1
|
Ishantha Senevirathne SWMA, Yarlagadda PKDV. The effect of the dual scale surface topography of a surface-modified titanium alloy on its bactericidal activity against Pseudomonas aeruginosa. RSC Adv 2025; 15:7209-7223. [PMID: 40052105 PMCID: PMC11883467 DOI: 10.1039/d4ra07843h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/19/2025] [Indexed: 03/09/2025] Open
Abstract
The rapid advancement of antibacterial nanostructured surfaces indicates that they will soon be integrated into real-world applications. However, despite notable progress, a comprehensive understanding of the antibacterial properties of nanostructures remains elusive, posing a critical barrier to the translation of this in vitro technology into practical applications. Among the numerous antibacterial nanostructures developed, nanowire structures play an important role due to their enhanced efficacy against bacteria and viruses and their ease of fabrication. Antibacterial nanowire structures exhibit the dual capability of lysing bacteria upon surface adhesion and mitigating bacterial colonization. The interplay of surface energy significantly influences bacterial adhesion, and macro surface roughness appears to be a pivotal determining factor. Macro-scale surface roughness not only modulates surface energy but also results in micro-scale topographical features that impact the bactericidal efficacy of nanowire structures. The integration of nanofabrication techniques on surfaces with macro-scale roughness yields multi-hierarchical micro- and nanoscale features, thereby possibly amplifying the bactericidal effect. Pseudomonas aeruginosa is an opportunistic pathogen that can cause serious infections. Moreover, this species has a higher risk of developing antibiotic resistance, which makes treatments for infections extremely difficult. Nanowire structures have demonstrated higher efficacy against P. aeruginosa species, making it a good alternative for fighting P. aeruginosa infections. This study demonstrates that heightened surface roughness amplifies the bactericidal potency of nanowire structures against P. aeruginosa bacterial species. The bactericidal effect reaches its maximum when the average surface roughness value is close to the bacterial cell size. This is contrary to the conventional assumption that the substrate surface must be smooth for the nanostructures to work, as the nanowire structures exhibit robust bactericidal efficacy, even when fabricated on rough surfaces. Therefore, the applicability of bactericidal nanostructures is expanded beyond smooth substrates. Consequently, these nanostructures can be effectively deployed on rugged industrial surfaces, broadening their potential impact across a diverse array of sectors. The widespread adoption of this nanotechnology promises transformative benefits not only to the medical sector but also to various industries. Moreover, by curbing bacterial infections, nanostructured surfaces hold the potential to reduce mortality rates and yield more direct economic dividends through waste reduction and enhanced safety. Ultimately, the widespread implementation of antibacterial nanowire technology stands poised to improve societal well-being and quality of life.
Collapse
Affiliation(s)
- S W M Amal Ishantha Senevirathne
- Queensland University of Technology, Faculty of Engineering, School of Mechanical, Medical, and Process Engineering Brisbane QLD 4000 Australia
- Queensland University of Technology, Centre for Biomedical Technologies Brisbane QLD 4000 Australia
- Australian Research Council Industrial Transformation Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing Australia
| | - Prasad K D V Yarlagadda
- Queensland University of Technology, Faculty of Engineering, School of Mechanical, Medical, and Process Engineering Brisbane QLD 4000 Australia
- Queensland University of Technology, Centre for Biomedical Technologies Brisbane QLD 4000 Australia
- School of Engineering, University of Southern Queensland Springfield Campus Springfield Central QLD 4300 Australia
- Australian Research Council Industrial Transformation Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing Australia
| |
Collapse
|
2
|
Huang T, Linklater D, Li X, Gamage SSB, Alkazemi H, Farrugia B, Heath DE, O'Brien-Simpson NM, O'Connor AJ. One-Step Synthesis of Antimicrobial Polypeptide-Selenium Nanoparticles Exhibiting Broad-Spectrum Efficacy against Bacteria and Fungi with Superior Resistance Prevention. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68996-69010. [PMID: 39636760 DOI: 10.1021/acsami.4c17157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The growing threat of antimicrobial resistance (AMR) necessitates innovative strategies beyond conventional antibiotics. In response, we developed a rapid one-step method to sythesize antimicrobial peptide (AMP) ε-poly-L-lysine stabilized selenium nanoparticles (ε-PL-Se NPs). These polycrystalline NPs with highly positive net surface charges, exhibited superior antimicrobial activity against a broad panel of pathogens, including the Gram-positive and -negative bacteria Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa and their drug-resistant counterparts, as well as the yeast Candida albicans. Notably, 10PL-Se NPs exhibited 6-log reduction of methicillin-resistant S. aureus (MRSA) at a concentration of 5 μg/mL within 90 min, with minimum bactericidal concentrations (MBCs) below 50 μg/mL for all tested bacterial strains. The minimum fungicidal concentration (MFC) of 10PL-Se NPs against C. albicans was 26 ± 10 μg/mL. Crucially, bacteria exposed to ε-PL-Se NPs exhibited significantly delayed resistance development compared to the conventional antibiotic kanamycin. S. aureus developed resistance to kanamycin after ∼72 generations, whereas resistance to 10PL-Se NPs emerged after ∼216 generations. Remarkably, E. coli showed resistance to kanamycin after ∼39 generations but failed to develop resistance to 10PL-Se NPs even after 300 generations. This work highlights the synergistic interactions between ε-PL and Se NPs, offering a robust and scalable strategy to combat AMR.
Collapse
Affiliation(s)
- Tao Huang
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Denver Linklater
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Xin Li
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Shaveen S B Gamage
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Hazem Alkazemi
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Brooke Farrugia
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Daniel E Heath
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Neil M O'Brien-Simpson
- ACTV Research Group, Melbourne Dental School and The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Andrea J O'Connor
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Aikenhead Centre for Medical Discovery (ACMD), St Vincent's Hospital Melbourne Fitzroy, Melbourne, Victoria 3065, Australia
| |
Collapse
|
3
|
Hussein AH, Yassir YA. Graphene as a promising material in orthodontics: A review. J Orthod Sci 2024; 13:24. [PMID: 38784078 PMCID: PMC11114461 DOI: 10.4103/jos.jos_3_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/01/2024] [Accepted: 02/12/2024] [Indexed: 05/25/2024] Open
Abstract
Graphene is an extraordinary material with unique mechanical, chemical, and thermal properties. Additionally, it boasts high surface area and antimicrobial properties, making it an attractive option for researchers exploring innovative materials for biomedical applications. Although there have been various studies on graphene applications in different biomedical fields, limited reviews have been conducted on its use in dentistry, and no reviews have focused on its application in the orthodontic field. This review aims to present a comprehensive overview of graphene-based materials, with an emphasis on their antibacterial mechanisms and the factors that influence these properties. Additionally, the review summarizes the dental applications of graphene, spotlighting the studies of its orthodontic application as they can be used to enhance the antibacterial and mechanical properties of orthodontic materials such as adhesives, archwires, and splints. Also, they can be utilized to enhance bone remodeling during orthodontic tooth movement. An electronic search was carried out in Scopus, PubMed, Science Direct, and Wiley Online Library digital database platforms using graphene and orthodontics as keywords. The search was restricted to English language publications without a time limit. This review highlights the need for further laboratory and clinical research using graphene-based materials to improve the properties of orthodontic materials to make them available for clinical use.
Collapse
Affiliation(s)
- Afaf H. Hussein
- Department of Orthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Yassir A. Yassir
- Department of Orthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
- Department of Orthodontics, School of Dentistry, University of Dundee, UK
| |
Collapse
|
4
|
Battisti A, Samal SK, Puppi D. Biosensing Systems Based on Graphene Oxide Fluorescence Quenching Effect. MICROMACHINES 2023; 14:1522. [PMID: 37630058 PMCID: PMC10456591 DOI: 10.3390/mi14081522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023]
Abstract
Graphene oxide (GO) is a versatile material obtained by the strong oxidation of graphite. Among its peculiar properties, there is the outstanding ability to significantly alter the fluorescence of many common fluorophores and dyes. This property has been exploited in the design of novel switch-ON and switch-OFF fluorescence biosensing platforms for the detection of a plethora of biomolecules, especially pathological biomarkers and environmental contaminants. Currently, novel advanced strategies are being developed for therapeutic, diagnostic and theranostic approaches to widespread pathologies caused by viral or bacterial agents, as well as to cancer. This work illustrates an overview of the most recent applications of GO-based sensing systems relying on its fluorescence quenching effect.
Collapse
Affiliation(s)
- Antonella Battisti
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, p.zza San Silvestro 12, I-56127 Pisa, Italy
| | - Sangram Keshari Samal
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-RMRC, Bhubaneswar 751023, Odisha, India;
| | - Dario Puppi
- BIOLab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via Moruzzi 13, I-56124 Pisa, Italy;
| |
Collapse
|
5
|
Ristic B, Bosnjak M, Misirkic Marjanovic M, Stevanovic D, Janjetovic K, Harhaji-Trajkovic L. The Exploitation of Lysosomes in Cancer Therapy with Graphene-Based Nanomaterials. Pharmaceutics 2023; 15:1846. [PMID: 37514033 PMCID: PMC10383369 DOI: 10.3390/pharmaceutics15071846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Graphene-based nanomaterials (GNMs), including graphene, graphene oxide, reduced graphene oxide, and graphene quantum dots, may have direct anticancer activity or be used as nanocarriers for antitumor drugs. GNMs usually enter tumor cells by endocytosis and can accumulate in lysosomes. This accumulation prevents drugs bound to GNMs from reaching their targets, suppressing their anticancer effects. A number of chemical modifications are made to GNMs to facilitate the separation of anticancer drugs from GNMs at low lysosomal pH and to enable the lysosomal escape of drugs. Lysosomal escape may be associated with oxidative stress, permeabilization of the unstable membrane of cancer cell lysosomes, release of lysosomal enzymes into the cytoplasm, and cell death. GNMs can prevent or stimulate tumor cell death by inducing protective autophagy or suppressing autolysosomal degradation, respectively. Furthermore, because GNMs prevent bound fluorescent agents from emitting light, their separation in lysosomes may enable tumor cell identification and therapy monitoring. In this review, we explain how the characteristics of the lysosomal microenvironment and the unique features of tumor cell lysosomes can be exploited for GNM-based cancer therapy.
Collapse
Affiliation(s)
- Biljana Ristic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotića 1, 11000 Belgrade, Serbia
| | - Mihajlo Bosnjak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotića 1, 11000 Belgrade, Serbia
| | - Maja Misirkic Marjanovic
- Department of Neurophysiology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - Danijela Stevanovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotića 1, 11000 Belgrade, Serbia
| | - Kristina Janjetovic
- Department of Neurophysiology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| | - Ljubica Harhaji-Trajkovic
- Department of Neurophysiology, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia
| |
Collapse
|
6
|
Rajaramon S, David H, Sajeevan A, Shanmugam K, Sriramulu H, Dandela R, Solomon AP. Multi-functional approach in the design of smart surfaces to mitigate bacterial infections: a review. Front Cell Infect Microbiol 2023; 13:1139026. [PMID: 37287465 PMCID: PMC10242021 DOI: 10.3389/fcimb.2023.1139026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/03/2023] [Indexed: 06/09/2023] Open
Abstract
Advancements in biomedical devices are ingenious and indispensable in health care to save millions of lives. However, microbial contamination paves the way for biofilm colonisation on medical devices leading to device-associated infections with high morbidity and mortality. The biofilms elude antibiotics facilitating antimicrobial resistance (AMR) and the persistence of infections. This review explores nature-inspired concepts and multi-functional approaches for tuning in next-generation devices with antibacterial surfaces to mitigate resistant bacterial infections. Direct implementation of natural inspirations, like nanostructures on insect wings, shark skin, and lotus leaves, has proved promising in developing antibacterial, antiadhesive, and self-cleaning surfaces, including impressive SLIPS with broad-spectrum antibacterial properties. Effective antimicrobial touch surfaces, photocatalytic coatings on medical devices, and conventional self-polishing coatings are also reviewed to develop multi-functional antibacterial surfaces to mitigate healthcare-associated infections (HAIs).
Collapse
Affiliation(s)
- Shobana Rajaramon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Anusree Sajeevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Karthi Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Hrithiha Sriramulu
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Bhubaneswar, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
7
|
Antiviral Peptides in Antimicrobial Surface Coatings—From Current Techniques to Potential Applications. Viruses 2023; 15:v15030640. [PMID: 36992349 PMCID: PMC10051592 DOI: 10.3390/v15030640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
The transmission of pathogens through contact with contaminated surfaces is an important route for the spread of infections. The recent outbreak of COVID-19 highlights the necessity to attenuate surface-mediated transmission. Currently, the disinfection and sanitization of surfaces are commonly performed in this regard. However, there are some disadvantages associated with these practices, including the development of antibiotic resistance, viral mutation, etc.; hence, a better strategy is necessary. In recent years, peptides have been studied to be utilized as a potential alternative. They are part of the host immune defense and have many potential in vivo applications in drug delivery, diagnostics, immunomodulation, etc. Additionally, the ability of peptides to interact with different molecules and membrane surfaces of microorganisms has made it possible to exploit them in ex vivo applications such as antimicrobial (antibacterial and antiviral) coatings. Although antibacterial peptide coatings have been studied extensively and proven to be effective, antiviral coatings are a more recent development. Therefore, this study aims to highlight antiviral coating strategies and the current practices and application of antiviral coating materials in personal protective equipment, healthcare devices, and textiles and surfaces in public settings. Here, we have presented a review on potential techniques to incorporate peptides in current surface coating strategies that will serve as a guide for developing cost-effective, sustainable and coherent antiviral surface coatings. We further our discussion to highlight some challenges of using peptides as a surface coating material and to examine future perspectives.
Collapse
|
8
|
Photoactive decontamination and reuse of face masks. E-PRIME - ADVANCES IN ELECTRICAL ENGINEERING, ELECTRONICS AND ENERGY 2023:100129. [PMCID: PMC9942455 DOI: 10.1016/j.prime.2023.100129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The corona virus disease 2019 (COVID-19) pandemic has led to global shortages in disposable respirators. Increasing the recycling rate of masks is a direct, low-cost strategy to mitigate COVID-19 transmission. Photoactive decontamination of used masks attracts great attention due to its fast response, remarkable virus inactivation effect and full protection integrity. Here, we review state-of-the-art situation of photoactive decontamination. The basic mechanism of photoactive decontamination is firstly discussed in terms of ultraviolet, photothermal or photocatalytic properties. Among which, ultraviolet radiation damages DNA and RNA to inactivate viruses and microorganisms, and photothermal method damages them by destroying proteins, while photocatalysis kills them by destroying the structure. The practical applications of photoactive decontamination strategies are then fully reviewed, including ultraviolet germicidal irradiation, and unconventional masks made of functional nanomaterials with photothermal or photocatalytic properties. Their performance requirements are elaborated together with the advantages of long-term recycle use. Finally, we put forward challenges and prospects for further development of photoactive decontamination technology.
Collapse
|
9
|
Ameera Rosli N, Yeit Haan T, Mahmoudi E. Optimisation for the Synthesis of Uniformly Dispersed Antimicrobial Ag/GO Nanohybrid Latex Film. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
10
|
Lange A, Sawosz E, Daniluk K, Wierzbicki M, Małolepszy A, Gołębiewski M, Jaworski S. Bacterial Surface Disturbances Affecting Cell Function during Exposure to Three-Compound Nanocomposites Based on Graphene Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3058. [PMID: 36080095 PMCID: PMC9459733 DOI: 10.3390/nano12173058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/19/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Combating pathogenic microorganisms in an era of ever-increasing drug resistance is crucial. The aim of the study was to evaluate the antibacterial mechanism of three-compound nanocomposites that were based on graphene materials. To determine the nanomaterials' physicochemical properties, an analysis of the mean hydrodynamic diameter and zeta potential, transmission electron microscope (TEM) visualization and an FT-IR analysis were performed. The nanocomposites' activity toward bacteria species was defined by viability, colony forming units, conductivity and surface charge, cell wall integrity, ATP concentration, and intracellular pH. To ensure the safe usage of nanocomposites, the presence of cytokines was also analyzed. Both the graphene and graphene oxide (GO) nanocomposites exhibited a high antibacterial effect toward all bacteria species (Enterobacter cloacae, Listeria monocytogenes, Salmonella enterica, and Staphylococcus aureus), as well as exceeded values obtained from exposure to single nanoparticles. Nanocomposites caused the biggest membrane damage, along with ATP depletion. Nanocomposites that were based on GO resulted in lower toxicity to the cell line. In view of the many aspects that must be considered when investigating such complex structures as are three-component nanocomposites, studies of their mechanism of action are crucial to their potential antibacterial use.
Collapse
Affiliation(s)
- Agata Lange
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Ewa Sawosz
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Karolina Daniluk
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Artur Małolepszy
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, 00-654 Warsaw, Poland
| | - Marcin Gołębiewski
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| |
Collapse
|
11
|
Kodithuwakku P, Jayasundara D, Munaweera I, Jayasinghe R, Thoradeniya T, Weerasekera M, Ajayan PM, Kottegoda N. A Review on Recent Developments in Structural Modification of TiO2 For Food Packaging Applications. PROG SOLID STATE CH 2022. [DOI: 10.1016/j.progsolidstchem.2022.100369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Shi Y, Chen T, Shaw P, Wang PY. Manipulating Bacterial Biofilms Using Materiobiology and Synthetic Biology Approaches. Front Microbiol 2022; 13:844997. [PMID: 35875573 PMCID: PMC9301480 DOI: 10.3389/fmicb.2022.844997] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Bacteria form biofilms on material surfaces within hours. Biofilms are often considered problematic substances in the fields such as biomedical devices and the food industry; however, they are beneficial in other fields such as fermentation, water remediation, and civil engineering. Biofilm properties depend on their genome and the extracellular environment, including pH, shear stress, and matrices topography, stiffness, wettability, and charges during biofilm formation. These surface properties have feedback effects on biofilm formation at different stages. Due to emerging technology such as synthetic biology and genome editing, many studies have focused on functionalizing biofilm for specific applications. Nevertheless, few studies combine these two approaches to produce or modify biofilms. This review summarizes up-to-date materials science and synthetic biology approaches to controlling biofilms. The review proposed a potential research direction in the future that can gain better control of bacteria and biofilms.
Collapse
Affiliation(s)
- Yue Shi
- Oujiang Laboratory, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tingli Chen
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Peter Shaw
- Oujiang Laboratory, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Peng-Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
13
|
Pancewicz J, Niklińska WE, Chlanda A. Flake Graphene-Based Nanomaterial Approach for Triggering a Ferroptosis as an Attractive Theranostic Outlook for Tackling Non-Small Lung Cancer: A Mini Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3456. [PMID: 35629488 PMCID: PMC9143918 DOI: 10.3390/ma15103456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022]
Abstract
Lung cancer is a highly aggressive neoplasm that is now a leading cause of cancer death worldwide. One of the major approaches for killing cancer cells is related with activation of apoptotic cell death with anti-cancer drugs. However, the efficiency of apoptosis induction in tumors is limited. Consequently, the development of other forms of non-apoptotic cell death is up to date challenge for scientists worldwide. This situation motivated us to define the aim of this mini-review: gathering knowledge regarding ferroptosis-newly defined programmed cell death process characterized by the excessive accumulation of iron-and combining it with yet another interesting nanomaterial-based graphene approach. In this manuscript, we presented brief information about non-small lung cancer and ferroptosis, followed by a section depicting the key-features of graphene-based nanomaterials influencing their biologically relevant properties.
Collapse
Affiliation(s)
- Joanna Pancewicz
- Department of Histology and Embryology, Medical University in Bialystok, Waszyngtona 13, 15-269 Białystok, Poland; (J.P.); (W.E.N.)
| | - Wiesława Ewa Niklińska
- Department of Histology and Embryology, Medical University in Bialystok, Waszyngtona 13, 15-269 Białystok, Poland; (J.P.); (W.E.N.)
| | - Adrian Chlanda
- Graphene and Composites Research Group, Łukasiewicz Research Network—Institute of Microelectronics and Photonics, al. Lotników 32/46, 02-668 Warszawa, Poland
| |
Collapse
|
14
|
Omran B, Baek KH. Graphene-derived antibacterial nanocomposites for water disinfection: Current and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118836. [PMID: 35032599 DOI: 10.1016/j.envpol.2022.118836] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/29/2021] [Accepted: 01/08/2022] [Indexed: 05/11/2023]
Abstract
Antimicrobial nanomaterials provide numerous opportunities for the synthesis of next-generation sustainable water disinfectants. Using the keywords graphene and water disinfection and graphene antibacterial activity, a detailed search of the Scopus database yielded 198 and 1433 studies on using graphene for water disinfection applications and graphene antibacterial activity in the last ten years, respectively. Graphene family nanomaterials (GFNs) have emerged as effective antibacterial agents. The current innovations in graphene-, graphene oxide (GO)-, reduced graphene oxide (rGO)-, and graphene quantum dot (GQD)-based nanocomposites for water disinfection, including their functionalization with semiconductor photocatalysts and metal and metal oxide nanoparticles, have been thoroughly discussed in this review. Furthermore, their novel application in the fabrication of 3D porous hydrogels, thin films, and membranes has been emphasized. The physicochemical and structural properties affecting their antibacterial efficiency, such as sheet size, layer number, shape, edges, smoothness/roughness, arrangement mode, aggregation, dispersibility, and surface functionalization have been highlighted. The various mechanisms involved in GFN antibacterial action have been reviewed, including the mechanisms of membrane stress, ROS-dependent and -independent oxidative stress, cell wrapping/trapping, charge transfer, and interaction with cellular components. For safe applications, the potential biosafety and biocompatibility of GFNs in aquatic environments are emphasized. Finally, the current limitations and future perspectives are discussed. This review may provide ideas for developing efficient and practical solutions using graphene-, GO-, rGO-, and GQD-based nanocomposites in water disinfection by rationally employing their unique properties.
Collapse
Affiliation(s)
- Basma Omran
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo PO, 11727, Egypt
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
15
|
Abstract
Two-dimensional compounds with nanostructural features are attracting attention from researchers worldwide. Their multitude of applications in various fields and vast potential for future technology advancements are successively increasing the research progress. Wastewater treatment and preventing dangerous substances from entering the environment have become important aspects due to the increasing environmental awareness, and increasing consumer demands have resulted in the appearance of new, often nonbiodegradable compounds. In this review, we focus on using the most promising 2D materials, such as MXenes, Bi2WO6, and MOFs, as catalysts in the modification of the Fenton process to degrade nonbiodegradable compounds. We analyze the efficiency of the process, its toxicity, previous environmental applications, and the stability and reusability of the catalyst. We also discuss the catalyst’s mechanisms of action. Collectively, this work provides insight into the possibility of implementing 2D material-based catalysts for industrial and urban wastewater treatment.
Collapse
|
16
|
Syngouna VI, Kourtaki KI, Georgopoulou MP, Chrysikopoulos CV. The role of nanoparticles (titanium dioxide, graphene oxide) on the inactivation of co-existing bacteria in the presence and absence of quartz sand. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19199-19211. [PMID: 34709550 DOI: 10.1007/s11356-021-17086-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
The increased mass production and application of engineered nanomaterials (ENMs) have resulted in the release of nanoparticles (NPs) in the environment, raising uncertainties regarding their environmental impacts. This study examines the effect of graphene oxide (GO) and titanium dioxide (TiO2) NPs on the inactivation of the three model bacteria originated by mammalians including humans: Escherichia (E.) coli, Enterococcus (E.) faecalis, and Staphylococcus (S.) aureus. A series of dynamic batch experiments were conducted at constant room temperature (22 °C) in order to examine the inactivation of co-existing bacteria by NPs, in the presence and absence of quartz sand. The inactivation experimental data were satisfactorily fitted with a pseudo-first order expression with a time dependent rate coefficient. The inactivation of E. coli and S. aureus was shown to increase in the co-presence of GO or TiO2 NPs and quartz sand comparing with the presence of GO or TiO2 NPs alone. For E. faecalis, no clear trend was observed. Moreover, quartz sand was shown to affect inactivation of bacteria by GO and TiO2 NPs. Among the bacteria examined, the highest inactivation rates were observed for S. aureus.
Collapse
Affiliation(s)
- Vasiliki I Syngouna
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100, Chania, Greece.
- Department of Environment, Ionian University, 29100, Zakynthos, Greece.
| | - Kleanthi I Kourtaki
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100, Chania, Greece
| | - Maria P Georgopoulou
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100, Chania, Greece
| | | |
Collapse
|
17
|
Lohmann SC, Tripathy A, Milionis A, Keller A, Poulikakos D. Effect of Flexibility and Size of Nanofabricated Topographies on the Mechanobactericidal Efficacy of Polymeric Surfaces. ACS APPLIED BIO MATERIALS 2022; 5:1564-1575. [PMID: 35176858 DOI: 10.1021/acsabm.1c01318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Driven by the growing threat of antimicrobial resistance, the design of intrinsically bactericidal surfaces has been gaining significant attention. Proposed surface topography designs are often inspired by naturally occurring nanopatterns on insect wings that mechanically damage bacteria via membrane deformation. The stability of and the absence of chemicals in such surfaces support their facile and sustainable employment in avoiding surface-born pathogen transmission. Recently, the deflection of controllably nanofabricated pillar arrays has been shown to strongly affect bactericidal activity, with the limits of mechanical effectiveness of such structures remaining largely unexplored. Here, we examine the limits of softer, commonly used polymeric materials and investigate the interplay between pillar nanostructure sizing and flexibility for effective antibacterial functionality. A facile, scalable, UV nanoimprint lithography method was used to fabricate nanopillar array topographies of variable sizes and flexibilities. It was found that bacterial death on nanopillars in the range of diameters ≤100 nm and Young's moduli ≥1.3 GPa is increased by 3.5- to 5.6-fold, while thicker or softer pillars did not reduce bacterial viability. To further support our findings, we performed a finite element analysis of pillar deformation. It revealed that differences in the amount of stress exerted on bacterial membranes, generated from the stored elastic energy in flexible pillars, contribute to the observed bactericidal performance.
Collapse
Affiliation(s)
- Sophie C Lohmann
- Laboratory of Thermodynamics in Emerging Technologies, ETH Zurich, Zurich 8092, Switzerland
| | - Abinash Tripathy
- Laboratory of Thermodynamics in Emerging Technologies, ETH Zurich, Zurich 8092, Switzerland
| | - Athanasios Milionis
- Laboratory of Thermodynamics in Emerging Technologies, ETH Zurich, Zurich 8092, Switzerland
| | - Anja Keller
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich 8092, Switzerland
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, ETH Zurich, Zurich 8092, Switzerland
| |
Collapse
|
18
|
Abstract
Self-disinfecting surfaces are a current pressing need for public health and safety in view of the current COVID-19 pandemic, where the keenly felt worldwide repercussions have highlighted the importance of infection control, frequent disinfection, and proper hygiene. Because of its potential impact upon real-world translation into downstream applications, there has been much research interest in multiple disciplines such as materials science, chemistry, biology, and engineering. Various antimicrobial technologies have been developed and currently applied on surfaces in public spaces, such as elevator buttons and escalator handrails. These technologies are mainly based on conventional methods of grafting quaternary ammonium salts (QACs) such as benzalkonium chloride or the immobilization of metal species of silver or copper. However, neither the long-term efficacy nor the fast-killing properties have been proven, and the future repercussions from extended use, such as environmental hazards and the induction of MDR development, is unknown. Nanostructured surfaces with excellent antimicrobial activities have been claimed to be the next generation of self-disinfecting surfaces with various promising applications and passive antimicrobial mechanisms, without the potential repercussions of active ingredient overuse. In this Account, we briefly introduce the concept of mechanobactericidal action realized by these nanostructured surfaces first discovered on cicada wings. The elimination of microbes on the surface was actualized by the physical rupture of the microbe cell wall by nanoprotusions, without any involvement of chemical species. By mimicking the physical features of naturally occurring biocidal surfaces, the fabrication of nanostructures on various substrates such as titania, silicon, and polymers has been well described. Observations of the dependence of their antimicrobial efficacy on physical characteristics such as height, density, and rigidity have also been documented. However, the complex fabrication of such nanostructures remains the main drawback preventing its widespread application. We outline our efforts in fabricating a series of zinc-based nanostructured materials with facile and generally applicable wet chemistry methods, including nanodaggered zeolitic imidazolate frameworks (ZIF-L) and ZnO nanoneedles. In our investigations, we discovered that there were additional modes of action that contributed to the excellent biocidal activities of our materials. The impact of surface chemistry and charge was partially responsible for the selectivity and efficacy of ZIF-L-coated surfaces, where the positively charged surfaces were able to attract and adhere negatively charged bacteria to the surface. The combination of semiconductor ZnO nanoneedles on electron-donating substrates allowed for the generation of reactive oxygen species (ROS), realizing the remote killing of bacteria unadhered to the nanostructured surface. Additionally, we demonstrate several real-life applications of the synthesized materials, underscoring the importance of materials development suited for scale-up and eventual translation to potential applications and commercial end products.
Collapse
Affiliation(s)
| | - Yugen Zhang
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, S138669 Singapore
| |
Collapse
|
19
|
Kaur K, Reddy S, Barathe P, Shriram V, Anand U, Proćków J, Kumar V. Combating Drug-Resistant Bacteria Using Photothermally Active Nanomaterials: A Perspective Review. Front Microbiol 2021; 12:747019. [PMID: 34867863 PMCID: PMC8633304 DOI: 10.3389/fmicb.2021.747019] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/15/2021] [Indexed: 01/15/2023] Open
Abstract
Injudicious use of antibiotics has been the main driver of severe bacterial non-susceptibility to commonly available antibiotics (known as drug resistance or antimicrobial resistance), a global threat to human health and healthcare. There is an increase in the incidence and levels of resistance to antibacterial drugs not only in nosocomial settings but also in community ones. The drying pipeline of new and effective antibiotics has further worsened the situation and is leading to a potentially "post-antibiotic era." This requires novel and effective therapies and therapeutic agents for combating drug-resistant pathogenic microbes. Nanomaterials are emerging as potent antimicrobial agents with both bactericidal and potentiating effects reported against drug-resistant microbes. Among them, the photothermally active nanomaterials (PANs) are gaining attention for their broad-spectrum antibacterial potencies driven mainly by the photothermal effect, which is characterized by the conversion of absorbed photon energy into heat energy by the PANs. The current review capitalizes on the importance of using PANs as an effective approach for overcoming bacterial resistance to drugs. Various PANs leveraging broad-spectrum therapeutic antibacterial (both bactericidal and synergistic) potentials against drug-resistant pathogens have been discussed. The review also provides deeper mechanistic insights into the mechanisms of the action of PANs against a variety of drug-resistant pathogens with a critical evaluation of efflux pumps, cell membrane permeability, biofilm, and quorum sensing inhibition. We also discuss the use of PANs as drug carriers. This review also discusses possible cytotoxicities related to the therapeutic use of PANs and effective strategies to overcome this. Recent developments, success stories, challenges, and prospects are also presented.
Collapse
Affiliation(s)
- Kawaljeet Kaur
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Ganeshkhind, Savitribai Phule Pune University, Pune, India
| | - Sagar Reddy
- Department of Botany, Prof. Ramkrishna More College, Savitribai Phule Pune University, Pune, India
| | - Pramod Barathe
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Ganeshkhind, Savitribai Phule Pune University, Pune, India
| | - Varsha Shriram
- Department of Botany, Prof. Ramkrishna More College, Savitribai Phule Pune University, Pune, India
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce, Ganeshkhind, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
20
|
Poniatowska A, Trzaskowska PA, Trzaskowski M, Ciach T. Physicochemical and Biological Properties of Graphene-Oxide-Coated Metallic Materials. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5752. [PMID: 34640146 PMCID: PMC8510503 DOI: 10.3390/ma14195752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022]
Abstract
In this article, we present graphene oxide (produced by a modified Hummers' method) coatings obtained using two different methods: electrophoretic deposition on 316L stainless steel and chemical modification of the surface of gold applied to the steel. The coating properties were characterized by microscopic and spectrometric techniques. The contact angle was also determined, ranging from 50° to 70°. Our results indicated that GO coatings on steel and gold were not toxic towards L929 cells in a direct cell adhesion test-on all tested materials, it was possible to observe the growth of L929 cells during 48 h of culture. The lack of toxic effect on cells was also confirmed in two viability tests, XTT and MTT. For most of the tested materials, the cell viability was above 70%. They showed that the stability of the coating is the crucial factor for such GO coatings, and prove that GO in the form of coating is non-toxic; however, it can show toxicity if detached from the surface. The obtained materials also did not show any hemolytic properties, as the percentage of hemolysis was on the level of the negative control, which is very promising in the light of future potential applications.
Collapse
Affiliation(s)
- Aleksandra Poniatowska
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland;
| | - Paulina Anna Trzaskowska
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland; (P.A.T.); (M.T.)
| | - Maciej Trzaskowski
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland; (P.A.T.); (M.T.)
| | - Tomasz Ciach
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland;
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland; (P.A.T.); (M.T.)
| |
Collapse
|
21
|
Hu XL, Shang Y, Yan KC, Sedgwick AC, Gan HQ, Chen GR, He XP, James TD, Chen D. Low-dimensional nanomaterials for antibacterial applications. J Mater Chem B 2021; 9:3640-3661. [PMID: 33870985 DOI: 10.1039/d1tb00033k] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The excessive use of antibiotics has led to a rise in drug-resistant bacteria. These "superbugs" are continuously emerging and becoming increasingly harder to treat. As a result, new and effective treatment protocols that have minimal risks of generating drug-resistant bacteria are urgently required. Advanced nanomaterials are particularly promising due to their drug loading/releasing capabilities combined with their potential photodynamic/photothermal therapeutic properties. In this review, 0-dimensional, 1-dimensional, 2-dimensional, and 3-dimensional nanomaterial-based systems are comprehensively discussed for bacterial-based diagnostic and treatment applications. Since the use of these platforms as antibacterials is relatively new, this review will provide appropriate insight into their construction and applications. As such, we hope this review will inspire researchers to explore antibacterial-based nanomaterials with the aim of developing systems for clinical applications.
Collapse
Affiliation(s)
- Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Ying Shang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Kai-Cheng Yan
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA
| | - Hui-Qi Gan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK. and School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Daijie Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, China.
| |
Collapse
|
22
|
Importance of Surface Topography in Both Biological Activity and Catalysis of Nanomaterials: Can Catalysis by Design Guide Safe by Design? Int J Mol Sci 2021; 22:ijms22158347. [PMID: 34361117 PMCID: PMC8348784 DOI: 10.3390/ijms22158347] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022] Open
Abstract
It is acknowledged that the physicochemical properties of nanomaterials (NMs) have an impact on their toxicity and, eventually, their pathogenicity. These properties may include the NMs’ surface chemical composition, size, shape, surface charge, surface area, and surface coating with ligands (which can carry different functional groups as well as proteins). Nanotopography, defined as the specific surface features at the nanoscopic scale, is not widely acknowledged as an important physicochemical property. It is known that the size and shape of NMs determine their nanotopography which, in turn, determines their surface area and their active sites. Nanotopography may also influence the extent of dissolution of NMs and their ability to adsorb atoms and molecules such as proteins. Consequently, the surface atoms (due to their nanotopography) can influence the orientation of proteins as well as their denaturation. However, although it is of great importance, the role of surface topography (nanotopography) in nanotoxicity is not much considered. Many of the issues that relate to nanotopography have much in common with the fundamental principles underlying classic catalysis. Although these were developed over many decades, there have been recent important and remarkable improvements in the development and study of catalysts. These have been brought about by new techniques that have allowed for study at the nanoscopic scale. Furthermore, the issue of quantum confinement by nanosized particles is now seen as an important issue in studying nanoparticles (NPs). In catalysis, the manipulation of a surface to create active surface sites that enhance interactions with external molecules and atoms has much in common with the interaction of NP surfaces with proteins, viruses, and bacteria with the same active surface sites of NMs. By reviewing the role that surface nanotopography plays in defining many of the NMs’ surface properties, it reveals the need for its consideration as an important physicochemical property in descriptive and predictive toxicology. Through the manipulation of surface topography, and by using principles developed in catalysis, it may also be possible to make safe-by-design NMs with a reduction of the surface properties which contribute to their toxicity.
Collapse
|
23
|
Zhou C, Koshani R, O’Brien B, Ronholm J, Cao X, Wang Y. Bio-inspired mechano-bactericidal nanostructures: a promising strategy for eliminating surface foodborne bacteria. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.12.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Nazir S, Umar Aslam Khan M, Shamsan Al-Arjan W, Izwan Abd Razak S, Javed A, Rafiq Abdul Kadir M. Nanocomposite hydrogels for melanoma skin cancer care and treatment: In-vitro drug delivery, drug release kinetics and anti-cancer activities. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103120] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
25
|
Magne TM, de Oliveira Vieira T, Costa B, Alencar LMR, Ricci-Junior E, Hu R, Qu J, Zamora-Ledezma C, Alexis F, Santos-Oliveira R. Factors affecting the biological response of Graphene. Colloids Surf B Biointerfaces 2021; 203:111767. [PMID: 33878553 DOI: 10.1016/j.colsurfb.2021.111767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
Nanotechnology has gained significant importance in different fields of medical, electronic, and environmental science. This technology is founded on the use of materials at the nanoscale scale (1-100 nanometers) for various purposes, particularly in the biomedical area, where its application is growing daily due to the need of materials with advanced properties. Over the past few years, there has been a growing use for graphene and its derivative composite materials. However, different physico-chemical properties influence its biological response; therefore, further studies to explain the interactions of these nanomaterials with biological systems are critical. This review presents the current advances in the applications of graphene in biomedicine with a focus on the physico-chemical characteristics of the graphene family and their influences on biological interactions.
Collapse
Affiliation(s)
- Tais Monteiro Magne
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Novel Radiopharmaceuticals and Nanoradiopharmacy, R. Helio de Almeida, 75, Rio de Janeiro, 21941906, Brazil
| | - Thamires de Oliveira Vieira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Novel Radiopharmaceuticals and Nanoradiopharmacy, R. Helio de Almeida, 75, Rio de Janeiro, 21941906, Brazil
| | - Bianca Costa
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Novel Radiopharmaceuticals and Nanoradiopharmacy, R. Helio de Almeida, 75, Rio de Janeiro, 21941906, Brazil
| | | | - Eduardo Ricci-Junior
- Federal University of Rio de Janeiro, Laboratory of Nanomedicine, Av. Carlos Chagas Filho, 373, Cidade Universitária da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-170, Brazil
| | - Rui Hu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Camilo Zamora-Ledezma
- Tissue Regeneration and Repair: Orthobiology, Biomaterials & Tissue Engineering Group. UCAM - Universidad Católica de Murcia, Avda. Los Jerónimos 135, Guadalupe, 30107, Murcia, Spain
| | - Frank Alexis
- School of Physical Sciences and Nanotechnology, Yachay Tech University, 100119, Urcuquí, Ecuador
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Novel Radiopharmaceuticals and Nanoradiopharmacy, R. Helio de Almeida, 75, Rio de Janeiro, 21941906, Brazil; Zona Oeste State University, Laboratory of Nanoradiopharmacy and Synthesis of Radiopharmaceuticals, Av Manuel caldeira de Alvarenga, 200, Campo Grande, Rio de Janeiro, 2100000, Brazil.
| |
Collapse
|
26
|
Cai Y, Wang L, Hu H, Bing W, Tian L, Zhao J. A synergistic antibacterial platform: combining mechanical and photothermal effects based on Van-MoS 2-Au nanocomposites. NANOTECHNOLOGY 2021; 32:085102. [PMID: 33176290 DOI: 10.1088/1361-6528/abc98e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, we successfully developed a new multifunctional antibacterial system, which combined mechano-bactericidal (Au-nanostars) and photothermal (MoS2) mechanism. Meanwhile, the targeting molecule of vancomycin was modified on the surface of MoS2-Au nanocomposites (Van-MoS2-Au), that generally yield high efficiency in antibacterial performance due to their effective working radii. Van-MoS2-Au nanocomposites were capable of completely destroying both gram-negative (E. coli) and gram-positive (B. subtilis) bacteria under 808 NIR laser irradiation for 20 min, and nearly no bacterial growth was detected after 12 h incubation. Moreover, these nanocomposites could destruct the refractory biofilm as well, which was a much more difficult medical challenge. The new antibacterial nanomaterials might offer many biomedical applications because of the biocompatibility and strong antibacterial ability.
Collapse
Affiliation(s)
- Yujie Cai
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, People's Republic of China
- Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, People's Republic of China
| | - Luyao Wang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, People's Republic of China
- Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, People's Republic of China
| | - Haolu Hu
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, People's Republic of China
- Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, People's Republic of China
| | - Wei Bing
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, People's Republic of China
- Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, People's Republic of China
| | - Limei Tian
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, People's Republic of China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, People's Republic of China
| |
Collapse
|
27
|
Nasim I, Rajesh Kumar S, Vishnupriya V, Jabin Z. Cytotoxicity and anti-microbial analysis of silver and graphene oxide bio nanoparticles. Bioinformation 2020; 16:831-836. [PMID: 34803256 PMCID: PMC8573463 DOI: 10.6026/97320630016831] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 09/27/2020] [Accepted: 09/27/2020] [Indexed: 12/16/2022] Open
Abstract
It is of interest to document the cytotoxicity and anti microbial analysis of silver and graphene oxide nanoparticles. The plant extracts from Andrographis paniculata and Ocimum sanctum Linn were used as reducing agent. The nanoparticles were characterized using UV-visible spectroscopy, FT-IR, XRD and TEM. The antimicrobial activity was completed for oral pathogens. Brine Shrimp Lethality assay was conducted for cytotoxicity. Thus, we show that silver and graphene oxide bio based nanoparticles have antimicrobial activity with minimum cytotoxic effects.
Collapse
Affiliation(s)
- Iffat Nasim
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - S Rajesh Kumar
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
| | - V Vishnupriya
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai - 600 077, India
| | - Zohra Jabin
- Divya Jyoti College of Dental Sciences, Modinagar, Uttar Pradesh, India
| |
Collapse
|
28
|
Abstract
Antibiotic resistance is a global human health threat, causing routine treatments of bacterial infections to become increasingly difficult. The problem is exacerbated by biofilm formation by bacterial pathogens on the surfaces of indwelling medical and dental devices that facilitate high levels of tolerance to antibiotics. The development of new antibacterial nanostructured surfaces shows excellent prospects for application in medicine as next-generation biomaterials. The physico-mechanical interactions between these nanostructured surfaces and bacteria lead to bacterial killing or prevention of bacterial attachment and subsequent biofilm formation, and thus are promising in circumventing bacterial infections. This Review explores the impact of surface roughness on the nanoscale in preventing bacterial colonization of synthetic materials and categorizes the different mechanisms by which various surface nanopatterns exert the necessary physico-mechanical forces on the bacterial cell membrane that will ultimately result in cell death.
Collapse
|
29
|
Del Valle A, Torra J, Bondia P, Tone CM, Pedraz P, Vadillo-Rodriguez V, Flors C. Mechanically Induced Bacterial Death Imaged in Real Time: A Simultaneous Nanoindentation and Fluorescence Microscopy Study. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31235-31241. [PMID: 32476402 DOI: 10.1021/acsami.0c08184] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Mechano-bactericidal nanomaterials rely on their mechanical or physical interactions with bacteria and are promising antimicrobial strategies that overcome bacterial resistance. However, the real effect of mechanical versus chemical action on their activity is under debate. In this paper, we quantify the forces necessary to produce critical damage to the bacterial cell wall by performing simultaneous nanoindentation and fluorescence imaging of single bacterial cells. Our experimental setup allows puncturing the cell wall of an immobilized bacterium with the tip of an atomic force microscope (AFM) and following in real time the increase in the fluorescence signal from a cell membrane integrity marker. We correlate the forces exerted by the AFM tip with the fluorescence dynamics for tens of cells, and we find that forces above 20 nN are necessary to exert critical damage. Moreover, a similar experiment is performed in which bacterial viability is assessed through physiological activity, in order to gain a more complete view of the effect of mechanical forces on bacteria. Our results contribute to the quantitative understanding of the interaction between bacteria and nanomaterials.
Collapse
Affiliation(s)
- Adrián Del Valle
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), C/Faraday 9, Madrid 28049, Spain
| | - Joaquim Torra
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), C/Faraday 9, Madrid 28049, Spain
| | - Patricia Bondia
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), C/Faraday 9, Madrid 28049, Spain
| | - Caterina M Tone
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), C/Faraday 9, Madrid 28049, Spain
| | - Patricia Pedraz
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), C/Faraday 9, Madrid 28049, Spain
| | | | - Cristina Flors
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), C/Faraday 9, Madrid 28049, Spain
- Nanobiotechnology Unit Associated to the National Center for Biotechnology (CNB-CSIC-IMDEA), Madrid 28049, Spain
| |
Collapse
|
30
|
Liao C, Li Y, Tjong SC. Visible-Light Active Titanium Dioxide Nanomaterials with Bactericidal Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E124. [PMID: 31936581 PMCID: PMC7022691 DOI: 10.3390/nano10010124] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/16/2022]
Abstract
This article provides an overview of current research into the development, synthesis, photocatalytic bacterial activity, biocompatibility and cytotoxic properties of various visible-light active titanium dioxide (TiO2) nanoparticles (NPs) and their nanocomposites. To achieve antibacterial inactivation under visible light, TiO2 NPs are doped with metal and non-metal elements, modified with carbonaceous nanomaterials, and coupled with other metal oxide semiconductors. Transition metals introduce a localized d-electron state just below the conduction band of TiO2 NPs, thereby narrowing the bandgap and causing a red shift of the optical absorption edge into the visible region. Silver nanoparticles of doped TiO2 NPs experience surface plasmon resonance under visible light excitation, leading to the injection of hot electrons into the conduction band of TiO2 NPs to generate reactive oxygen species (ROS) for bacterial killing. The modification of TiO2 NPs with carbon nanotubes and graphene sheets also achieve the efficient creation of ROS under visible light irradiation. Furthermore, titanium-based alloy implants in orthopedics with enhanced antibacterial activity and biocompatibility can be achieved by forming a surface layer of Ag-doped titania nanotubes. By incorporating TiO2 NPs and Cu-doped TiO2 NPs into chitosan or the textile matrix, the resulting polymer nanocomposites exhibit excellent antimicrobial properties that can have applications as fruit/food wrapping films, self-cleaning fabrics, medical scaffolds and wound dressings. Considering the possible use of visible-light active TiO2 nanomaterials for various applications, their toxicity impact on the environment and public health is also addressed.
Collapse
Affiliation(s)
- Chengzhu Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuchao Li
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China;
| | - Sie Chin Tjong
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| |
Collapse
|
31
|
Peng E, Todorova N, Yarovsky I. Effects of Size and Functionalization on the Structure and Properties of Graphene Oxide Nanoflakes: An in Silico Investigation. ACS OMEGA 2018; 3:11497-11503. [PMID: 31459251 PMCID: PMC6645247 DOI: 10.1021/acsomega.8b00866] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/07/2018] [Indexed: 05/29/2023]
Abstract
Graphitic nanoparticles, specifically, graphene oxide (GO) nanoflakes, are of major interest in the field of nanotechnology, with potential applications ranging from drug delivery systems to energy storage devices. These applications are possible largely because of the properties imparted by various functional groups attached to the GO surface by relatively simple production methods compared to pristine graphene. We investigated how varying the size and oxidation of GO flakes can affect their structural and dynamic properties in an aqueous solution. The all-atom modeling of the GO nanoflakes of different sizes suggested that the curvature and roughness of relatively small (3 × 3 nm) GO flakes are not affected by their degree of oxidation. However, the larger (7 × 7 nm) flakes exhibited an increase in surface roughness as their oxidation increased. The analysis of water structure around the graphitic nanoparticles revealed that the degree of oxidation does not affect the water dipole orientations past the first hydration layer. Nevertheless, oxygen functionalization induced a well-structured first hydration layer, which manifested in identifiable hydrophobic and hydrophilic patches on GO. The detailed all-atom models of GO nanoflakes will guide a rational design of functional graphitic nanoparticles for biomedical and industrial applications.
Collapse
Affiliation(s)
- Enxi Peng
- School of Engineering, RMIT
University, GPO Box 2476V, 3001 Melbourne, Victoria, Australia
| | - Nevena Todorova
- School of Engineering, RMIT
University, GPO Box 2476V, 3001 Melbourne, Victoria, Australia
| | - Irene Yarovsky
- School of Engineering, RMIT
University, GPO Box 2476V, 3001 Melbourne, Victoria, Australia
| |
Collapse
|
32
|
Abstract
This issue of
Interface Focus
is a collection of papers on ‘The biomedical applications of graphene’. The idea to put together this theme issue evolved during discussions between Prof. Peter N.T. Wells CBE, FREng, FMedSci, FRS and myself in mid-2016. Very sadly, about a year ago, Prof. Wells passed away. However, before that and even in the various last stages of his life he was intensely involved in planning this theme issue with me. I am deeply indebted to him for his contributions towards this and I dedicate this theme issue to him as a memorial.
Collapse
|