1
|
Kolanovic D, Pasupuleti R, Wallner J, Mlynek G, Wiltschi B. Site-Specific Immobilization Boosts the Performance of a Galectin-1 Biosensor. Bioconjug Chem 2024; 35:1944-1958. [PMID: 39625149 DOI: 10.1021/acs.bioconjchem.4c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The analysis of protein-bound glycans has gained significant attention due to their pivotal roles in physiological and pathological processes like cell-cell recognition, immune response, and disease progression. Routine methods for glycan analysis are challenged by the very similar physicochemical properties of their carbohydrate components. As an alternative, lectins, which are proteins that specifically bind to glycans, have been integrated into biosensors for glycan detection. However, the effectiveness of protein-based biosensors depends heavily on the immobilization of proteins on the sensor surface. To enhance the sensitivity and/or selectivity of lectin biosensors, it is crucial to immobilize the lectin in an optimal orientation for ligand binding without compromising its function. Random immobilization methods often result in arbitrary orientation and reduced sensitivity. To address this, we explored a directed immobilization strategy relying on a reactive noncanonical amino acid (ncAA) and bioorthogonal chemistry. In this study, we site-specifically incorporated the reactive noncanonical lysine derivative, Nε-((2-azidoethoxy)carbonyl)-l-lysine, into a cysteine-less single-chain variant of human galectin-1 (scCSGal-1). The reactive bioorthogonal azide group allowed the directed immobilization of the lectin on a biosensor surface using strain-promoted azide-alkyne cycloaddition. Biolayer interferometry data demonstrated that the controlled, directed attachment of scCSGal-1 to the biosensor surface enhanced the binding sensitivity to glycosylated von Willebrand factor by about 12-fold compared to random immobilization. These findings emphasize the importance of controlled protein orientation in biosensor design. They also highlight the power of single site-specific genetic encoding of reactive ncAAs and bioorthogonal chemistry to improve the performance of lectin-based diagnostic tools.
Collapse
Affiliation(s)
- Dajana Kolanovic
- acib - Austrian Centre of Industrial Biotechnology, Graz 8010, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, Graz 8010, Austria
| | - Rajeev Pasupuleti
- acib - Austrian Centre of Industrial Biotechnology, Graz 8010, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, Graz 8010, Austria
| | - Jakob Wallner
- BOKU Core Facility Biomolecular & Cellular Analysis, BOKU University, Vienna 1190, Austria
| | - Georg Mlynek
- BOKU Core Facility Biomolecular & Cellular Analysis, BOKU University, Vienna 1190, Austria
| | - Birgit Wiltschi
- acib - Austrian Centre of Industrial Biotechnology, Graz 8010, Austria
- Institute of Bioprocess Science and Engineering, Department of Biotechnology, BOKU University, Vienna 1190, Austria
| |
Collapse
|
2
|
Li P, Liu Z. Glycan-specific molecularly imprinted polymers towards cancer diagnostics: merits, applications, and future perspectives. Chem Soc Rev 2024; 53:1870-1891. [PMID: 38223993 DOI: 10.1039/d3cs00842h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Aberrant glycans are a hallmark of cancer states. Notably, emerging evidence has demonstrated that the diagnosis of cancers with tumour-specific glycan patterns holds great potential to address unmet medical needs, especially in improving diagnostic sensitivity and selectivity. However, despite vast glycans having been identified as potent markers, glycan-based diagnostic methods remain largely limited in clinical practice. There are several reasons that prevent them from reaching the market, and the lack of anti-glycan antibodies is one of the most challenging hurdles. With the increasing need for accelerating the translational process, numerous efforts have been made to find antibody alternatives, such as lectins, boronic acids and aptamers. However, issues concerning affinity, selectivity, stability and versatility are yet to be fully addressed. Molecularly imprinted polymers (MIPs), synthetic antibody mimics with tailored cavities for target molecules, hold the potential to revolutionize this dismal progress. MIPs can bind a wide range of glycan markers, even those without specific antibodies. This capacity effectively broadens the clinical applicability of glycan-based diagnostics. Additionally, glycoform-resolved diagnosis can also be achieved through customization of MIPs, allowing for more precise diagnostic applications. In this review, we intent to introduce the current status of glycans as potential biomarkers and critically evaluate the challenges that hinder the development of in vitro diagnostic assays, with a particular focus on glycan-specific recognition entities. Moreover, we highlight the key role of MIPs in this area and provide examples of their successful use. Finally, we conclude the review with the remaining challenges, future outlook, and emerging opportunities.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China.
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
3
|
Radojičić O, Pažitná L, Dobrijević Z, Kundalia P, Kianičková K, Katrlík J, Marković VM, Miković Ž, Nedić O, Robajac D. Serum Glycome as a Diagnostic and Prognostic Factor in Gestational Diabetes Mellitus. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:148-158. [PMID: 38467551 DOI: 10.1134/s0006297924010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 03/13/2024]
Abstract
Gestational diabetes mellitus (GDM) is a risk factor for both mother and fetus/neonate during and after the pregnancy. Inconsistent protocols and cumbersome screening procedures warrant the search for new and easily accessible biomarkers. We investigated a potential of serum N-glycome to differentiate between healthy pregnant women (n = 49) and women with GDM (n = 53) using a lectin-based microarray and studied the correlation between the obtained data and parameters of glucose and lipid metabolism. Four out of 15 lectins used were able to detect the differences between the control and GDM groups in fucosylation, terminal galactose/N-acetylglucosamine (Gal/GlcNAc), presence of Galα1,4Galβ1,4Glc (Gb3 antigen), and terminal α2,3-sialylation with AUC values above 60%. An increase in the Gb3 antigen and α2,3-sialylation correlated positively with GDM, whereas the amount of fucosylated glycans correlated negatively with the content of terminal Gal/GlcNAc. The content of GlcNAc oligomers correlated with the highest number of blood analytes, indices, and demographic characteristics, but failed to discriminate between the groups. The presence of terminal Gal residues correlated positively with the glucose levels and negatively with the LDL levels in the non-GDM group only. The results suggest fucosylation, terminal galactosylation, and the presence of Gb3 antigen as prediction markers of GDM.
Collapse
Affiliation(s)
- Ognjen Radojičić
- Department of High-Risk Pregnancies, University Clinic for Gynecology and Obstetrics "Narodni Front", Belgrade, Serbia.
| | - Lucia Pažitná
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Zorana Dobrijević
- Department for Metabolism, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia.
| | - Paras Kundalia
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | - Jaroslav Katrlík
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Vesna Mandić Marković
- Department of High-Risk Pregnancies, University Clinic for Gynecology and Obstetrics "Narodni Front", Belgrade, Serbia.
- Medical School, University of Belgrade, Belgrade, Serbia
| | - Željko Miković
- Department of High-Risk Pregnancies, University Clinic for Gynecology and Obstetrics "Narodni Front", Belgrade, Serbia.
- Medical School, University of Belgrade, Belgrade, Serbia
| | - Olgica Nedić
- Department for Metabolism, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia.
| | - Dragana Robajac
- Department for Metabolism, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
4
|
Notova S, Imberty A. Tuning specificity and topology of lectins through synthetic biology. Curr Opin Chem Biol 2023; 73:102275. [PMID: 36796139 DOI: 10.1016/j.cbpa.2023.102275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 02/16/2023]
Abstract
Lectins are non-immunoglobulin and non-catalytic glycan binding proteins that are able to decipher the structure and function of complex glycans. They are widely used as biomarkers for following alteration of glycosylation state in many diseases and have application in therapeutics. Controlling and extending lectin specificity and topology is the key for obtaining better tools. Furthermore, lectins and other glycan binding proteins can be combined with additional domains, providing novel functionalities. We provide a view on the current strategy with a focus on synthetic biology approaches yielding to novel specificity, but other novel architectures with novel application in biotechnology or therapy.
Collapse
Affiliation(s)
- Simona Notova
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Anne Imberty
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France.
| |
Collapse
|
5
|
Rosato F, Pasupuleti R, Tomisch J, Meléndez AV, Kolanovic D, Makshakova ON, Wiltschi B, Römer W. A bispecific, crosslinking lectibody activates cytotoxic T cells and induces cancer cell death. J Transl Med 2022; 20:578. [PMID: 36494671 PMCID: PMC9733292 DOI: 10.1186/s12967-022-03794-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Aberrant glycosylation patterns play a crucial role in the development of cancer cells as they promote tumor growth and aggressiveness. Lectins recognize carbohydrate antigens attached to proteins and lipids on cell surfaces and represent potential tools for application in cancer diagnostics and therapy. Among the emerging cancer therapies, immunotherapy has become a promising treatment modality for various hematological and solid malignancies. Here we present an approach to redirect the immune system into fighting cancer by targeting altered glycans at the surface of malignant cells. We developed a so-called "lectibody", a bispecific construct composed of a lectin linked to an antibody fragment. This lectibody is inspired by bispecific T cell engager (BiTEs) antibodies that recruit cytotoxic T lymphocytes (CTLs) while simultaneously binding to tumor-associated antigens (TAAs) on cancer cells. The tumor-related glycosphingolipid globotriaosylceramide (Gb3) represents the target of this proof-of-concept study. It is recognized with high selectivity by the B-subunit of the pathogen-derived Shiga toxin, presenting opportunities for clinical development. METHODS The lectibody was realized by conjugating an anti-CD3 single-chain antibody fragment to the B-subunit of Shiga toxin to target Gb3+ cancer cells. The reactive non-canonical amino acid azidolysine (AzK) was inserted at predefined single positions in both proteins. The azido groups were functionalized by bioorthogonal conjugation with individual linkers that facilitated selective coupling via an alternative bioorthogonal click chemistry reaction. In vitro cell-based assays were conducted to evaluate the antitumoral activity of the lectibody. CTLs, Burkitt´s lymphoma-derived cells and colorectal adenocarcinoma cell lines were screened in flow cytometry and cytotoxicity assays for activation and lysis, respectively. RESULTS This proof-of-concept study demonstrates that the lectibody activates T cells for their cytotoxic signaling, redirecting CTLs´ cytotoxicity in a highly selective manner and resulting in nearly complete tumor cell lysis-up to 93%-of Gb3+ tumor cells in vitro. CONCLUSIONS This research highlights the potential of lectins in targeting certain tumors, with an opportunity for new cancer treatments. When considering a combinatorial strategy, lectin-based platforms of this type offer the possibility to target glycan epitopes on tumor cells and boost the efficacy of current therapies, providing an additional strategy for tumor eradication and improving patient outcomes.
Collapse
Affiliation(s)
- Francesca Rosato
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Rajeev Pasupuleti
- ACIB - The Austrian Centre of Industrial Biotechnology, Graz, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| | - Jana Tomisch
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Ana Valeria Meléndez
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Dajana Kolanovic
- ACIB - The Austrian Centre of Industrial Biotechnology, Graz, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| | - Olga N Makshakova
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Kazan Institute for Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russian Federation
| | - Birgit Wiltschi
- ACIB - The Austrian Centre of Industrial Biotechnology, Graz, Austria.
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria.
- Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
6
|
Tobola F, Wiltschi B. One, two, many: Strategies to alter the number of carbohydrate binding sites of lectins. Biotechnol Adv 2022; 60:108020. [PMID: 35868512 DOI: 10.1016/j.biotechadv.2022.108020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/23/2022] [Accepted: 07/15/2022] [Indexed: 11/29/2022]
Abstract
Carbohydrates are more than an energy-storage. They are ubiquitously found on cells and most proteins, where they encode biological information. Lectins bind these carbohydrates and are essential for translating the encoded information into biological functions and processes. Hundreds of lectins are known, and they are found in all domains of life. For half a century, researchers have been preparing variants of lectins in which the binding sites are varied. In this way, the traits of the lectins such as the affinity, avidity and specificity towards their ligands as well as their biological efficacy were changed. These efforts helped to unravel the biological importance of lectins and resulted in improved variants for biotechnological exploitation and potential medical applications. This review gives an overview on the methods for the preparation of artificial lectins and complexes thereof and how reducing or increasing the number of binding sites affects their function.
Collapse
Affiliation(s)
- Felix Tobola
- acib - Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria; Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria.
| | - Birgit Wiltschi
- acib - Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria; Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria; Institute of Bioprocess Science and Engineering, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
7
|
Tobola F, Lepšík M, Zia SR, Leffler H, Nilsson UJ, Blixt O, Imberty A, Wiltschi B. Engineering the ligand specificity of the human galectin-1 by incorporation of tryptophan analogs. Chembiochem 2022; 23:e202100593. [PMID: 34978765 DOI: 10.1002/cbic.202100593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/23/2021] [Indexed: 11/05/2022]
Abstract
Galectin-1 is a β-galactoside-binding lectin with manifold biological functions. A single tryptophan residue (W68) in its carbohydrate binding site plays a major role in ligand binding and is highly conserved among galectins. To fine tune galectin-1 specificity, we introduced several non-canonical tryptophan analogs at this position of human galectin-1 and analyzed the resulting variants using glycan microarrays. Two variants containing 7-azatryptophan and 7-fluorotryptophan showed a reduced affinity for 3'-sulfated oligosaccharides. Their interaction with different ligands was further analyzed by fluorescence polarization competition assay. Using molecular modeling we provide structural clues that the change in affinities comes from modulated interactions and solvation patterns. Thus, we show that the introduction of subtle atomic mutations in the ligand binding site of galectin-1 is an attractive approach for fine-tuning its interactions with different ligands.
Collapse
Affiliation(s)
- Felix Tobola
- Graz University of Technology: Technische Universitat Graz, Institute of Molecular Biotechnology, Petersgasse 14, 8010, Graz, AUSTRIA
| | - Martin Lepšík
- Université Grenoble Alpes: Universite Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, FRANCE
| | | | - Hakon Leffler
- Lund University: Lunds Universitet, Laboratory Medicine Section MIG, Klinikgatan 28, 221 84, Lund, SWEDEN
| | - Ulf J Nilsson
- Lund University: Lunds Universitet, Centre for Analysis and Synthesis, Department of Chemistry, Box 124, 221 00, Lund, SWEDEN
| | - Ola Blixt
- Technical University of Denmark: Danmarks Tekniske Universitet, Biotechnology and Biomedicine, Søltofts Plads, 2800, Kgs. Lyngby, DENMARK
| | - Anne Imberty
- Université Grenoble Alpes: Universite Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, FRANCE
| | - Birgit Wiltschi
- Austrian Centre of Industrial Biotechnology, Synthetic Biology, Petersgasse 14, 8010, Graz, AUSTRIA
| |
Collapse
|
8
|
Haigh JL, Williamson DJ, Poole E, Guo Y, Zhou D, Webb ME, Deuchars SA, Deuchars J, Turnbull WB. A versatile cholera toxin conjugate for neuronal targeting and tracing. Chem Commun (Camb) 2020; 56:6098-6101. [DOI: 10.1039/d0cc01085e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel azido-modified cholera toxin B-subunit has been developed for use in vivo as a neuronal tracer.
Collapse
Affiliation(s)
- Jessica L. Haigh
- School of Chemistry and Astbury Centre for Structural Molecular Biology
- University of Leeds
- Leeds LS2 9JT
- UK
- School of Biomedical Sciences
| | - Daniel J. Williamson
- School of Chemistry and Astbury Centre for Structural Molecular Biology
- University of Leeds
- Leeds LS2 9JT
- UK
| | - Emma Poole
- School of Chemistry and Astbury Centre for Structural Molecular Biology
- University of Leeds
- Leeds LS2 9JT
- UK
| | - Yuan Guo
- School of Food Science and Nutrition
- University of Leeds
- Leeds LS2 9JT
- UK
| | - Dejian Zhou
- School of Chemistry and Astbury Centre for Structural Molecular Biology
- University of Leeds
- Leeds LS2 9JT
- UK
| | - Michael E. Webb
- School of Chemistry and Astbury Centre for Structural Molecular Biology
- University of Leeds
- Leeds LS2 9JT
- UK
| | - Susan A. Deuchars
- School of Biomedical Sciences
- Faculty of Biological Sciences
- University of Leeds
- Leeds LS2 9JT
- UK
| | - Jim Deuchars
- School of Biomedical Sciences
- Faculty of Biological Sciences
- University of Leeds
- Leeds LS2 9JT
- UK
| | - W. Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology
- University of Leeds
- Leeds LS2 9JT
- UK
| |
Collapse
|
9
|
Abstract
Re-engineering carbohydrates and carbohydrate-binding proteins for novel applications was the topic of a Royal Society Theo Murphy meeting at the Kavli Royal Society Centre, Chichelely Hall in Buckinghamshire, UK, 8–9 October 2018.
Collapse
Affiliation(s)
- W. Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Anne Imberty
- University Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Ola Blixt
- Department of Chemistry, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|