1
|
Nartallo-Kaluarachchi R, Bonetti L, Fernández-Rubio G, Vuust P, Deco G, Kringelbach ML, Lambiotte R, Goriely A. Multilevel irreversibility reveals higher-order organization of nonequilibrium interactions in human brain dynamics. Proc Natl Acad Sci U S A 2025; 122:e2408791122. [PMID: 40053364 PMCID: PMC11912438 DOI: 10.1073/pnas.2408791122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 01/28/2025] [Indexed: 03/19/2025] Open
Abstract
Information processing in the human brain can be modeled as a complex dynamical system operating out of equilibrium with multiple regions interacting nonlinearly. Yet, despite extensive study of the global level of nonequilibrium in the brain, quantifying the irreversibility of interactions among brain regions at multiple levels remains an unresolved challenge. Here, we present the Directed Multiplex Visibility Graph Irreversibility framework, a method for analyzing neural recordings using network analysis of time-series. Our approach constructs directed multilayer graphs from multivariate time-series where information about irreversibility can be decoded from the marginal degree distributions across the layers, which each represents a variable. This framework is able to quantify the irreversibility of every interaction in the complex system. Applying the method to magnetoencephalography recordings during a long-term memory recognition task, we quantify the multivariate irreversibility of interactions between brain regions and identify the combinations of regions which showed higher levels of nonequilibrium in their interactions. For individual regions, we find higher irreversibility in cognitive versus sensorial brain regions while for pairs, strong relationships are uncovered between cognitive and sensorial pairs in the same hemisphere. For triplets and quadruplets, the most nonequilibrium interactions are between cognitive-sensorial pairs alongside medial regions. Combining these results, we show that multilevel irreversibility offers unique insights into the higher-order, hierarchical organization of neural dynamics from the perspective of brain network dynamics.
Collapse
Affiliation(s)
- Ramón Nartallo-Kaluarachchi
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford OX3 9BX, United Kingdom
- The Alan Turing Institute, London NW1 2DB, United Kingdom
| | - Leonardo Bonetti
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford OX3 9BX, United Kingdom
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus 8000, Denmark
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
| | - Gemma Fernández-Rubio
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus 8000, Denmark
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus 8000, Denmark
| | - Gustavo Deco
- Centre for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona 08018, Spain
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona 08018, Spain
- Institució Catalana de la Recerca i Estudis Avancats, Barcelona 08010, Spain
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford OX3 9BX, United Kingdom
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus 8000, Denmark
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
| | - Renaud Lambiotte
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
- The Alan Turing Institute, London NW1 2DB, United Kingdom
| | - Alain Goriely
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, United Kingdom
| |
Collapse
|
2
|
Zheng Y, Yang Y, Zhen Y, Wang X, Liu L, Zheng H, Tang S. Understanding Altered Dynamics in Cocaine Use Disorder Through State Transitions Mediated by Artificial Perturbations. Brain Sci 2025; 15:263. [PMID: 40149783 PMCID: PMC11939957 DOI: 10.3390/brainsci15030263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Cocaine use disorder (CUD) poses a worldwide health challenge, with severe consequences for brain function. However, the phase dynamics underlying CUD and the transitions between CUD and health remain poorly understood. Methods: Here, we used resting-state functional magnetic resonance imaging (fMRI) data from 43 CUD patients and 45 healthy controls (HCT). We performed empirical analysis to identify phase-coherence states and compared their probabilities of occurrence between conditions. To further explore the underlying mechanism, we employed computational modeling to replicate the observed state probabilities for each condition. These generated whole-brain models enabled us to simulate external perturbations and identify optimal brain regions mediating transitions between HCT and CUD. Results: We found that CUD was associated with a reduced occurrence probability of the state dominated by the default mode network (DMN). Perturbing the nucleus accumbens, thalamus, and specific regions within the default mode, limbic and frontoparietal networks drives transitions from HCT to CUD, while perturbing the hippocampus and specific regions within the visual, dorsal attention, and DMN facilitates a return from CUD to HCT. Conclusions: This study revealed altered DMN-related dynamics in CUD from the phase perspective and provides potential regions critical for state transitions. The results contribute to understanding the pathogenesis of CUD and the development of therapeutic stimulation strategies.
Collapse
Affiliation(s)
- Yi Zheng
- School of Mathematical Sciences, Beihang University, Beijing 100191, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
| | - Yaqian Yang
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China
| | - Yi Zhen
- School of Mathematical Sciences, Beihang University, Beijing 100191, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
| | - Xin Wang
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China
- Zhongguancun Laboratory, Beijing 100094, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China
- State Key Laboratory of Complex & Critical Software Environment, Beihang University, Beijing 100191, China
| | - Longzhao Liu
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China
- Zhongguancun Laboratory, Beijing 100094, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China
- State Key Laboratory of Complex & Critical Software Environment, Beihang University, Beijing 100191, China
| | - Hongwei Zheng
- Beijing Academy of Blockchain and Edge Computing, Beijing 100085, China
| | - Shaoting Tang
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China
- Zhongguancun Laboratory, Beijing 100094, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China
- State Key Laboratory of Complex & Critical Software Environment, Beihang University, Beijing 100191, China
- Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
3
|
Varley TF, Havert D, Fosque L, Alipour A, Weerawongphrom N, Naganobori H, O’Shea L, Pope M, Beggs J. The serotonergic psychedelic N,N-dipropyltryptamine alters information-processing dynamics in in vitro cortical neural circuits. Netw Neurosci 2024; 8:1421-1438. [PMID: 39735490 PMCID: PMC11674936 DOI: 10.1162/netn_a_00408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/08/2024] [Indexed: 12/31/2024] Open
Abstract
Most of the recent work in psychedelic neuroscience has been done using noninvasive neuroimaging, with data recorded from the brains of adult volunteers under the influence of a variety of drugs. While these data provide holistic insights into the effects of psychedelics on whole-brain dynamics, the effects of psychedelics on the mesoscale dynamics of neuronal circuits remain much less explored. Here, we report the effects of the serotonergic psychedelic N,N-diproptyltryptamine (DPT) on information-processing dynamics in a sample of in vitro organotypic cultures of cortical tissue from postnatal rats. Three hours of spontaneous activity were recorded: an hour of predrug control, an hour of exposure to 10-μM DPT solution, and a final hour of washout, once again under control conditions. We found that DPT reversibly alters information dynamics in multiple ways: First, the DPT condition was associated with a higher entropy of spontaneous firing activity and reduced the amount of time information was stored in individual neurons. Second, DPT also reduced the reversibility of neural activity, increasing the entropy produced and suggesting a drive away from equilibrium. Third, DPT altered the structure of neuronal circuits, decreasing the overall information flow coming into each neuron, but increasing the number of weak connections, creating a dynamic that combines elements of integration and disintegration. Finally, DPT decreased the higher order statistical synergy present in sets of three neurons. Collectively, these results paint a complex picture of how psychedelics regulate information processing in mesoscale neuronal networks in cortical tissue. Implications for existing hypotheses of psychedelic action, such as the entropic brain hypothesis, are discussed.
Collapse
Affiliation(s)
- Thomas F. Varley
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Vermont Complex Systems Center, University of Vermont, Burlington, VT, USA
| | - Daniel Havert
- Department of Physics, Indiana University, Bloomington, IN, USA
| | - Leandro Fosque
- Department of Physics, Indiana University, Bloomington, IN, USA
| | - Abolfazl Alipour
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | | | | | | | - Maria Pope
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - John Beggs
- Department of Physics, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| |
Collapse
|
4
|
Benozzo D, Baggio G, Baron G, Chiuso A, Zampieri S, Bertoldo A. Analyzing asymmetry in brain hierarchies with a linear state-space model of resting-state fMRI data. Netw Neurosci 2024; 8:965-988. [PMID: 39355437 PMCID: PMC11424037 DOI: 10.1162/netn_a_00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/02/2024] [Indexed: 10/03/2024] Open
Abstract
This study challenges the traditional focus on zero-lag statistics in resting-state functional magnetic resonance imaging (rsfMRI) research. Instead, it advocates for considering time-lag interactions to unveil the directionality and asymmetries of the brain hierarchy. Effective connectivity (EC), the state matrix in dynamical causal modeling (DCM), is a commonly used metric for studying dynamical properties and causal interactions within a linear state-space system description. Here, we focused on how time-lag statistics are incorporated within the framework of DCM resulting in an asymmetric EC matrix. Our approach involves decomposing the EC matrix, revealing a steady-state differential cross-covariance matrix that is responsible for modeling information flow and introducing time-irreversibility. Specifically, the system's dynamics, influenced by the off-diagonal part of the differential covariance, exhibit a curl steady-state flow component that breaks detailed balance and diverges the dynamics from equilibrium. Our empirical findings indicate that the EC matrix's outgoing strengths correlate with the flow described by the differential cross covariance, while incoming strengths are primarily driven by zero-lag covariance, emphasizing conditional independence over directionality.
Collapse
Affiliation(s)
- Danilo Benozzo
- Information Engineering Department, University of Padova, Padova, Italy
| | - Giacomo Baggio
- Information Engineering Department, University of Padova, Padova, Italy
| | - Giorgia Baron
- Information Engineering Department, University of Padova, Padova, Italy
| | - Alessandro Chiuso
- Information Engineering Department, University of Padova, Padova, Italy
| | - Sandro Zampieri
- Information Engineering Department, University of Padova, Padova, Italy
| | - Alessandra Bertoldo
- Information Engineering Department, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
5
|
Kringelbach ML, Sanz Perl Y, Deco G. The Thermodynamics of Mind. Trends Cogn Sci 2024; 28:568-581. [PMID: 38677884 DOI: 10.1016/j.tics.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/29/2024]
Abstract
To not only survive, but also thrive, the brain must efficiently orchestrate distributed computation across space and time. This requires hierarchical organisation facilitating fast information transfer and processing at the lowest possible metabolic cost. Quantifying brain hierarchy is difficult but can be estimated from the asymmetry of information flow. Thermodynamics has successfully characterised hierarchy in many other complex systems. Here, we propose the 'Thermodynamics of Mind' framework as a natural way to quantify hierarchical brain orchestration and its underlying mechanisms. This has already provided novel insights into the orchestration of hierarchy in brain states including movie watching, where the hierarchy of the brain is flatter than during rest. Overall, this framework holds great promise for revealing the orchestration of cognition.
Collapse
Affiliation(s)
- Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK; Department of Psychiatry, University of Oxford, Oxford, UK; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; International Centre for Flourishing, Universities of Oxford, Aarhus, and Pompeu Fabra, Oxford, UK.
| | - Yonatan Sanz Perl
- International Centre for Flourishing, Universities of Oxford, Aarhus, and Pompeu Fabra, Oxford, UK; Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, Spain; Department of Physics, University of Buenos Aires, Buenos Aires, Argentina
| | - Gustavo Deco
- International Centre for Flourishing, Universities of Oxford, Aarhus, and Pompeu Fabra, Oxford, UK; Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, Spain.
| |
Collapse
|
6
|
Szakács H, Mutlu MC, Balestrieri G, Gombos F, Braun J, Kringelbach ML, Deco G, Kovács I. Navigating Pubertal Goldilocks: The Optimal Pace for Hierarchical Brain Organization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308364. [PMID: 38489748 DOI: 10.1002/advs.202308364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Adolescence is a timed process with an onset, tempo, and duration. Nevertheless, the temporal dimension, especially the pace of maturation, remains an insufficiently studied aspect of developmental progression. The primary objective is to estimate the precise influence of pubertal maturational tempo on the configuration of associative brain regions. To this end, the connection between maturational stages and the level of hierarchical organization of large-scale brain networks in 12-13-year-old females is analyzed. Skeletal maturity is used as a proxy for pubertal progress. The degree of maturity is defined by the difference between bone age and chronological age. To assess the level of hierarchical organization in the brain, the temporal dynamic of closed eye resting state high-density electroencephalography (EEG) in the alpha frequency range is analyzed. Different levels of hierarchical order are captured by the measured asymmetry in the directionality of information flow between different regions. The calculated EEG-based entropy production of participant groups is then compared with accelerated, average, and decelerated maturity. Results indicate that an average maturational trajectory optimally aligns with cerebral hierarchical order, and both accelerated and decelerated timelines result in diminished cortical organization. This suggests that a "Goldilocks rule" of brain development is favoring a particular maturational tempo.
Collapse
Affiliation(s)
- Hanna Szakács
- Laboratory for Psychological Research, Pázmány Péter Catholic University, 1 Mikszáth Square, Budapest, 1088, Hungary
- Semmelweis University Doctoral School, Division of Mental Health Sciences, 26 Üllői road, Budapest, 1085, Hungary
| | - Murat Can Mutlu
- Institute of Biology, Otto-von-Guericke University, 44 Leipziger Straße, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, 44 Leipziger Straße, 39120, Magdeburg, Germany
| | - Giulio Balestrieri
- Center for Brain and Cognition, Universitat Pompeu Fabra, 25-27 Ramon Trias Fargas, Barcelona, 08005, Spain
| | - Ferenc Gombos
- Laboratory for Psychological Research, Pázmány Péter Catholic University, 1 Mikszáth Square, Budapest, 1088, Hungary
- HUN-REN-ELTE-PPKE Adolescent Development Research Group, 1 Mikszáth Kálmán Square, Budapest, 1088, Hungary
| | - Jochen Braun
- Institute of Biology, Otto-von-Guericke University, 44 Leipziger Straße, 39120, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Otto-von-Guericke University, 44 Leipziger Straße, 39120, Magdeburg, Germany
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Wellington Square, Oxford, OX3 9BX, UK
- Department of Psychiatry, University of Oxford, Wellington Square, Oxford, OX3 7JX, UK
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Nordre Ringgade 1, Aarhus, 8000, Denmark
| | - Gustavo Deco
- Center for Brain and Cognition, Universitat Pompeu Fabra, 25-27 Ramon Trias Fargas, Barcelona, 08005, Spain
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, 122-140 Carrer de Tànger, Barcelona, 08018, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), 23 Passeig de Lluís Companys, Barcelona, 08010, Spain
| | - Ilona Kovács
- HUN-REN-ELTE-PPKE Adolescent Development Research Group, 1 Mikszáth Kálmán Square, Budapest, 1088, Hungary
- Institute of Psychology, Faculty of Education and Psychology, Eötvös Loránd University, 25-27 Kazinczy Street, Budapest, 1075, Hungary
| |
Collapse
|
7
|
Fan L, Li Y, Zhao X, Huang ZG, Liu T, Wang J. Dynamic nonreversibility view of intrinsic brain organization and brain dynamic analysis of repetitive transcranial magnitude stimulation. Cereb Cortex 2024; 34:bhae098. [PMID: 38494890 DOI: 10.1093/cercor/bhae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
Intrinsic neural activities are characterized as endless spontaneous fluctuation over multiple time scales. However, how the intrinsic brain organization changes over time under local perturbation remains an open question. By means of statistical physics, we proposed an approach to capture whole-brain dynamics based on estimating time-varying nonreversibility and k-means clustering of dynamic varying nonreversibility patterns. We first used synthetic fMRI to investigate the effects of window parameters on the temporal variability of varying nonreversibility. Second, using real test-retest fMRI data, we examined the reproducibility, reliability, biological, and physiological correlation of the varying nonreversibility substates. Finally, using repetitive transcranial magnetic stimulation-fMRI data, we investigated the modulation effects of repetitive transcranial magnetic stimulation on varying nonreversibility substate dynamics. The results show that: (i) as window length increased, the varying nonreversibility variance decreased, while the sliding step almost did not alter it; (ii) the global high varying nonreversibility states and low varying nonreversibility states were reproducible across multiple datasets and different window lengths; and (iii) there were increased low varying nonreversibility states and decreased high varying nonreversibility states when the left frontal lobe was stimulated, but not the occipital lobe. Taken together, these results provide a thermodynamic equilibrium perspective of intrinsic brain organization and reorganization under local perturbation.
Collapse
Affiliation(s)
- Liming Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Xingjian Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Zi-Gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
- The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi 710049, China
| |
Collapse
|
8
|
Idesis S, Geli S, Faskowitz J, Vohryzek J, Sanz Perl Y, Pieper F, Galindo-Leon E, Engel AK, Deco G. Functional hierarchies in brain dynamics characterized by signal reversibility in ferret cortex. PLoS Comput Biol 2024; 20:e1011818. [PMID: 38241383 PMCID: PMC10836715 DOI: 10.1371/journal.pcbi.1011818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/02/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
Brain signal irreversibility has been shown to be a promising approach to study neural dynamics. Nevertheless, the relation with cortical hierarchy and the influence of different electrophysiological features is not completely understood. In this study, we recorded local field potentials (LFPs) during spontaneous behavior, including awake and sleep periods, using custom micro-electrocorticographic (μECoG) arrays implanted in ferrets. In contrast to humans, ferrets remain less time in each state across the sleep-wake cycle. We deployed a diverse set of metrics in order to measure the levels of complexity of the different behavioral states. In particular, brain irreversibility, which is a signature of non-equilibrium dynamics, captured by the arrow of time of the signal, revealed the hierarchical organization of the ferret's cortex. We found different signatures of irreversibility and functional hierarchy of large-scale dynamics in three different brain states (active awake, quiet awake, and deep sleep), showing a lower level of irreversibility in the deep sleep stage, compared to the other. Irreversibility also allowed us to disentangle the influence of different cortical areas and frequency bands in this process, showing a predominance of the parietal cortex and the theta band. Furthermore, when inspecting the embedded dynamic through a Hidden Markov Model, the deep sleep stage was revealed to have a lower switching rate and lower entropy production. These results suggest functional hierarchies in organization that can be revealed through thermodynamic features and information theory metrics.
Collapse
Affiliation(s)
- Sebastian Idesis
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Barcelona, Catalonia, Spain
| | - Sebastián Geli
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Barcelona, Catalonia, Spain
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, Indiana, United States of America
| | - Jakub Vohryzek
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Barcelona, Catalonia, Spain
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
| | - Yonatan Sanz Perl
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Barcelona, Catalonia, Spain
- National Scientific and Technical Research Council, Buenos Aires, Argentina
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Florian Pieper
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Edgar Galindo-Leon
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas K. Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gustavo Deco
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|
9
|
Tewarie PKB, Hindriks R, Lai YM, Sotiropoulos SN, Kringelbach M, Deco G. Non-reversibility outperforms functional connectivity in characterisation of brain states in MEG data. Neuroimage 2023; 276:120186. [PMID: 37268096 DOI: 10.1016/j.neuroimage.2023.120186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/27/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
Characterising brain states during tasks is common practice for many neuroscientific experiments using electrophysiological modalities such as electroencephalography (EEG) and magnetoencephalography (MEG). Brain states are often described in terms of oscillatory power and correlated brain activity, i.e. functional connectivity. It is, however, not unusual to observe weak task induced functional connectivity alterations in the presence of strong task induced power modulations using classical time-frequency representation of the data. Here, we propose that non-reversibility, or the temporal asymmetry in functional interactions, may be more sensitive to characterise task induced brain states than functional connectivity. As a second step, we explore causal mechanisms of non-reversibility in MEG data using whole brain computational models. We include working memory, motor, language tasks and resting-state data from participants of the Human Connectome Project (HCP). Non-reversibility is derived from the lagged amplitude envelope correlation (LAEC), and is based on asymmetry of the forward and reversed cross-correlations of the amplitude envelopes. Using random forests, we find that non-reversibility outperforms functional connectivity in the identification of task induced brain states. Non-reversibility shows especially better sensitivity to capture bottom-up gamma induced brain states across all tasks, but also alpha band associated brain states. Using whole brain computational models we find that asymmetry in the effective connectivity and axonal conduction delays play a major role in shaping non-reversibility across the brain. Our work paves the way for better sensitivity in characterising brain states during both bottom-up as well as top-down modulation in future neuroscientific experiments.
Collapse
Affiliation(s)
- Prejaas K B Tewarie
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Spain; Clinical Neurophysiology Group, University of Twente, Enschede, The Netherlands; Department of Neurology, Amsterdam UMC, Amsterdam, the Netherlands; Sir Peter Mansfield Imaging Centre, School of Physics, University of Nottingham, Nottingham, United Kingdom.
| | - Rikkert Hindriks
- Department of Mathematics, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Yi Ming Lai
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, United Kingdom
| | - Stamatios N Sotiropoulos
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, United Kingdom; NIHR Biomedical Research Centre, University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Morten Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Psychiatry, University of Oxford, Oxford, UK
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|