1
|
Ramasubbu MK, Paleja B, Srinivasann A, Maiti R, Kumar R. Applying quantitative and systems pharmacology to drug development and beyond: An introduction to clinical pharmacologists. Indian J Pharmacol 2024; 56:268-276. [PMID: 39250624 PMCID: PMC11483046 DOI: 10.4103/ijp.ijp_644_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/26/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
ABSTRACT Quantitative and systems pharmacology (QSP) is an innovative and integrative approach combining physiology and pharmacology to accelerate medical research. This review focuses on QSP's pivotal role in drug development and its broader applications, introducing clinical pharmacologists/researchers to QSP's quantitative approach and the potential to enhance their practice and decision-making. The history of QSP adoption reveals its impact in diverse areas, including glucose regulation, oncology, autoimmune disease, and HIV treatment. By considering receptor-ligand interactions of various cell types, metabolic pathways, signaling networks, and disease biomarkers simultaneously, QSP provides a holistic understanding of interactions between the human body, diseases, and drugs. Integrating knowledge across multiple time and space scales enhances versatility, enabling insights into personalized responses and general trends. QSP consolidates vast data into robust mathematical models, predicting clinical trial outcomes and optimizing dosing based on preclinical data. QSP operates under a "learn and confirm paradigm," integrating experimental findings to generate testable hypotheses and refine them through precise experimental designs. An interdisciplinary collaboration involving expertise in pharmacology, biochemistry, genetics, mathematics, and medicine is vital. QSP's utility in drug development is demonstrated through integration in various stages, predicting drug responses, optimizing dosing, and evaluating combination therapies. Challenges exist in model complexity, communication, and peer review. Standardized workflows and evaluation methods ensure reliability and transparency.
Collapse
Affiliation(s)
- Mathan Kumar Ramasubbu
- Department of Pharmacology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | | | - Anand Srinivasann
- Department of Pharmacology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Rituparna Maiti
- Department of Pharmacology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | | |
Collapse
|
2
|
Oishi M, Sayama H, Toshimoto K, Nakayama T, Nagasaka Y. Practical QSP application from the preclinical phase to enhance the probability of clinical success: Insights from case studies in oncology. Drug Metab Pharmacokinet 2024; 56:101020. [PMID: 38797089 DOI: 10.1016/j.dmpk.2024.101020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/02/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
Quantitative Systems Pharmacology (QSP) has emerged as a promising modeling and simulation (M&S) approach in drug development, with potential to improve clinical success rates. While conventional M&S has significantly contributed to quantitative understanding in late preclinical and clinical phases, it falls short in explaining unexpected phenomena and testing hypotheses in the early research phase. QSP presents a solution to these limitations. To harness the full potential of QSP in early preclinical stages, preclinical modelers who are familiar with conventional M&S need to update their understanding of the differences between conventional M&S and QSP. This review focuses on QSP applications during the preclinical stage, citing case examples and sharing our experiences in oncology. We emphasize the critical role of QSP in increasing the probability of success for clinical proof of concept (PoC) when applied from the early preclinical stage. Enhancing the quality of both hypotheses and QSP models from early preclinical stage is of critical importance. Once a QSP model achieves credibility, it facilitates predictions of clinical responses and potential biomarkers. We propose that sequential QSP applications from preclinical stages can improve success rates of clinical PoC, and emphasize the importance of refining both hypotheses and QSP models throughout the process.
Collapse
Affiliation(s)
- Masayo Oishi
- Systems Pharmacology, Non-Clinical Biomedical Science, Applied Research & Operations, Astellas Pharma Inc., Tsukuba, Ibaraki, 305-8585, Japan.
| | - Hiroyuki Sayama
- Systems Pharmacology, Non-Clinical Biomedical Science, Applied Research & Operations, Astellas Pharma Inc., Tsukuba, Ibaraki, 305-8585, Japan
| | - Kota Toshimoto
- Systems Pharmacology, Non-Clinical Biomedical Science, Applied Research & Operations, Astellas Pharma Inc., Tsukuba, Ibaraki, 305-8585, Japan
| | - Takeshi Nakayama
- Systems Pharmacology, Non-Clinical Biomedical Science, Applied Research & Operations, Astellas Pharma Inc., Tsukuba, Ibaraki, 305-8585, Japan
| | - Yasuhisa Nagasaka
- Non-Clinical Biomedical Science, Applied Research & Operations, Astellas Pharma Inc., Tsukuba, Ibaraki, 305-8585, Japan
| |
Collapse
|
3
|
Casas B, Vilén L, Bauer S, Kanebratt KP, Wennberg Huldt C, Magnusson L, Marx U, Andersson TB, Gennemark P, Cedersund G. Integrated experimental-computational analysis of a HepaRG liver-islet microphysiological system for human-centric diabetes research. PLoS Comput Biol 2022; 18:e1010587. [PMID: 36260620 PMCID: PMC9621595 DOI: 10.1371/journal.pcbi.1010587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 10/31/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
Microphysiological systems (MPS) are powerful tools for emulating human physiology and replicating disease progression in vitro. MPS could be better predictors of human outcome than current animal models, but mechanistic interpretation and in vivo extrapolation of the experimental results remain significant challenges. Here, we address these challenges using an integrated experimental-computational approach. This approach allows for in silico representation and predictions of glucose metabolism in a previously reported MPS with two organ compartments (liver and pancreas) connected in a closed loop with circulating medium. We developed a computational model describing glucose metabolism over 15 days of culture in the MPS. The model was calibrated on an experiment-specific basis using data from seven experiments, where HepaRG single-liver or liver-islet cultures were exposed to both normal and hyperglycemic conditions resembling high blood glucose levels in diabetes. The calibrated models reproduced the fast (i.e. hourly) variations in glucose and insulin observed in the MPS experiments, as well as the long-term (i.e. over weeks) decline in both glucose tolerance and insulin secretion. We also investigated the behaviour of the system under hypoglycemia by simulating this condition in silico, and the model could correctly predict the glucose and insulin responses measured in new MPS experiments. Last, we used the computational model to translate the experimental results to humans, showing good agreement with published data of the glucose response to a meal in healthy subjects. The integrated experimental-computational framework opens new avenues for future investigations toward disease mechanisms and the development of new therapies for metabolic disorders. Microphysiological systems (MPS) are powerful tools to unravel biological knowledge underlying disease. MPS provide a physiologically relevant, human-based in vitro setting, which can potentially yield better translatability to humans than current animal models and traditional cell cultures. However, mechanistic interpretation and extrapolation of the experimental results to human outcome remain significant challenges. In this study, we confront these challenges using an integrated experimental-computational approach. We present a computational model describing glucose metabolism in a previously reported MPS integrating liver and pancreas. This MPS supports a homeostatic feedback loop between HepaRG/HHSteC spheroids and pancreatic islets, and allows for detailed investigations of mechanisms underlying type 2 diabetes in humans. We show that the computational model captures the complex dynamics of glucose-insulin regulation observed in the system, and can provide mechanistic insight into disease progression features, such as insulin resistance and β-cell dynamics. Furthermore, the computational model can explain key differences in temporal dynamics between MPS and human responses, and thus provides a tool for translating experimental insights into human outcome. The integrated experimental-computational framework opens new avenues for future investigations toward disease mechanisms and the development of new therapies for metabolic disorders.
Collapse
Affiliation(s)
- Belén Casas
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Liisa Vilén
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Kajsa P. Kanebratt
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Charlotte Wennberg Huldt
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lisa Magnusson
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Tommy B. Andersson
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Peter Gennemark
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Gunnar Cedersund
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
4
|
Silfvergren O, Simonsson C, Ekstedt M, Lundberg P, Gennemark P, Cedersund G. Digital twin predicting diet response before and after long-term fasting. PLoS Comput Biol 2022; 18:e1010469. [PMID: 36094958 PMCID: PMC9499255 DOI: 10.1371/journal.pcbi.1010469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 09/22/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
Today, there is great interest in diets proposing new combinations of macronutrient compositions and fasting schedules. Unfortunately, there is little consensus regarding the impact of these different diets, since available studies measure different sets of variables in different populations, thus only providing partial, non-connected insights. We lack an approach for integrating all such partial insights into a useful and interconnected big picture. Herein, we present such an integrating tool. The tool uses a novel mathematical model that describes mechanisms regulating diet response and fasting metabolic fluxes, both for organ-organ crosstalk, and inside the liver. The tool can mechanistically explain and integrate data from several clinical studies, and correctly predict new independent data, including data from a new study. Using this model, we can predict non-measured variables, e.g. hepatic glycogen and gluconeogenesis, in response to fasting and different diets. Furthermore, we exemplify how such metabolic responses can be successfully adapted to a specific individual’s sex, weight, height, as well as to the individual’s historical data on metabolite dynamics. This tool enables an offline digital twin technology. Fasting and diet are central components of prevention against cardiovascular disease. Unfortunately, there is little consensus regarding which diet schemes are optimal. This is partially because different clinical studies contribute with different non-connected pieces of knowledge, which have not been fully integrated into a useful and interconnected big picture. In principle, mathematical models describing meal responses could be used for such an integration. However, today’s models still lack critical mechanisms, such as protein metabolism and a dynamic glycogen regulation. Herein, we present a) a new expanded model structure including these mechanisms; b) a set of parameters which can simultaneously describe a wide array of complementary estimation data, in both healthy and diabetic populations; c) a personalisation-script, which allows these generic parameters to be tuned to an individual/sub-population, using demographics (age, weight, height, diabetes status) and historic metabolic data. We exemplify how this personalisation can be used to predict new independent data, including a new clinical study, where a qualitatively new prediction is validated: that an oral protein tolerance test gives a clear response in plasma glucose, after, but not before, a 48h fasting period. Our combined model, parameters, and fitting script lay the foundation for an offline digital twin.
Collapse
Affiliation(s)
- Oscar Silfvergren
- Department of Biomedical Engineering, IMT, Linköping University, Linköping, Sweden
| | - Christian Simonsson
- Department of Biomedical Engineering, IMT, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualisation, Linköping University, Linköping, Sweden
| | - Mattias Ekstedt
- Center for Medical Image Science and Visualisation, Linköping University, Linköping, Sweden
- Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
| | - Peter Lundberg
- Center for Medical Image Science and Visualisation, Linköping University, Linköping, Sweden
- Department of Medical Radiation Physics, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Peter Gennemark
- Department of Biomedical Engineering, IMT, Linköping University, Linköping, Sweden
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Gunnar Cedersund
- Department of Biomedical Engineering, IMT, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualisation, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
5
|
Lövfors W, Ekström J, Jönsson C, Strålfors P, Cedersund G, Nyman E. A systems biology analysis of lipolysis and fatty acid release from adipocytes in vitro and from adipose tissue in vivo. PLoS One 2021; 16:e0261681. [PMID: 34972146 PMCID: PMC8719686 DOI: 10.1371/journal.pone.0261681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/07/2021] [Indexed: 12/03/2022] Open
Abstract
Lipolysis and the release of fatty acids to supply energy fuel to other organs, such as between meals, during exercise, and starvation, are fundamental functions of the adipose tissue. The intracellular lipolytic pathway in adipocytes is activated by adrenaline and noradrenaline, and inhibited by insulin. Circulating fatty acids are elevated in type 2 diabetic individuals. The mechanisms behind this elevation are not fully known, and to increase the knowledge a link between the systemic circulation and intracellular lipolysis is key. However, data on lipolysis and knowledge from in vitro systems have not been linked to corresponding in vivo data and knowledge in vivo. Here, we use mathematical modelling to provide such a link. We examine mechanisms of insulin action by combining in vivo and in vitro data into an integrated mathematical model that can explain all data. Furthermore, the model can describe independent data not used for training the model. We show the usefulness of the model by simulating new and more challenging experimental setups in silico, e.g. the extracellular concentration of fatty acids during an insulin clamp, and the difference in such simulations between individuals with and without type 2 diabetes. Our work provides a new platform for model-based analysis of adipose tissue lipolysis, under both non-diabetic and type 2 diabetic conditions.
Collapse
Affiliation(s)
- William Lövfors
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- Department of Mathematics, Linköping University, Linköping, Sweden
| | - Jona Ekström
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Cecilia Jönsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Peter Strålfors
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Gunnar Cedersund
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Elin Nyman
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| |
Collapse
|
6
|
A systems biology analysis of adrenergically stimulated adiponectin exocytosis in white adipocytes. J Biol Chem 2021; 297:101221. [PMID: 34597667 PMCID: PMC8564731 DOI: 10.1016/j.jbc.2021.101221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023] Open
Abstract
Circulating levels of the adipocyte hormone adiponectin are typically reduced in obesity, and this deficiency has been linked to metabolic diseases. It is thus important to understand the mechanisms controlling adiponectin exocytosis. This understanding is hindered by the high complexity of both the available data and the underlying signaling network. To deal with this complexity, we have previously investigated how different intracellular concentrations of Ca2+, cAMP, and ATP affect adiponectin exocytosis, using both patch-clamp recordings and systems biology mathematical modeling. Recent work has shown that adiponectin exocytosis is physiologically triggered via signaling pathways involving adrenergic β3 receptors (β3ARs). Therefore, we developed a mathematical model that also includes adiponectin exocytosis stimulated by extracellular epinephrine or the β3AR agonist CL 316243. Our new model is consistent with all previous patch-clamp data as well as new data (collected from stimulations with a combination of the intracellular mediators and extracellular adrenergic stimuli) and can predict independent validation data. We used this model to perform new in silico experiments where corresponding wet lab experiments would be difficult to perform. We simulated adiponectin exocytosis in single cells in response to the reduction of β3ARs that is observed in adipocytes from animals with obesity-induced diabetes. Finally, we used our model to investigate intracellular dynamics and to predict both cAMP levels and adiponectin release by scaling the model from single-cell to a population of cells-predictions corroborated by experimental data. Our work brings us one step closer to understanding the intricate regulation of adiponectin exocytosis.
Collapse
|
7
|
Herrgårdh T, Li H, Nyman E, Cedersund G. An Updated Organ-Based Multi-Level Model for Glucose Homeostasis: Organ Distributions, Timing, and Impact of Blood Flow. Front Physiol 2021; 12:619254. [PMID: 34140893 PMCID: PMC8204084 DOI: 10.3389/fphys.2021.619254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
Glucose homeostasis is the tight control of glucose in the blood. This complex control is important, due to its malfunction in serious diseases like diabetes, and not yet sufficiently understood. Due to the involvement of numerous organs and sub-systems, each with their own intra-cellular control, we have developed a multi-level mathematical model, for glucose homeostasis, which integrates a variety of data. Over the last 10 years, this model has been used to insert new insights from the intra-cellular level into the larger whole-body perspective. However, the original cell-organ-body translation has during these years never been updated, despite several critical shortcomings, which also have not been resolved by other modeling efforts. For this reason, we here present an updated multi-level model. This model provides a more accurate sub-division of how much glucose is being taken up by the different organs. Unlike the original model, we now also account for the different dynamics seen in the different organs. The new model also incorporates the central impact of blood flow on insulin-stimulated glucose uptake. Each new improvement is clear upon visual inspection, and they are also supported by statistical tests. The final multi-level model describes >300 data points in >40 time-series and dose-response curves, resulting from a large variety of perturbations, describing both intra-cellular processes, organ fluxes, and whole-body meal responses. We hope that this model will serve as an improved basis for future data integration, useful for research and drug developments within diabetes.
Collapse
Affiliation(s)
- Tilda Herrgårdh
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Hao Li
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Elin Nyman
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Gunnar Cedersund
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| |
Collapse
|
8
|
Barrera M, Hiriart M, Cocho G, Villarreal C. Type 2 diabetes progression: A regulatory network approach. CHAOS (WOODBURY, N.Y.) 2020; 30:093132. [PMID: 33003944 DOI: 10.1063/5.0011125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
In order to elucidate central elements underlying type 2 diabetes, we constructed a regulatory network model involving 37 components (molecules, receptors, processes, etc.) associated to signaling pathways of pancreatic beta-cells. In a first approximation, the network topology was described by Boolean rules whose interacting dynamics predicted stationary patterns broadly classified as health, metabolic syndrome, and diabetes stages. A subsequent approximation based on a continuous logic analysis allowed us to characterize the progression of the disease as transitions between these states associated to alterations of cell homeostasis due to exhaustion or exacerbation of specific regulatory signals. The method allowed the identification of key transcription factors involved in metabolic stress as essential for the progression of the disease. Integration of the present analysis with existent mathematical models designed to yield accurate account of experimental data in human or animal essays leads to reliable predictions for beta-cell mass, insulinemia, glycemia, and glycosylated hemoglobin in diabetic fatty rats.
Collapse
Affiliation(s)
- M Barrera
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - M Hiriart
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - G Cocho
- Instituto de Física, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - C Villarreal
- Instituto de Física, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
9
|
Abstract
Diabetes is a chronic, progressive disease that calls for longitudinal data and analysis. We introduce a longitudinal mathematical model that is capable of representing the metabolic state of an individual at any point in time during their progression from normal glucose tolerance to type 2 diabetes (T2D) over a period of years. As an application of the model, we account for the diversity of pathways typically followed, focusing on two extreme alternatives, one that goes through impaired fasting glucose (IFG) first and one that goes through impaired glucose tolerance (IGT) first. These two pathways are widely recognized to stem from distinct metabolic abnormalities in hepatic glucose production and peripheral glucose uptake, respectively. We confirm this but go beyond to show that IFG and IGT lie on a continuum ranging from high hepatic insulin resistance and low peripheral insulin resistance to low hepatic resistance and high peripheral resistance. We show that IFG generally incurs IGT and IGT generally incurs IFG on the way to T2D, highlighting the difference between innate and acquired defects and the need to assess patients early to determine their underlying primary impairment and appropriately target therapy. We also consider other mechanisms, showing that IFG can result from impaired insulin secretion, that non-insulin-dependent glucose uptake can also mediate or interact with these pathways, and that impaired incretin signaling can accelerate T2D progression. We consider whether hyperinsulinemia can cause insulin resistance in addition to being a response to it and suggest that this is a minor effect.
Collapse
Affiliation(s)
- Joon Ha
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, Maryland
| | - Arthur Sherman
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
10
|
Barrett JS, Bucci-Rechtweg C, Amy Cheung SY, Gamalo-Siebers M, Haertter S, Karres J, Marquard J, Mulugeta Y, Ollivier C, Strougo A, Yanoff L, Yao L, Zeitler P. Pediatric Extrapolation in Type 2 Diabetes: Future Implications of a Workshop. Clin Pharmacol Ther 2020; 108:29-39. [PMID: 32017043 PMCID: PMC7383960 DOI: 10.1002/cpt.1805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/27/2020] [Indexed: 12/30/2022]
Abstract
Extrapolation from adults to youth with type 2 diabetes (T2D) is challenged by differences in disease progression and manifestation. This manuscript presents the results of a mock-team workshop focused on examining the typical team-based decision process used to propose a pediatric development plan for T2D addressing the viability of extrapolation. The workshop was held at the American Society for Clinical Pharmacology and Therapeutics (ASCPT) in Orlando, Florida on March 21, 2018.
Collapse
Affiliation(s)
- Jeffrey S Barrett
- Quantitative Sciences, Bill & Melinda Gates Medical Research Institute, Cambridge, Massachusetts, USA
| | - Christina Bucci-Rechtweg
- Pediatric & Maternal Health Policy, Regulatory Affairs, Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | | | | | - Sebastian Haertter
- Translational Med & Clinical Pharmacology, Boehringer Ingelheim, Biberach, Germany
| | - Janina Karres
- Paediatric Medicines Office, European Medicines Agency, Amsterdam, The Netherlands
| | - Jan Marquard
- Global Clinical Development CardioMetabolism, Boehringer Ingelheim, Ingelheim, Germany
| | - Yeruk Mulugeta
- Division of Pediatric and Maternal Health, Office of New Drugs, Center for Drug Evaluation and Research, Washington, DC, USA
| | | | - Ashley Strougo
- Translational Medicine, Pharmacokinetics, Dynamics and Metabolism, Sanofi, Frankfurt, Germany
| | - Lisa Yanoff
- Division of Metabolism and Endocrinology Products, Office of New Drugs, Center for Drug Evaluation and Research, Washington, DC, USA
| | - Lynne Yao
- Division of Pediatric and Maternal Health, Office of New Drugs, Center for Drug Evaluation and Research, Washington, DC, USA
| | - Philip Zeitler
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
11
|
Forsgren MF, Karlsson M, Dahlqvist Leinhard O, Dahlström N, Norén B, Romu T, Ignatova S, Ekstedt M, Kechagias S, Lundberg P, Cedersund G. Model-inferred mechanisms of liver function from magnetic resonance imaging data: Validation and variation across a clinically relevant cohort. PLoS Comput Biol 2019; 15:e1007157. [PMID: 31237870 PMCID: PMC6613709 DOI: 10.1371/journal.pcbi.1007157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 07/08/2019] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Estimation of liver function is important to monitor progression of chronic liver disease (CLD). A promising method is magnetic resonance imaging (MRI) combined with gadoxetate, a liver-specific contrast agent. For this method, we have previously developed a model for an average healthy human. Herein, we extended this model, by combining it with a patient-specific non-linear mixed-effects modeling framework. We validated the model by recruiting 100 patients with CLD of varying severity and etiologies. The model explained all MRI data and adequately predicted both timepoints saved for validation and gadoxetate concentrations in both plasma and biopsies. The validated model provides a new and deeper look into how the mechanisms of liver function vary across a wide variety of liver diseases. The basic mechanisms remain the same, but increasing fibrosis reduces uptake and increases excretion of gadoxetate. These mechanisms are shared across many liver functions and can now be estimated from standard clinical images. Being able to accurately and reliably estimate liver function is important when monitoring the progression of patients with liver disease, as well as when identifying drug-induced liver injury during drug development. A promising method for quantifying liver function is to use magnetic resonance imaging combined with gadoxetate. Gadoxetate is a liver-specific contrast agent, which is taken up by the hepatocytes and excreted into the bile. We have previously developed a mechanistic model for gadoxetate dynamics using averaged data from healthy volunteers. In this work, we extended our model with a non-linear mixed-effects modeling framework to give patient-specific estimates of the gadoxetate transport-rates. We validated the model by recruiting 100 patients with liver disease, covering a range of severity and etiologies. All patients underwent an MRI-examination and provided both blood and liver biopsies. Our validated model provides a new and deeper look into how the mechanisms of liver function varies across a wide variety of liver diseases. The basic mechanisms remain the same, but increasing fibrosis reduces uptake and increases excretion of gadoxetate.
Collapse
Affiliation(s)
- Mikael F. Forsgren
- Wolfram MathCore AB and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Markus Karlsson
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Olof Dahlqvist Leinhard
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Nils Dahlström
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Radiology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Bengt Norén
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Thobias Romu
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Simone Ignatova
- Department of Clinical Pathology and Clinical Genetics, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Mattias Ekstedt
- Department of Gastroenterology and Hepatology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Stergios Kechagias
- Department of Gastroenterology and Hepatology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Peter Lundberg
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Radiation Physics, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- * E-mail: (PL); (GC)
| | - Gunnar Cedersund
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- * E-mail: (PL); (GC)
| |
Collapse
|
12
|
Helmlinger G, Sokolov V, Peskov K, Hallow KM, Kosinsky Y, Voronova V, Chu L, Yakovleva T, Azarov I, Kaschek D, Dolgun A, Schmidt H, Boulton DW, Penland RC. Quantitative Systems Pharmacology: An Exemplar Model-Building Workflow With Applications in Cardiovascular, Metabolic, and Oncology Drug Development. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2019; 8:380-395. [PMID: 31087533 PMCID: PMC6617832 DOI: 10.1002/psp4.12426] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022]
Abstract
Quantitative systems pharmacology (QSP), a mechanistically oriented form of drug and disease modeling, seeks to address a diverse set of problems in the discovery and development of therapies. These problems bring a considerable amount of variability and uncertainty inherent in the nonclinical and clinical data. Likewise, the available modeling techniques and related software tools are manifold. Appropriately, the development, qualification, application, and impact of QSP models have been similarly varied. In this review, we describe the progressive maturation of a QSP modeling workflow: a necessary step for the efficient, reproducible development and qualification of QSP models, which themselves are highly iterative and evolutive. Furthermore, we describe three applications of QSP to impact drug development; one supporting new indications for an approved antidiabetic clinical asset through mechanistic hypothesis generation, one highlighting efficacy and safety differentiation within the sodium‐glucose cotransporter‐2 inhibitor drug class, and one enabling rational selection of immuno‐oncology drug combinations.
Collapse
Affiliation(s)
- Gabriel Helmlinger
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca Pharmaceuticals, Boston, Massachusetts, USA
| | | | - Kirill Peskov
- M&S Decisions LLC, Moscow, Russia.,Computational Oncology Group, I.M. Sechenov First Moscow State Medical University of the Russian Ministry of Health, Moscow, Russia
| | - Karen M Hallow
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, Georgia, USA.,Department of Epidemiology and Biostatistics, University of Georgia, Athens, Georgia, USA
| | | | | | - Lulu Chu
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca Pharmaceuticals, Boston, Massachusetts, USA
| | | | | | | | | | | | - David W Boulton
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca Pharmaceuticals, Gaithersburg, Maryland, USA
| | - Robert C Penland
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca Pharmaceuticals, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Schneck K, Tham LS, Ertekin A, Reviriego J. Toward Better Understanding of Insulin Therapy by Translation of a PK-PD Model to Visualize Insulin and Glucose Action Profiles. J Clin Pharmacol 2018; 59:258-270. [PMID: 30339268 PMCID: PMC6587988 DOI: 10.1002/jcph.1321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 09/12/2018] [Indexed: 01/08/2023]
Abstract
Insulin replacement therapy is a fundamental treatment for glycemic control for managing diabetes. The engineering of insulin analogues has focused on providing formulations with action profiles that mimic as closely as possible the pattern of physiological insulin secretion that normally occurs in healthy individuals without diabetes. Hence, it may be helpful to practitioners to visualize insulin concentration profiles and associated glucose action profiles. Expanding on a previous analysis that established a pharmacokinetic (PK) model to describe typical profiles of insulin concentration over time following subcutaneous administration of various insulin formulations, the goal of the current analysis was to link the PK model to an integrated glucose‐insulin (IGI) systems pharmacology model. After the pharmacokinetic‐pharmacodynamic (PK‐PD) model was qualified by comparing model predictions with clinical observations, it was used to project insulin (PK) and glucose (PD) profiles of common insulin regimens and dosing scenarios. The application of the PK‐PD model to clinical scenarios was further explored by incorporating the impact of several hypothetical factors together, such as changing the timing or frequency of administration in a multiple‐dosing regimen over the course of a day, administration of more than 1 insulin formulation, or insulin dosing adjusted for carbohydrates in meals. Visualizations of insulin and glucose profiles for commonly prescribed regimens could be rapidly generated by implementing the linked subcutaneous insulin PK‐IGI model using the R statistical program (version 3.4.4) and a contemporary web‐based interface, which could enhance clinical education on glycemic control with insulin therapy.
Collapse
Affiliation(s)
| | - Lai San Tham
- Lilly Center for Clinical Pharmacology Pte Ltd, Singapore
| | | | | |
Collapse
|
14
|
Rozendaal YJW, Wang Y, Paalvast Y, Tambyrajah LL, Li Z, Willems van Dijk K, Rensen PCN, Kuivenhoven JA, Groen AK, Hilbers PAJ, van Riel NAW. In vivo and in silico dynamics of the development of Metabolic Syndrome. PLoS Comput Biol 2018; 14:e1006145. [PMID: 29879115 PMCID: PMC5991635 DOI: 10.1371/journal.pcbi.1006145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/13/2018] [Indexed: 12/16/2022] Open
Abstract
The Metabolic Syndrome (MetS) is a complex, multifactorial disorder that develops slowly over time presenting itself with large differences among MetS patients. We applied a systems biology approach to describe and predict the onset and progressive development of MetS, in a study that combined in vivo and in silico models. A new data-driven, physiological model (MINGLeD: Model INtegrating Glucose and Lipid Dynamics) was developed, describing glucose, lipid and cholesterol metabolism. Since classic kinetic models cannot describe slowly progressing disorders, a simulation method (ADAPT) was used to describe longitudinal dynamics and to predict metabolic concentrations and fluxes. This approach yielded a novel model that can describe long-term MetS development and progression. This model was integrated with longitudinal in vivo data that was obtained from male APOE*3-Leiden.CETP mice fed a high-fat, high-cholesterol diet for three months and that developed MetS as reflected by classical symptoms including obesity and glucose intolerance. Two distinct subgroups were identified: those who developed dyslipidemia, and those who did not. The combination of MINGLeD with ADAPT could correctly predict both phenotypes, without making any prior assumptions about changes in kinetic rates or metabolic regulation. Modeling and flux trajectory analysis revealed that differences in liver fluxes and dietary cholesterol absorption could explain this occurrence of the two different phenotypes. In individual mice with dyslipidemia dietary cholesterol absorption and hepatic turnover of metabolites, including lipid fluxes, were higher compared to those without dyslipidemia. Predicted differences were also observed in gene expression data, and consistent with the emergence of insulin resistance and hepatic steatosis, two well-known MetS co-morbidities. Whereas MINGLeD specifically models the metabolic derangements underlying MetS, the simulation method ADAPT is generic and can be applied to other diseases where dynamic modeling and longitudinal data are available.
Collapse
Affiliation(s)
- Yvonne J. W. Rozendaal
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Yanan Wang
- Department of Pediatrics, Section Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Yared Paalvast
- Department of Pediatrics, Section Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Lauren L. Tambyrajah
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Zhuang Li
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ko Willems van Dijk
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C. N. Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan A. Kuivenhoven
- Department of Pediatrics, Section Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Albert K. Groen
- Department of Pediatrics, Section Molecular Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Amsterdam Diabetes Center, Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter A. J. Hilbers
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Natal A. W. van Riel
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Amsterdam Diabetes Center, Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Geerts H, Spiros A, Roberts P. Impact of amyloid-beta changes on cognitive outcomes in Alzheimer's disease: analysis of clinical trials using a quantitative systems pharmacology model. Alzheimers Res Ther 2018; 10:14. [PMID: 29394903 PMCID: PMC5797372 DOI: 10.1186/s13195-018-0343-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/15/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Despite a tremendous amount of information on the role of amyloid in Alzheimer's disease (AD), almost all clinical trials testing this hypothesis have failed to generate clinically relevant cognitive effects. METHODS We present an advanced mechanism-based and biophysically realistic quantitative systems pharmacology computer model of an Alzheimer-type neuronal cortical network that has been calibrated with Alzheimer Disease Assessment Scale, cognitive subscale (ADAS-Cog) readouts from historical clinical trials and simulated the differential impact of amyloid-beta (Aβ40 and Aβ42) oligomers on glutamate and nicotinic neurotransmission. RESULTS Preclinical data suggest a beneficial effect of shorter Aβ forms within a limited dose range. Such a beneficial effect of Aβ40 on glutamate neurotransmission in human patients is absolutely necessary to reproduce clinical data on the ADAS-Cog in minimal cognitive impairment (MCI) patients with and without amyloid load, the effect of APOE genotype effect on the slope of the cognitive trajectory over time in placebo AD patients and higher sensitivity to cholinergic manipulation with scopolamine associated with higher Aβ in MCI subjects. We further derive a relationship between units of Aβ load in our model and the standard uptake value ratio from amyloid imaging. When introducing the documented clinical pharmacodynamic effects on Aβ levels for various amyloid-related clinical interventions in patients with low Aβ baseline, the platform predicts an overall significant worsening for passive vaccination with solanezumab, beta-secretase inhibitor verubecestat and gamma-secretase inhibitor semagacestat. In contrast, all three interventions improved cognition in subjects with moderate to high baseline Aβ levels, with verubecestat anticipated to have the greatest effect (around ADAS-Cog value 1.5 points), solanezumab the lowest (0.8 ADAS-Cog value points) and semagacestat in between. This could explain the success of many amyloid interventions in transgene animals with an artificial high level of Aβ, but not in AD patients with a large variability of amyloid loads. CONCLUSIONS If these predictions are confirmed in post-hoc analyses of failed clinical amyloid-modulating trials, one should question the rationale behind testing these interventions in early and prodromal subjects with low or zero amyloid load.
Collapse
Affiliation(s)
- Hugo Geerts
- In Silico Biosciences, 686 Westwind Dr, Berwyn, PA, 1312, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Athan Spiros
- In Silico Biosciences, 686 Westwind Dr, Berwyn, PA, 1312, USA
| | - Patrick Roberts
- In Silico Biosciences, 686 Westwind Dr, Berwyn, PA, 1312, USA
- Amazon AI AWS, Portland, OR, USA
| |
Collapse
|
16
|
Cross-talks via mTORC2 can explain enhanced activation in response to insulin in diabetic patients. Biosci Rep 2017; 37:BSR20160514. [PMID: 27986865 PMCID: PMC5271673 DOI: 10.1042/bsr20160514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/08/2016] [Accepted: 12/16/2016] [Indexed: 01/01/2023] Open
Abstract
The molecular mechanisms of insulin resistance in Type 2 diabetes have been
extensively studied in primary human adipocytes, and mathematical modelling has
clarified the central role of attenuation of mammalian target of rapamycin
(mTOR) complex 1 (mTORC1) activity in the diabetic state. Attenuation of mTORC1
in diabetes quells insulin-signalling network-wide, except for the mTOR in
complex 2 (mTORC2)-catalysed phosphorylation of protein kinase B (PKB) at
Ser473 (PKB-S473P), which is increased. This unique increase
could potentially be explained by feedback and interbranch cross-talk signals.
To examine if such mechanisms operate in adipocytes, we herein analysed data
from an unbiased phosphoproteomic screen in 3T3-L1 adipocytes. Using a
mathematical modelling approach, we showed that a negative signal from
mTORC1-p70 S6 kinase (S6K) to rictor–mTORC2 in combination with a
positive signal from PKB to SIN1–mTORC2 are compatible with the
experimental data. This combined cross-branch signalling predicted an increased
PKB-S473P in response to attenuation of mTORC1 – a distinguishing feature
of the insulin resistant state in human adipocytes. This aspect of insulin
signalling was then verified for our comprehensive model of insulin signalling
in human adipocytes. Introduction of the cross-branch signals was compatible
with all data for insulin signalling in human adipocytes, and the resulting
model can explain all data network-wide, including the increased PKB-S473P in
the diabetic state. Our approach was to first identify potential mechanisms in
data from a phosphoproteomic screen in a cell line, and then verify such
mechanisms in primary human cells, which demonstrates how an unbiased approach
can support a direct knowledge-based study.
Collapse
|
17
|
Knight-Schrijver V, Chelliah V, Cucurull-Sanchez L, Le Novère N. The promises of quantitative systems pharmacology modelling for drug development. Comput Struct Biotechnol J 2016; 14:363-370. [PMID: 27761201 PMCID: PMC5064996 DOI: 10.1016/j.csbj.2016.09.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/08/2016] [Accepted: 09/19/2016] [Indexed: 01/01/2023] Open
Abstract
Recent growth in annual new therapeutic entity (NTE) approvals by the U.S. Food and Drug Administration (FDA) suggests a positive trend in current research and development (R&D) output. Prior to this, the cost of each NTE was considered to be rising exponentially, with compound failure occurring mainly in clinical phases. Quantitative systems pharmacology (QSP) modelling, as an additional tool in the drug discovery arsenal, aims to further reduce NTE costs and improve drug development success. Through in silico mathematical modelling, QSP can simulate drug activity as perturbations in biological systems and thus understand the fundamental interactions which drive disease pathology, compound pharmacology and patient response. Here we review QSP, pharmacometrics and systems biology models with respect to the diseases covered as well as their clinical relevance and applications. Overall, the majority of modelling focus was aligned with the priority of drug-discovery and clinical trials. However, a few clinically important disease categories, such as Immune System Diseases and Respiratory Tract Diseases, were poorly covered by computational models. This suggests a possible disconnect between clinical and modelling agendas. As a standard element of the drug discovery pipeline the uptake of QSP might help to increase the efficiency of drug development across all therapeutic indications.
Collapse
Affiliation(s)
| | - V. Chelliah
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | | | - N. Le Novère
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
- Corresponding author.
| |
Collapse
|
18
|
Omholt SW, Hunter PJ. The Human Physiome: a necessary key for the creative destruction of medicine. Interface Focus 2016. [DOI: 10.1098/rsfs.2016.0003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Stig W. Omholt
- Faculty of Medicine, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Peter J. Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|