoid spurious topoisomerase activity arising within the essential coding regions of the genome.
Collapse
Affiliation(s)
- William H Gittens
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK.
| | - Rachal M Allison
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Ellie M Wright
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - George G B Brown
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Matthew J Neale
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK.
| |
Collapse
|
2
|
de Jong BE, Brouwer TB, Kaczmarczyk A, Visscher B, van Noort J. Rigid Basepair Monte Carlo Simulations of One-Start and Two-Start Chromatin Fiber Unfolding by Force. Biophys J 2018; 115:1848-1859. [PMID: 30366627 PMCID: PMC6303278 DOI: 10.1016/j.bpj.2018.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/21/2018] [Accepted: 10/05/2018] [Indexed: 12/30/2022] Open
Abstract
The organization of chromatin in 30 nm fibers remains a topic of debate. Here, we quantify the mechanical properties of the linker DNA and evaluate the impact of these properties on chromatin fiber folding. We extended a rigid basepair DNA model to include (un)wrapping of nucleosomal DNA and (un)stacking of nucleosomes in one-start and two-start chromatin fibers. Monte Carlo simulations that mimic single-molecule force spectroscopy experiments of folded nucleosomal arrays reveal different stages of unfolding as a function of force and are largely consistent with a two-start folding for 167 and one-start folding for 197 nucleosome repeat length fibers. The major insight is that nucleosome unstacking and subsequent unwrapping is not necessary to obtain quantitative agreement with experimental force extension curves up to the overstretching plateau of folded chromatin fibers at 3-5 pN. Nucleosome stacking appears better accommodated in one-start than in two-start conformations, and we suggest that this difference can compensate the increased energy for bending the linker DNA. Overall, these simulations capture the dynamic structure of chromatin fibers while maintaining realistic physical properties of the linker DNA.
Collapse
Affiliation(s)
- Babette E de Jong
- Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Thomas B Brouwer
- Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Artur Kaczmarczyk
- Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Bert Visscher
- Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, Leiden, The Netherlands
| | - John van Noort
- Huygens-Kamerlingh Onnes Laboratory, Leiden Institute of Physics, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
3
|
Lesne A, Victor JM, Bertrand E, Basyuk E, Barbi M. The Role of Supercoiling in the Motor Activity of RNA Polymerases. Methods Mol Biol 2018; 1805:215-232. [PMID: 29971720 DOI: 10.1007/978-1-4939-8556-2_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RNA polymerase (RNAP) is, in its elongation phase, an emblematic example of a molecular motor whose activity is highly sensitive to DNA supercoiling. After a review of DNA supercoiling basic features, we discuss how supercoiling controls polymerase velocity, while being itself modified by polymerase activity. This coupling is supported by single-molecule measurements. Physical modeling allows us to describe quantitatively how supercoiling and torsional constraints mediate a mechanical coupling between adjacent polymerases. On this basis, we obtain a description that may explain the existence and functioning of RNAP convoys.
Collapse
Affiliation(s)
- Annick Lesne
- Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), UMR 7600 CNRS, Sorbonne Université, Paris, France.,Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, Montpellier, France.,Université de Montpellier, Montpellier, France.,GDR 3536 CNRS, Sorbonne Université, Paris, France
| | - Jean-Marc Victor
- Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), UMR 7600 CNRS, Sorbonne Université, Paris, France. .,Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, Montpellier, France. .,Université de Montpellier, Montpellier, France. .,GDR 3536 CNRS, Sorbonne Université, Paris, France.
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Eugenia Basyuk
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Maria Barbi
- Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), UMR 7600 CNRS, Sorbonne Université, Paris, France.,GDR 3536 CNRS, Sorbonne Université, Paris, France
| |
Collapse
|
4
|
Abstract
The double helical structure of DNA lends itself to topological constraints. Many DNA-based processes alter the topological state of DNA, generating torsional stress, which is efficiently relieved by topoisomerases. Maintaining this topological balance is crucial to cell survival, as excessive torsional strain risks DNA damage. Here, we review the mechanisms that generate and modulate DNA torsion within the cell. In particular, we discuss how transcription-generated torsional stress affects Pol II kinetics and chromatin dynamics, highlighting an emerging role of DNA torsion as a feedback mediator of torsion-generating processes.
Collapse
Affiliation(s)
- Sheila S Teves
- Molecular and Cell Biology; University of California, Berkeley; Berkeley, CA USA
| | - Steven Henikoff
- Basic Sciences Division; Fred Hutchinson Cancer Research Center; Seattle, WA USA; Howard Hughes Medical Institute; Seattle, WA USA
| |
Collapse
|
5
|
Abstract
Chromatin is a complex assembly that compacts DNA inside the nucleus while providing the necessary level of accessibility to regulatory factors conscripted by cellular signaling systems. In this superstructure, DNA is the subject of mechanical forces applied by variety of molecular motors. Rather than being a rigid stick, DNA possesses dynamic structural variability that could be harnessed during critical steps of genome functioning. The strong relationship between DNA structure and key genomic processes necessitates the study of physical constrains acting on the double helix. Here we provide insight into the source, dynamics, and biology of DNA topological domains in the eukaryotic cells and summarize their possible involvement in gene transcription. We emphasize recent studies that might inspire and impact future experiments on the involvement of DNA topology in cellular functions.
Collapse
Affiliation(s)
- Fedor Kouzine
- Laboratory of Pathology; National Cancer Institute; Bethesda, MD USA
| | - David Levens
- Laboratory of Pathology; National Cancer Institute; Bethesda, MD USA
| | - Laura Baranello
- Laboratory of Pathology; National Cancer Institute; Bethesda, MD USA
| |
Collapse
|
6
|
Lavelle C. Pack, unpack, bend, twist, pull, push: the physical side of gene expression. Curr Opin Genet Dev 2014; 25:74-84. [PMID: 24576847 DOI: 10.1016/j.gde.2014.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 01/03/2014] [Indexed: 12/31/2022]
Abstract
Molecular motors such as polymerases produce physical constraints on DNA and chromatin. Recent techniques, in particular single-molecule micromanipulation, provide estimation of the forces and torques at stake. These biophysical approaches have improved our understanding of chromatin behaviour under physiological physical constraints and should, in conjunction with genome wide and in vivo studies, help to build more realistic mechanistic models of transcription in the context of chromatin. Here, we wish to provide a brief overview of our current knowledge in the field, and emphasize at the same time the importance of DNA supercoiling as a major parameter in gene regulation.
Collapse
Affiliation(s)
- Christophe Lavelle
- National Museum of Natural History, Paris, France; CNRS UMR7196, Paris, France; INSERM U1154, Paris, France; Nuclear Architecture and Dynamics, CNRS GDR3536, Paris, France.
| |
Collapse
|
7
|
Hyde ST, Schröder-Turk GE. Geometry of interfaces: topological complexity in biology and materials. Interface Focus 2012; 2:529-538. [PMCID: PMC3438572 DOI: 10.1098/rsfs.2012.0035] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 07/11/2012] [Indexed: 01/25/2025] Open
Affiliation(s)
- Stephen T. Hyde
- Department of Applied Mathematics, Research School of Physics and Engineering, The Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Gerd E. Schröder-Turk
- Theoretische Physik, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstrasse 7B, 91058 Erlangen, Germany
| |
Collapse
|