1
|
Russell VV, Iavarone AT, Ozyamak E, Grant C, Komeili A. A network of coiled-coil and actin-like proteins controls the cellular organization of magnetosome organelles in deep-branching magnetotactic bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639979. [PMID: 40060654 PMCID: PMC11888303 DOI: 10.1101/2025.02.24.639979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Magnetotactic Bacteria (MTB) are a diverse group of microorganisms that use magnetosomes, organelles composed of magnetite or greigite, to navigate along geomagnetic fields. While MTB span several phyla and exhibit diverse phenotypes, magnetosome formation has been mechanistically studied in only two species of Alphaproteobacteria. Here, we use Desulfovibrio magneticus RS-1 to uncover the mechanisms behind tooth-shaped magnetosome assembly in deep-branching MTB. Our findings reveal that RS-1 magnetic particles initially form randomly within the cell before localizing to the positive cell curvature. Genetic and proteomic analyses indicate that early biomineralization involves membrane-associated proteins found in all MTB, while later stages depend on coiled-coil (Mad20, 23, 25, and 26) and actin-like (MamK and Mad28) proteins, most of which are unique to deep-branching MTB. These findings suggest that while biomineralization originates from a common ancestor, magnetosome chain formation has diverged evolutionarily among different MTB lineages.
Collapse
Affiliation(s)
- Virginia V Russell
- Plant and Microbiology, University of California Berkeley, Berkeley, California, USA
| | - Anthony T Iavarone
- QB3/Chemistry Mass Spectrometry Facility, University of California Berkeley, Berkeley, California, USA
| | - Ertan Ozyamak
- Plant and Microbiology, University of California Berkeley, Berkeley, California, USA
- Current affiliation: Bio-Rad Laboratories, Hercules, California, USA
| | - Carly Grant
- Plant and Microbiology, University of California Berkeley, Berkeley, California, USA
- Current affiliation: Entrepreneurship Program, UCSF Rosenman Institute, San Francisco, California, USA
| | - Arash Komeili
- Plant and Microbiology, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
2
|
Taveira I, Cypriano J, Guimarães J, Vieira LCG, Junior JFG, Enrich‐Prast A, Abreu F. Ecology and Spatial Distribution of Magnetotactic Bacteria in Araguaia River Floodplain. ENVIRONMENTAL MICROBIOLOGY REPORTS 2025; 17:e70073. [PMID: 39924144 PMCID: PMC11807442 DOI: 10.1111/1758-2229.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/11/2025]
Abstract
Magnetotactic bacteria (MTB) are Gram-negative, ubiquitous, aquatic, flagellated, microaerophilic, or anaerobic microorganisms exhibiting magnetotactic behaviour based on magnetosomes, which are the structural signature of the group. Magnetosomes are ferrimagnetic nanocrystals surrounded by a lipid bilayer, usually aligned in chain(s) within the cell. Environmental abiotic conditions such as salinity, dissolved oxygen, pH, and oxidation-reduction potential may drive the diversity of MTB populations in environments. Our results reported the first evidence of MTB in sediments sampled from the Araguaia River floodplain in the Amazon-Cerrado biome. Light microscopy showed at least six morphotypes of South-seeking MTB. Transmission electron microscopy and energy-dispersive X-ray spectroscopy observations demonstrated magnetite cuboctahedral, prismatic, and anisotropic magnetosomes. PCA ordination demonstrated a more significant influence of depth, ORP (oxidation-reduction potential), and transparency in sampled data from the river main channel (MC). Non-metric multidimensional scaling (NMDS) ordination and correlation analysis demonstrated a difference between MTB populations inhabiting MC and lakes and affluent (LA). NGS and bioinformatic analysis revealed higher richness and diversity among magnetotactic cocci and the majority phylogenetic assignment of MTB affiliated to Pseudomonadota phylum. Hence, the complete acquisition of these results will provide further insight into magnetotaxis characterisation and the abiotic factors that impact MTB spatial distribution.
Collapse
Affiliation(s)
- Igor Taveira
- Instituto de Microbiologia Paulo de GóesUniversidade Federal Do Rio de JaneiroRio de JaneiroRJBrazil
| | - Jefferson Cypriano
- Instituto de Microbiologia Paulo de GóesUniversidade Federal Do Rio de JaneiroRio de JaneiroRJBrazil
| | - Juliana Guimarães
- Instituto de Microbiologia Paulo de GóesUniversidade Federal Do Rio de JaneiroRio de JaneiroRJBrazil
| | | | | | - Alex Enrich‐Prast
- Multiuser Unit of Environmental AnalysisUniversidade Federal do Rio de JaneiroRio de JaneiroRJBrazil
- Department of Thematic Studies – Environmental ChangeLinköping UniversityLinköpingSweden
| | - Fernanda Abreu
- Instituto de Microbiologia Paulo de GóesUniversidade Federal Do Rio de JaneiroRio de JaneiroRJBrazil
| |
Collapse
|
3
|
Zhang Y, Du Y, Zhang Z, Islam W, Zeng F. Variation in Root-Associated Microbial Communities among Three Different Plant Species in Natural Desert Ecosystem. PLANTS (BASEL, SWITZERLAND) 2024; 13:2468. [PMID: 39273952 PMCID: PMC11396838 DOI: 10.3390/plants13172468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/21/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024]
Abstract
The process and function that underlie the assembly of root-associated microbiomes may be strongly linked to the survival strategy of plants. However, the assembly and functional changes of root-associated microbial communities in different desert plants in natural desert ecosystems are still unclear. Thus, we studied the microbial communities and diversity of root endosphere (RE), rhizosphere soil (RS), and bulk soil (BS) among three representative desert plants (Alhagi sparsifolia, Tamarix ramosissima, and Calligonum caput-medusae) in three Xinjiang desert regions {Taklimakan (CL), Gurbantünggüt (MSW), and Kumtag (TLF)} in China. This study found that the soil properties {electrical conductivity (EC), soil organic carbon (SOC), total nitrogen (TN) and phosphorus (TP), available nitrogen (AN) and phosphorus (AP)} of C. caput-medusae were significantly lower than those of A. sparsifolia and T. ramosissima, while the root nutrients (TN and TP) of A. sparsifolia were significantly higher compared to C. caput-medusae and T. ramosissima. The beta diversity of bacteria and fungi (RE) among the three desert plants was significantly different. The common OTU numbers of bacteria and fungi in three compartments (RE, RS, and BS) of the three desert plants were ranked as RS > BS > RE. The bacterial and fungal (RE) Shannon and Simpson indexes of C. caput-medusae were significantly lower as compared to those of A. sparsifolia and T. ramosissima. Additionally, bacterial and fungal (RE and RS) node numbers and average degree of C. caput-medusae were lower than those found in A. sparsifolia and T. ramosissima. Root and soil nutrients collectively contributed to the composition of root-associated bacterial (RE, 12.4%; RS, 10.6%; BS, 16.6%) and fungal communities (RE, 34.3%; RS, 1.5%; BS, 17.7%). These findings demonstrate variations in the bacterial and fungal populations across different plant species with distinct compartments (RE, RS, and BS) in arid environments. More importantly, the study highlights how much soil and plant nutrients contribute to root-associated microbial communities.
Collapse
Affiliation(s)
- Yulin Zhang
- College of Ecology and Environmental, Xinjiang University, Urumqi 830046, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
| | - Yi Du
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihao Zhang
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
| | - Fanjiang Zeng
- College of Ecology and Environmental, Xinjiang University, Urumqi 830046, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Zúñiga-Miranda J, Guerra J, Mueller A, Mayorga-Ramos A, Carrera-Pacheco SE, Barba-Ostria C, Heredia-Moya J, Guamán LP. Iron Oxide Nanoparticles: Green Synthesis and Their Antimicrobial Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2919. [PMID: 37999273 PMCID: PMC10674528 DOI: 10.3390/nano13222919] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
The rise of antimicrobial resistance caused by inappropriate use of these agents in various settings has become a global health threat. Nanotechnology offers the potential for the synthesis of nanoparticles (NPs) with antimicrobial activity, such as iron oxide nanoparticles (IONPs). The use of IONPs is a promising way to overcome antimicrobial resistance or pathogenicity because of their ability to interact with several biological molecules and to inhibit microbial growth. In this review, we outline the pivotal findings over the past decade concerning methods for the green synthesis of IONPs using bacteria, fungi, plants, and organic waste. Subsequently, we delve into the primary challenges encountered in green synthesis utilizing diverse organisms and organic materials. Furthermore, we compile the most common methods employed for the characterization of these IONPs. To conclude, we highlight the applications of these IONPs as promising antibacterial, antifungal, antiparasitic, and antiviral agents.
Collapse
Affiliation(s)
- Johana Zúñiga-Miranda
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Julio Guerra
- Facultad de Ingeniería en Ciencias Aplicadas, Universidad Técnica del Norte, Ibarra 100107, Ecuador;
| | - Alexander Mueller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA;
| | - Arianna Mayorga-Ramos
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Saskya E. Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Carlos Barba-Ostria
- Escuela de Medicina, Colegio de Ciencias de la Salud Quito, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador;
- Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| | - Jorge Heredia-Moya
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| | - Linda P. Guamán
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador; (J.Z.-M.); (A.M.-R.); (S.E.C.-P.); (J.H.-M.)
| |
Collapse
|
5
|
Pei Z, Chang L, Bai F, Harrison RJ. Micromagnetic calculation of the magnetite magnetosomal morphology control of magnetism in magnetotactic bacteria. J R Soc Interface 2023; 20:20230297. [PMID: 37751873 PMCID: PMC10522410 DOI: 10.1098/rsif.2023.0297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
Magnetotactic bacteria (MTB), which precisely bio-synthesize magnetosomes of magnetite or greigite nanoparticles, have attracted broad interdisciplinary interests in microbiology, magnetic materials, biotechnology and geobiology. Previous experimental and numerical investigations demonstrate a close link among MTB species, magnetosome crystal habits, and magnetic characteristics, but quantitative constraints are currently lacking. In this study, we build three-dimensional finite-element micromagnetic models of intact magnetosome chains in common MTB species and corresponding collapsed chains. Realistic numerical microstructures were constructed for the three typical biogenic magnetite crystal forms-cuboctahedron, prism and bullet. Our calculations reveal characteristic magnetic properties associated with specific magnetite crystal forms and MTB species. Cuboctahedron and bullet crystals show distinct low coercivity (less than 30 mT) and high coercivity (greater than 50 mT) clusters, respectively. Prismatic crystals have a broad range of hysteresis parameters that are strongly controlled by chain structure. This magnetic property clustering, combined with magnetic unmixing methods and electron microscopy observations, can fingerprint biogenic magnetite components in geological and environmental samples. The passive magnetic orientation efficiency of various magnetosome chains was calculated. Some bullet-shaped magnetosome chains have higher magnetic moments than those with cuboctahedron and prism magnetosomes, which may enable larger MTB cells to overcome viscous resistance for efficient magnetic navigation.
Collapse
Affiliation(s)
- Zhaowen Pei
- Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Liao Chang
- Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China
| | - Fan Bai
- Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, People's Republic of China
| | - Richard J. Harrison
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| |
Collapse
|
6
|
Shen S, Chen Y, Zhou J, Zhang H, Xia X, Yang Y, Zhang Y, Noori A, Mousavi MF, Chen M, Xia Y, Zhang W. Microbe‐Mediated Biosynthesis of Multidimensional Carbon‐Based Materials for Energy Storage Applications. ADVANCED ENERGY MATERIALS 2023; 13. [DOI: 10.1002/aenm.202204259] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Indexed: 01/06/2025]
Abstract
AbstractBiosynthesis methods are considered to be a promising technology for engineering new carbon‐based materials or redesigning the existing ones for specific purposes with the aid of synthetic biology. Lots of biosynthetic processes including metabolism, fermentation, biological mineralization, and gene editing have been adopted to prepare novel carbon‐based materials with exceptional properties that cannot be realized by traditional chemical methods, because microbes evolved to possess special abilities to modulate components/structure of materials. In this review, the recent development on carbon‐based materials prepared via different biosynthesis methods and various microbe factories (such as bacteria, yeasts, fungus, viruses, proteins) are systematically reviewed. The types of biotechniques and the corresponding mechanisms for the synthesis of carbon‐based materials are outlined. This review also focuses on the structural design and compositional engineering of carbon‐based nanostructures (e.g., metals, semiconductors, metal oxides, metal sulfides, phosphates, Mxenes) derived from biotechnology and their applications in electrochemical energy storage devices. Moreover, the relationship of the architecture–composition–electrochemical behavior and performance enhancement mechanism is also deeply discussed and analyzed. Finally, the development perspectives and challenges on the biosynthetic carbons are proposed and may pave a new avenue for rational design of advanced materials for the low‐carbon economy.
Collapse
Affiliation(s)
- Shenghui Shen
- School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Yanbin Chen
- School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Jiancang Zhou
- Department of Critical Care Medicine Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou 310016 China
| | - Haomiao Zhang
- Department of Critical Care Medicine Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou 310016 China
- State Key Laboratory of Silicon Materials Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Xinhui Xia
- Department of Critical Care Medicine Sir Run Run Shaw Hospital Zhejiang University School of Medicine Hangzhou 310016 China
- State Key Laboratory of Silicon Materials Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Yefeng Yang
- School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou 310018 China
| | - Yongqi Zhang
- Institute of Fundamental and Frontier Science University of Electronic Science and Technology of China Chengdu 611371 China
| | - Abolhassan Noori
- Department of Chemistry Faculty of Basic Sciences Tarbiat Modares University Tehran 14117‐13116 Iran
| | - Mir F. Mousavi
- Department of Chemistry Faculty of Basic Sciences Tarbiat Modares University Tehran 14117‐13116 Iran
| | - Minghua Chen
- Key Laboratory of Engineering Dielectric and Applications (Ministry of Education) School of Electrical and Electronic Engineering Harbin University of Science and Technology Harbin 150080 P. R. China
| | - Yang Xia
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Wenkui Zhang
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou 310014 China
| |
Collapse
|
7
|
Zimina TM, Sitkov NO, Gareev KG, Fedorov V, Grouzdev D, Koziaeva V, Gao H, Combs SE, Shevtsov M. Biosensors and Drug Delivery in Oncotheranostics Using Inorganic Synthetic and Biogenic Magnetic Nanoparticles. BIOSENSORS 2022; 12:789. [PMID: 36290927 PMCID: PMC9599632 DOI: 10.3390/bios12100789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022]
Abstract
Magnetic nanocarriers have attracted attention in translational oncology due to their ability to be employed both for tumor diagnostics and therapy. This review summarizes data on applications of synthetic and biogenic magnetic nanoparticles (MNPs) in oncological theranostics and related areas. The basics of both types of MNPs including synthesis approaches, structure, and physicochemical properties are discussed. The properties of synthetic MNPs and biogenic MNPs are compared with regard to their antitumor therapeutic efficiency, diagnostic potential, biocompatibility, and cellular toxicity. The comparative analysis demonstrates that both synthetic and biogenic MNPs could be efficiently used for cancer theranostics, including biosensorics and drug delivery. At the same time, reduced toxicity of biogenic particles was noted, which makes them advantageous for in vivo applications, such as drug delivery, or MRI imaging of tumors. Adaptability to surface modification based on natural biochemical processes is also noted, as well as good compatibility with tumor cells and proliferation in them. Advances in the bionanotechnology field should lead to the implementation of MNPs in clinical trials.
Collapse
Affiliation(s)
- Tatiana M. Zimina
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Nikita O. Sitkov
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Kamil G. Gareev
- Department of Micro and Nanoelectronics, Saint Petersburg Electrotechnical University “LETI”, 197022 Saint Petersburg, Russia
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Viacheslav Fedorov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
| | - Denis Grouzdev
- SciBear OU, Tartu mnt 67/1-13b, Kesklinna Linnaosa, 10115 Tallinn, Estonia
| | - Veronika Koziaeva
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
- Research Center of Biotechnology of the Russian Academy of Sciences, Institute of Bioengineering, 119071 Moscow, Russia
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Stephanie E. Combs
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Maxim Shevtsov
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences, 194064 Saint Petersburg, Russia
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- National Center for Neurosurgery, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
8
|
Uzun M, Koziaeva V, Dziuba M, Leão P, Krutkina M, Grouzdev D. Detection of interphylum transfers of the magnetosome gene cluster in magnetotactic bacteria. Front Microbiol 2022; 13:945734. [PMID: 35979495 PMCID: PMC9376291 DOI: 10.3389/fmicb.2022.945734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/27/2022] [Indexed: 01/01/2023] Open
Abstract
Magnetosome synthesis in magnetotactic bacteria (MTB) is regarded as a very ancient evolutionary process that dates back to deep-branching phyla. Magnetotactic bacteria belonging to one of such phyla, Nitrospirota, contain the classical genes for the magnetosome synthesis (e.g., mam, mms) and man genes, which were considered to be specific for this group. However, the recent discovery of man genes in MTB from the Thermodesulfobacteriota phylum has raised several questions about the inheritance of these genes in MTB. In this work, three new man genes containing MTB genomes affiliated with Nitrospirota and Thermodesulfobacteriota, were obtained. By applying reconciliation with these and the previously published MTB genomes, we demonstrate that the last common ancestor of all Nitrospirota was most likely not magnetotactic as assumed previously. Instead, our findings suggest that the genes for magnetosome synthesis were transmitted to the phylum Nitrospirota by horizontal gene transfer (HGT), which is the first case of the interphylum transfer of magnetosome genes detected to date. Furthermore, we provide evidence for the HGT of magnetosome genes from the Magnetobacteriaceae to the Dissulfurispiraceae family within Nitrospirota. Thus, our results imply a more significant role of HGT in the MTB evolution than deemed before and challenge the hypothesis of the ancient origin of magnetosome synthesis.
Collapse
Affiliation(s)
- Maria Uzun
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Veronika Koziaeva
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Marina Dziuba
- Skryabin Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Pedro Leão
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Marine Science, The University of Texas at Austin, Austin, TX, United States
| | | | - Denis Grouzdev
- SciBear OU, Tallinn, Estonia
- *Correspondence: Denis Grouzdev,
| |
Collapse
|
9
|
Chen S, Yu M, Zhang W, He K, Pan H, Cui K, Zhao Y, Zhang XH, Xiao T, Zhang W, Wu LF. Metagenomic and Microscopic Analysis of Magnetotactic Bacteria in Tangyin Hydrothermal Field of Okinawa Trough. Front Microbiol 2022; 13:887136. [PMID: 35756025 PMCID: PMC9226615 DOI: 10.3389/fmicb.2022.887136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Magnetotactic bacteria (MTB) have been found in a wide variety of marine habitats, ranging from intertidal sediments to deep-sea seamounts. Deep-sea hydrothermal fields are rich in metal sulfides, which are suitable areas for the growth of MTB. However, MTB in hydrothermal fields have never been reported. Here, the presence of MTB in sediments from the Tangyin hydrothermal field was analyzed by 16S rRNA gene amplicon analysis, metagenomics, and transmission electron microscopy. Sequencing 16S rRNA gene yielded a total of 709 MTB sequences belonging to 20 OTUs, affiliated with Desulfobacterota, Alphaproteobacteria, and Nitrospirae. Three shapes of magnetofossil were identified by transmission electron microscopy: elongated-prismatic, bullet-shaped, and cuboctahedron. All of these structures were composed of Fe3O4. A total of 121 sequences were found to be homologous to the published MTB magnetosome-function-related genes, and relevant domains were identified. Further analysis revealed that diverse MTB are present in the Tangyin hydrothermal field, and that multicellular magnetotactic prokaryote (MMPs) might be the dominant MTB.
Collapse
Affiliation(s)
- Si Chen
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Min Yu
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Wenyan Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China
| | - Kuang He
- Key Lab of Submarine Geosciences and Prospecting Techniques, Frontiers Science Center for Deep Ocean Multispheres and Earth System, MOE and College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Hongmiao Pan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China
| | - Kaixuan Cui
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yicong Zhao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Xiao-Hua Zhang
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Tian Xiao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China
| | - Wuchang Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Long-Fei Wu
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China.,Aix Marseille University, CNRS, LCB, Marseille, France
| |
Collapse
|
10
|
Li J, Liu P, Menguy N, Benzerara K, Bai J, Zhao X, Leroy E, Zhang C, Zhang H, Liu J, Zhang R, Zhu K, Roberts AP, Pan Y. Identification of sulfate-reducing magnetotactic bacteria via a group-specific 16S rDNA primer and correlative fluorescence and electron microscopy: strategy for culture-independent study. Environ Microbiol 2022; 24:5019-5038. [PMID: 35726890 DOI: 10.1111/1462-2920.16109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/02/2022] [Accepted: 06/18/2022] [Indexed: 11/28/2022]
Abstract
Magnetotactic bacteria (MTB) biomineralize intracellular magnetic nanocrystals and swim along geomagnetic field lines. While few axenic MTB cultures exist, living cells can be separated magnetically from natural environments for analysis. The bacterial universal 27F/1492R primer pair has been used widely to amplify nearly full-length 16S rRNA genes and to provide phylogenetic portraits of MTB communities. However, incomplete coverage and amplification biases inevitably prevent detection of some phylogenetically specific or non-abundant MTB. Here, we propose a new formulation of the upstream 390F primer that we combined with the downstream 1492R primer to specifically amplify 1,100-bp 16S rRNA gene sequences of sulfate-reducing MTB in freshwater sediments from Lake Weiyanghu, Xi'an, northwestern China. With correlative fluorescence in situ hybridization and scanning/transmission electron microscopy, three novel MTB strains (WYHR-2, WYHR-3, and WYHR-4) from the Desulfobacterota phylum were identified phylogenetically and structurally at the single cell level. Strain WYHR-2 produces bullet-shaped magnetosome magnetite, while the other two strains produce both cubic/prismatic greigite and bullet-shaped magnetite. Our results expand knowledge of bacterial diversity and magnetosome biomineralization of sulfate-reducing MTB. We also propose a general strategy for identifying and characterizing uncultured MTB from natural environments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peiyu Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Nicolas Menguy
- Sorbonne Université, UMR CNRS 7590, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Karim Benzerara
- Sorbonne Université, UMR CNRS 7590, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Jinling Bai
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Xiang Zhao
- Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
| | - Eric Leroy
- ICMPE, University Paris East, UMR 7182, CNRS, 2-8 rue Henri Dunant, Thiais Cedex, France
| | - Chaoqun Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Heng Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Jiawei Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rongrong Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Keilei Zhu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, Canberra, ACT, Australia
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Li J, Liu P, Menguy N, Zhang X, Wang J, Benzerara K, Feng L, Sun L, Zheng Y, Meng F, Gu L, Leroy E, Hao J, Chu X, Pan Y. Intracellular silicification by early-branching magnetotactic bacteria. SCIENCE ADVANCES 2022; 8:eabn6045. [PMID: 35559677 PMCID: PMC9106300 DOI: 10.1126/sciadv.abn6045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/31/2022] [Indexed: 06/13/2023]
Abstract
Biosilicification-the formation of biological structures composed of silica-has a wide distribution among eukaryotes; it plays a major role in global biogeochemical cycles, and has driven the decline of dissolved silicon in the oceans through geological time. While it has long been thought that eukaryotes are the only organisms appreciably affecting the biogeochemical cycling of Si, the recent discoveries of silica transporter genes and marked silicon accumulation in bacteria suggest that prokaryotes may play an underappreciated role in the Si cycle, particularly in ancient times. Here, we report a previously unidentified magnetotactic bacterium that forms intracellular, amorphous silica globules. This bacterium, phylogenetically affiliated with the phylum Nitrospirota, belongs to a deep-branching group of magnetotactic bacteria that also forms intracellular magnetite magnetosomes and sulfur inclusions. This contribution reveals intracellularly controlled silicification within prokaryotes and suggests a previously unrecognized influence on the biogeochemical Si cycle that was operational during early Earth history.
Collapse
Affiliation(s)
- Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiyu Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Nicolas Menguy
- Sorbonne Université, UMR CNRS 7590, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), 75005 Paris, France
| | - Xingliang Zhang
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments and Department of Geology, Northwest University, Xi’an 710069, China
| | - Jian Wang
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, SK S7N 2V3, Canada
| | - Karim Benzerara
- Sorbonne Université, UMR CNRS 7590, MNHN, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), 75005 Paris, France
| | - Lianjun Feng
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Sun
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Yue Zheng
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Fanqi Meng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Eric Leroy
- ICMPE, University Paris East, UMR 7182, CNRS, 2-8 Rue Henri Dunant, Thiais, Cedex 94320, France
| | - Jialong Hao
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuelei Chu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Sciences, Chinese Academy of Sciences, Beijing 100029, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Amor M, Wan J, Egli R, Carlut J, Gatel C, Andersen IM, Snoeck E, Komeili A. Key Signatures of Magnetofossils Elucidated by Mutant Magnetotactic Bacteria and Micromagnetic Calculations. JOURNAL OF GEOPHYSICAL RESEARCH. SOLID EARTH 2022; 127:e2021JB023239. [PMID: 35444924 PMCID: PMC9017866 DOI: 10.1029/2021jb023239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/30/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Magnetotactic bacteria (MTB) produce single-stranded or multi-stranded chains of magnetic nanoparticles that contribute to the magnetization of sediments and rocks. Their magnetic fingerprint can be detected in ancient geological samples and serve as a unique biosignature of microbial life. However, some fossilized assemblages bear contradictory signatures pointing to magnetic components that have distinct origin(s). Here, using micromagnetic simulations and mutant MTB producing looped magnetosome chains, we demonstrate that the observed magnetofossil fingerprints are produced by a mixture of single-stranded and multi-stranded chains, and that diagenetically induced chain collapse, if occurring, must preserve the strong uniaxial anisotropy of native chains. This anisotropy is the key factor for distinguishing magnetofossils from other populations of natural magnetite particles, including those with similar individual crystal characteristics. Furthermore, the detailed properties of magnetofossil signatures depend on the proportion of equant and elongated magnetosomes, as well as on the relative abundances of single-stranded and multi-stranded chains. This work has important paleoclimatic, paleontological, and phylogenetic implications, as it provides reference data to differentiate distinct MTB lineages according to their chain and magnetosome morphologies, which will enable the tracking of the evolution of some of the most ancient biomineralizing organisms in a time-resolved manner. It also enables a more accurate discrimination of different sources of magnetite particles, which is pivotal for gaining better environmental and relative paleointensity reconstructions from sedimentary records.
Collapse
Affiliation(s)
- Matthieu Amor
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCAUSA
- Aix‐Marseille Université, CEA, CNRS, BIAMSaint‐Paul‐lez‐DuranceFrance
| | - Juan Wan
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCAUSA
| | - Ramon Egli
- Zentralanstalt für Meteorologie und Geodynamik (ZAMG)ViennaAustria
- Université de Paris, Institut de Physique du Globe de Paris, CNRSParisFrance
| | - Julie Carlut
- Université de Paris, Institut de Physique du Globe de Paris, CNRSParisFrance
| | | | | | | | - Arash Komeili
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCAUSA
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCAUSA
| |
Collapse
|
13
|
A Novel Magnetotactic Alphaproteobacterium Producing Intracellular Magnetite and Calcium-Bearing Minerals. Appl Environ Microbiol 2021; 87:e0155621. [PMID: 34756060 DOI: 10.1128/aem.01556-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Magnetotactic bacteria (MTB) are prokaryotes that form intracellular magnetite (Fe3O4) or greigite (Fe3S4) nanocrystals with tailored sizes, often in chain configurations. Such magnetic particles are each surrounded by a lipid bilayer membrane, called a magnetosome, and provide a model system for studying the formation and function of specialized internal structures in prokaryotes. Using fluorescence-coupled scanning electron microscopy, we identified a novel magnetotactic spirillum, XQGS-1, from freshwater Xingqinggong Lake, Xi'an City, Shaanxi Province, China. Phylogenetic analyses based on 16S rRNA gene sequences indicate that strain XQGS-1 represents a novel genus of the Alphaproteobacteria class in the Proteobacteria phylum. Transmission electron microscopy analyses reveal that strain XQGS-1 forms on average 17 ± 3 magnetite magnetosome particles with an ideal truncated octahedral morphology, with an average length and width of 88.3 ± 11.7 nm and 83.3 ± 11.0 nm, respectively. They are tightly organized into a single chain along the cell long axis close to the concave side of the cell. Intrachain magnetic interactions likely result in these large equidimensional magnetite crystals behaving as magnetically stable single-domain particles that enable bacterial magnetotaxis. Combined structural and chemical analyses demonstrate that XQGS-1 cells also biomineralize intracellular amorphous calcium phosphate (2 to 3 granules per cell; 90.5- ± 19.3-nm average size) and weakly crystalline calcium carbonate (2 to 3 granules per cell; 100.4- ± 21.4-nm average size) in addition to magnetite. Our results expand the taxonomic diversity of MTB and provide evidence for intracellular calcium phosphate biomineralization in MTB. IMPORTANCE Biomineralization is a widespread process in eukaryotes that form shells, teeth, or bones. It also occurs commonly in prokaryotes, resulting in more than 60 known minerals formed by different bacteria under wide-ranging conditions. Among them, magnetotactic bacteria (MTB) are remarkable because they might represent the earliest organisms that biomineralize intracellular magnetic iron minerals (i.e., magnetite [Fe3O4] or greigite [Fe3S4]). Here, we report a novel magnetotactic spirillum (XQGS-1) that is phylogenetically affiliated with the Alphaproteobacteria class. In addition to magnetite crystals, XQGS-1 cells form intracellular submicrometer calcium carbonate and calcium phosphate granules. This finding supports the view that MTB are also an important microbial group for intracellular calcium carbonate and calcium phosphate biomineralization.
Collapse
|
14
|
Abstract
Magnetotactic bacteria (MTB) belong to several phyla. This class of microorganisms exhibits the ability of magneto-aerotaxis. MTB synthesize biominerals in organelle-like structures called magnetosomes, which contain single-domain crystals of magnetite (Fe3O4) or greigite (Fe3S4) characterized by a high degree of structural and compositional perfection. Magnetosomes from dead MTB could be preserved in sediments (called fossil magnetosomes or magnetofossils). Under certain conditions, magnetofossils are capable of retaining their remanence for millions of years. This accounts for the growing interest in MTB and magnetofossils in paleo- and rock magnetism and in a wider field of biogeoscience. At the same time, high biocompatibility of magnetosomes makes possible their potential use in biomedical applications, including magnetic resonance imaging, hyperthermia, magnetically guided drug delivery, and immunomagnetic analysis. In this review, we attempt to summarize the current state of the art in the field of MTB research and applications.
Collapse
|
15
|
Liu P, Tamaxia A, Liu Y, Qiu H, Pan J, Jin Z, Zhao X, Roberts AP, Pan Y, Li J. Identification and characterization of magnetotactic Gammaproteobacteria from a salt evaporation pool, Bohai Bay, China. Environ Microbiol 2021; 24:938-950. [PMID: 33876543 DOI: 10.1111/1462-2920.15516] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 11/27/2022]
Abstract
Magnetotactic bacteria (MTB) are phylogenetically diverse prokaryotes that can produce intracellular chain-assembled nanocrystals of magnetite (Fe3 O4 ) or greigite (Fe3 S4 ). Compared with their wide distribution in the Alpha-, Eta- and Delta-proteobacteria classes, few MTB strains have been identified in the Gammaproteobacteria class, resulting in limited knowledge of bacterial diversity and magnetosome biomineralization within this phylogenetic branch. Here, we identify two magnetotactic Gammaproteobacteria strains (tentatively named FZSR-1 and FZSR-2 respectively) from a salt evaporation pool in Bohai Bay, at the Fuzhou saltern, Dalian City, eastern China. Phylogenetic analysis indicates that strain FZSR-2 is the same species as strains SHHR-1 and SS-5, which were discovered previously from brackish and hypersaline environments respectively. Strain FZSR-1 represents a novel species. Compared with strains FZSR-2, SHHR-1 and SS-5 in which magnetite particles are assembled into a single chain, FZSR-1 cells form relatively narrower magnetite nanoparticles that are often organized into double chains. We find a good relationship between magnetite morphology within strains FZSR-2, SHHR-1 and SS-5 and the salinity of the environment in which they live. This study expands the bacterial diversity of magnetotactic Gammaproteobacteria and provides new insights into magnetosome biomineralization within magnetotactic Gammaproteobacteria.
Collapse
Affiliation(s)
- Peiyu Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Alima Tamaxia
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Qiu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juntong Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongke Jin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang Zhao
- Research School of Earth Sciences, Australian National University, Canberra, ACT 2601, Australia
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, Canberra, ACT 2601, Australia
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, 100029, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
16
|
Shimoshige H, Kobayashi H, Shimamura S, Mizuki T, Inoue A, Maekawa T. Isolation and cultivation of a novel sulfate-reducing magnetotactic bacterium belonging to the genus Desulfovibrio. PLoS One 2021; 16:e0248313. [PMID: 33705469 PMCID: PMC7951924 DOI: 10.1371/journal.pone.0248313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/23/2021] [Indexed: 11/19/2022] Open
Abstract
Magnetotactic bacteria (MTB) synthesize magnetosomes composed of membrane-enveloped magnetite (Fe3O4) and/or greigite (Fe3S4) nanoparticles in the cells. It is known that the magnetotactic Deltaproteobacteria are ubiquitous and inhabit worldwide in the sediments of freshwater and marine environments. Mostly known MTB belonging to the Deltaproteobacteria are dissimilatory sulfate-reducing bacteria that biomineralize bullet-shaped magnetite nanoparticles, but only a few axenic cultures have been obtained so far. Here, we report the isolation, cultivation and characterization of a dissimilatory sulfate-reducing magnetotactic bacterium, which we designate “strain FSS-1”. We found that the strain FSS-1 is a strict anaerobe and uses casamino acids as electron donors and sulfate as an electron acceptor to reduce sulfate to hydrogen sulfide. The strain FSS-1 produced bullet-shaped magnetite nanoparticles in the cells and responded to external magnetic fields. On the basis of 16S rRNA gene sequence analysis, the strain FSS-1 is a member of the genus Desulfovibrio, showing a 96.7% sequence similarity to Desulfovibrio putealis strain B7-43T. Futhermore, the magnetosome gene cluster of strain FSS-1 was different from that of Desulfovibrio magneticus strain RS-1. Thus, the strain FSS-1 is considered to be a novel sulfate-reducing magnetotactic bacterium belonging to the genus Desulfovibrio.
Collapse
Affiliation(s)
- Hirokazu Shimoshige
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, Japan
- * E-mail: (TM); (HS)
| | - Hideki Kobayashi
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, Japan
| | - Shigeru Shimamura
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa, Japan
| | - Toru Mizuki
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, Japan
| | - Akira Inoue
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, Japan
| | - Toru Maekawa
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, Saitama, Japan
- Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama, Japan
- * E-mail: (TM); (HS)
| |
Collapse
|
17
|
Busigny V, Mathon FP, Jézéquel D, Bidaud CC, Viollier E, Bardoux G, Bourrand JJ, Benzerara K, Duprat E, Menguy N, Monteil CL, Lefevre CT. Mass collection of magnetotactic bacteria from the permanently stratified ferruginous Lake Pavin, France. Environ Microbiol 2021; 24:721-736. [PMID: 33687779 DOI: 10.1111/1462-2920.15458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 01/16/2023]
Abstract
Obtaining high biomass yields of specific microorganisms for culture-independent approaches is a challenge faced by scientists studying organism's recalcitrant to laboratory conditions and culture. This difficulty is highly decreased when studying magnetotactic bacteria (MTB) since their unique behaviour allows their enrichment and purification from other microorganisms present in aquatic environments. Here, we use Lake Pavin, a permanently stratified lake in the French Massif Central, as a natural laboratory to optimize collection and concentration of MTB that thrive in the water column and sediments. A method is presented to separate MTB from highly abundant abiotic magnetic particles in the sediment of this crater lake. For the water column, different sampling approaches are compared such as in situ collection using a Niskin bottle and online pumping. By monitoring several physicochemical parameters of the water column, we identify the ecological niche where MTB live. Then, by focusing our sampling at the peak of MTB abundance, we show that the online pumping system is the most efficient for fast recovering of large volumes of water at a high spatial resolution, which is necessary considering the sharp physicochemical gradients observed in the water column. Taking advantage of aerotactic and magnetic MTB properties, we present an efficient method for MTB concentration from large volumes of water. Our methodology represents a first step for further multidisciplinary investigations of the diversity, metagenomic and ecology of MTB populations in Lake Pavin and elsewhere, as well as chemical and isotopic analyses of their magnetosomes.
Collapse
Affiliation(s)
- Vincent Busigny
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, F-75005, France.,Institut Universitaire de France, Paris, 75005, France
| | - François P Mathon
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, F-75005, France.,Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| | - Didier Jézéquel
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, F-75005, France.,INRAE & Université Savoie Mont Blanc, UMR CARRTEL, Thonon-les-Bains, 74200, France
| | - Cécile C Bidaud
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Eric Viollier
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, F-75005, France
| | - Gérard Bardoux
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, F-75005, France
| | - Jean-Jacques Bourrand
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, Paris, F-75005, France
| | - Karim Benzerara
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Elodie Duprat
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Nicolas Menguy
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IRD. Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Caroline L Monteil
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| | - Christopher T Lefevre
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| |
Collapse
|
18
|
Liang Y, Xie J, Yu J, Zheng Z, Liu F, Yang A. Recent advances of high performance magnetic iron oxide nanoparticles: Controlled synthesis, properties tuning and cancer theranostics. NANO SELECT 2020. [DOI: 10.1002/nano.202000169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Yi‐Jun Liang
- School of Medical Engineering Foshan University Foshan 528000 P.R. China
| | - Jun Xie
- School of Life Science Jiangsu Normal University Xuzhou 221116 P.R. China
| | - Jing Yu
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou 310014 P.R. China
| | - Zhaoguang Zheng
- School of Medical Engineering Foshan University Foshan 528000 P.R. China
| | - Fang Liu
- School of Medical Engineering Foshan University Foshan 528000 P.R. China
| | - Anping Yang
- School of Medical Engineering Foshan University Foshan 528000 P.R. China
| |
Collapse
|
19
|
Liu P, Liu Y, Zhao X, Roberts AP, Zhang H, Zheng Y, Wang F, Wang L, Menguy N, Pan Y, Li J. Diverse phylogeny and morphology of magnetite biomineralized by magnetotactic cocci. Environ Microbiol 2020; 23:1115-1129. [PMID: 32985765 DOI: 10.1111/1462-2920.15254] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/20/2020] [Accepted: 09/24/2020] [Indexed: 01/29/2023]
Abstract
Magnetotactic bacteria (MTB) are diverse prokaryotes that produce magnetic nanocrystals within intracellular membranes (magnetosomes). Here, we present a large-scale analysis of diversity and magnetosome biomineralization in modern magnetotactic cocci, which are the most abundant MTB morphotypes in nature. Nineteen novel magnetotactic cocci species are identified phylogenetically and structurally at the single-cell level. Phylogenetic analysis demonstrates that the cocci cluster into an independent branch from other Alphaproteobacteria MTB, that is, within the Etaproteobacteria class in the Proteobacteria phylum. Statistical analysis reveals species-specific biomineralization of magnetosomal magnetite morphologies. This further confirms that magnetosome biomineralization is controlled strictly by the MTB cell and differs among species or strains. The post-mortem remains of MTB are often preserved as magnetofossils within sediments or sedimentary rocks, yet paleobiological and geological interpretation of their fossil record remains challenging. Our results indicate that magnetofossil morphology could be a promising proxy for retrieving paleobiological information about ancient MTB.
Collapse
Affiliation(s)
- Peiyu Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.,France-China Joint Laboratory for Evolution and Development of Magnetotactic MultiCellular Organisms, Chinese Academy of Sciences, Beijing, China
| | - Yan Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.,France-China Joint Laboratory for Evolution and Development of Magnetotactic MultiCellular Organisms, Chinese Academy of Sciences, Beijing, China
| | - Xiang Zhao
- Research School of Earth Sciences, Australian National University, Canberra, Australia
| | - Andrew P Roberts
- Research School of Earth Sciences, Australian National University, Canberra, Australia
| | - Heng Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yue Zheng
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Fuxian Wang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.,France-China Joint Laboratory for Evolution and Development of Magnetotactic MultiCellular Organisms, Chinese Academy of Sciences, Beijing, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Qingdao, China
| | - Nicolas Menguy
- France-China Joint Laboratory for Evolution and Development of Magnetotactic MultiCellular Organisms, Chinese Academy of Sciences, Beijing, China.,IMPMC, CNRS UMR 7590, Sorbonne Universités, MNHN, UPMC, IRD UMR 206, Paris, France
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.,France-China Joint Laboratory for Evolution and Development of Magnetotactic MultiCellular Organisms, Chinese Academy of Sciences, Beijing, China
| | - Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,France-China Joint Laboratory for Evolution and Development of Magnetotactic MultiCellular Organisms, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Amor M, Mathon FP, Monteil CL, Busigny V, Lefevre CT. Iron-biomineralizing organelle in magnetotactic bacteria: function, synthesis and preservation in ancient rock samples. Environ Microbiol 2020; 22:3611-3632. [PMID: 32452098 DOI: 10.1111/1462-2920.15098] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 12/22/2022]
Abstract
Magnetotactic bacteria (MTB) are ubiquitous aquatic microorganisms that incorporate iron from their environment to synthesize intracellular nanoparticles of magnetite (Fe3 O4 ) or greigite (Fe3 S4 ) in a genetically controlled manner. Magnetite and greigite magnetic phases allow MTB to swim towards redox transition zones where they thrive. MTB may represent some of the oldest microorganisms capable of synthesizing minerals on Earth and have been proposed to significantly impact the iron biogeochemical cycle by immobilizing soluble iron into crystals that subsequently fossilize in sedimentary rocks. In the present article, we describe the distribution of MTB in the environment and discuss the possible function of the magnetite and greigite nanoparticles. We then provide an overview of the chemical mechanisms leading to iron mineralization in MTB. Finally, we update the methods used for the detection of MTB crystals in sedimentary rocks and present their occurrences in the geological record.
Collapse
Affiliation(s)
- Matthieu Amor
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| | - François P Mathon
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France.,Institut de Physique du Globe de Paris, Université de Paris, CNRS, Paris, F-75005, France
| | - Caroline L Monteil
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| | - Vincent Busigny
- Institut de Physique du Globe de Paris, Université de Paris, CNRS, Paris, F-75005, France.,Institut Universitaire de France, Paris, 75005, France
| | - Christopher T Lefevre
- Aix-Marseille University, CNRS, CEA, UMR7265 Institute of Biosciences and Biotechnologies of Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance, F-13108, France
| |
Collapse
|
21
|
Qin W, Wang CY, Ma YX, Shen MJ, Li J, Jiao K, Tay FR, Niu LN. Microbe-Mediated Extracellular and Intracellular Mineralization: Environmental, Industrial, and Biotechnological Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907833. [PMID: 32270552 DOI: 10.1002/adma.201907833] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/09/2020] [Indexed: 06/11/2023]
Abstract
Microbe-mediated mineralization is ubiquitous in nature, involving bacteria, fungi, viruses, and algae. These mineralization processes comprise calcification, silicification, and iron mineralization. The mechanisms for mineral formation include extracellular and intracellular biomineralization. The mineral precipitating capability of microbes is often harnessed for green synthesis of metal nanoparticles, which are relatively less toxic compared with those synthesized through physical or chemical methods. Microbe-mediated mineralization has important applications ranging from pollutant removal and nonreactive carriers, to other industrial and biomedical applications. Herein, the different types of microbe-mediated biomineralization that occur in nature, their mechanisms, as well as their applications are elucidated to create a backdrop for future research.
Collapse
Affiliation(s)
- Wen Qin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Chen-Yu Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yu-Xuan Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Min-Juan Shen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jing Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Kai Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Franklin R Tay
- College of Graduate Studies, Augusta University, Augusta, GA, 30912, USA
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| |
Collapse
|
22
|
Pohl A, Berger F, Sullan RMA, Valverde-Tercedor C, Freindl K, Spiridis N, Lefèvre CT, Menguy N, Klumpp S, Blank KG, Faivre D. Decoding Biomineralization: Interaction of a Mad10-Derived Peptide with Magnetite Thin Films. NANO LETTERS 2019; 19:8207-8215. [PMID: 31565946 DOI: 10.1021/acs.nanolett.9b03560] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Protein-surface interactions play a pivotal role in processes as diverse as biomineralization, biofouling, and the cellular response to medical implants. In biomineralization processes, biomacromolecules control mineral deposition and architecture via complex and often unknown mechanisms. For studying these mechanisms, the formation of magnetite nanoparticles in magnetotactic bacteria has become an excellent model system. Most interestingly, nanoparticle morphologies have been discovered that defy crystallographic rules (e.g., in the species Desulfamplus magnetovallimortis strain BW-1). In certain conditions, this strain mineralizes bullet-shaped magnetite nanoparticles, which exhibit defined (111) crystal faces and are elongated along the [100] direction. We hypothesize that surface-specific protein interactions break the nanoparticle symmetry, inhibiting the growth of certain crystal faces and thereby favoring the growth of others. Screening the genome of BW-1, we identified Mad10 (Magnetosome-associated deep-branching) as a potential magnetite-binding protein. Using atomic force microscope (AFM)-based single-molecule force spectroscopy, we show that a Mad10-derived peptide, which represents the most conserved region of Mad10, binds strongly to (100)- and (111)-oriented single-crystalline magnetite thin films. The peptide-magnetite interaction is thus material- but not crystal-face-specific. It is characterized by broad rupture force distributions that do not depend on the retraction speed of the AFM cantilever. To account for these experimental findings, we introduce a three-state model that incorporates fast rebinding. The model suggests that the peptide-surface interaction is strong in the absence of load, which is a direct result of this fast rebinding process. Overall, our study sheds light on the kinetic nature of peptide-surface interactions and introduces a new magnetite-binding peptide with potential use as a functional coating for magnetite nanoparticles in biotechnological and biomedical applications.
Collapse
Affiliation(s)
- Anna Pohl
- Department of Biomaterials , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
- Mechano(bio)chemistry , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| | - Florian Berger
- Laboratory of Sensory Neuroscience , The Rockefeller University , 1230 York Avenue , New York 10065 , United States
| | - Ruby M A Sullan
- Mechano(bio)chemistry , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| | - Carmen Valverde-Tercedor
- Department of Biomaterials , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| | - Kinga Freindl
- Jerzy Haber Institute of Catalysis and Surface Chemistry , Polish Academy of Sciences , Niezapominajek 8 , 30-239 Krakow , Poland
| | - Nika Spiridis
- Jerzy Haber Institute of Catalysis and Surface Chemistry , Polish Academy of Sciences , Niezapominajek 8 , 30-239 Krakow , Poland
| | | | - Nicolas Menguy
- Sorbonne Université , UMR CNRS 7590, IRD. MNHN, Institut de Minéralogie, Physique des Matériaux et Cosmochimie - IMPMC , 4 Place Jussieu , 75005 Paris , France
| | - Stefan Klumpp
- Department of Theory & Bio-Systems , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
- Institute for the Dynamics of Complex Systems , University of Göttingen , Friedrich Hund Platz 1 , 37077 Göttingen , Germany
| | - Kerstin G Blank
- Mechano(bio)chemistry , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
| | - Damien Faivre
- Department of Biomaterials , Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1 , 14476 Potsdam , Germany
- Aix-Marseille Université , CEA, CNRS, BIAM, 13108 Saint Paul lez Durance , France
| |
Collapse
|
23
|
Pan H, Dong Y, Teng Z, Li J, Zhang W, Xiao T, Wu LF. A species of magnetotactic deltaproteobacterium was detected at the highest abundance during an algal bloom. FEMS Microbiol Lett 2019; 366:5681391. [PMID: 31855240 DOI: 10.1093/femsle/fnz253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 12/18/2019] [Indexed: 11/13/2022] Open
Abstract
Magnetotactic bacteria (MTB) are a group of microorganisms that have the ability to synthesize intracellular magnetic crystals (magnetosomes). They prefer microaerobic or anaerobic aquatic sediments. Thus, there is growing interest in their ecological roles in various habitats. In this study we found co-occurrence of a large rod-shaped deltaproteobacterial magnetotactic bacterium (tentatively named LR-1) in the sediment of a brackish lagoon with algal bloom. Electron microscopy observations showed that they were ovoid to slightly curved rods having a mean length of 6.3 ± 1.1 μm and a mean width of 4.1 ± 0.4 μm. Each cell had a single polar flagellum. They contained hundreds of bullet-shaped intracellular magnetite magnetosomes. Phylogenetic analysis revealed that they were most closely related to Desulfamplus magnetovallimortis strain BW-1, and belonged to the Deltaproteobacteria. Our findings indicate that LR-1 may be a new species of MTB. We propose that deltaproteobacterial MTB may play an important role in iron cycling and so may represent a reservoir of iron, and be an indicator species for monitoring algal blooms in such eutrophic ecosystems. These observations provide new clues to the cultivation of magnetotactic Deltaproteobacteria and the control of algal blooms, although further studies are needed.
Collapse
Affiliation(s)
- Hongmiao Pan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, 7 Nanhai Road, Qingdao, 266071, China
| | - Yi Dong
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, 7 Nanhai Road, Qingdao, 266071, China
| | - Zhaojie Teng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | - Jinhua Li
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China.,Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, 19 Beitucheng Western Road, Beijing, 100029, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, 7 Nanhai Road, Qingdao, 266071, China
| | - Wenyan Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, 7 Nanhai Road, Qingdao, 266071, China
| | - Tian Xiao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, 266237, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, 7 Nanhai Road, Qingdao, 266071, China
| | - Long-Fei Wu
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, 7 Nanhai Road, Qingdao, 266071, China.,LCB, Aix-Marseille Univ, CNRS, 31 Chemin Joseph Aiguier, Marseille, 13402, France
| |
Collapse
|
24
|
Bell AM, Robinson JT. The rotating magnetocaloric effect as a potential mechanism for natural magnetic senses. PLoS One 2019; 14:e0222401. [PMID: 31574085 PMCID: PMC6773214 DOI: 10.1371/journal.pone.0222401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/28/2019] [Indexed: 12/01/2022] Open
Abstract
Many animals are able to sense the earth’s magnetic field, including varieties of arthropods and members of all major vertebrate groups. While the existence of this magnetic sense is widely accepted, the mechanism of action remains unknown. Building from recent work on synthetic magnetoreceptors, we propose a new model for natural magnetosensation based on the rotating magnetocaloric effect (RME), which predicts that heat generated by magnetic nanoparticles may allow animals to detect features of the earth’s magnetic field. Using this model, we identify the conditions for the RME to produce physiological signals in response to the earth’s magnetic field and suggest experiments to distinguish between candidate mechanisms of magnetoreception.
Collapse
Affiliation(s)
- A. Martin Bell
- Applied Physics Program, Rice University, Houston, Texas, United States of America
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas, United States of America
| | - Jacob T. Robinson
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas, United States of America
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
25
|
Phylogenetic and Structural Identification of a Novel Magnetotactic Deltaproteobacteria Strain, WYHR-1, from a Freshwater Lake. Appl Environ Microbiol 2019; 85:AEM.00731-19. [PMID: 31053584 DOI: 10.1128/aem.00731-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/29/2019] [Indexed: 11/20/2022] Open
Abstract
Magnetotactic bacteria (MTB) are phylogenetically diverse prokaryotes that are able to biomineralize intracellular, magnetic chains of magnetite or greigite nanocrystals called magnetosomes. Simultaneous characterization of MTB phylogeny and biomineralization is crucial but challenging because most MTB are extremely difficult to culture. We identify a large rod, bean-like MTB (tentatively named WYHR-1) from freshwater sediments of Weiyang Lake, Xi'an, China, using a coupled fluorescence and scanning electron microscopy approach at the single-cell scale. Phylogenetic analysis of 16S rRNA gene sequences indicates that WYHR-1 is a novel genus from the Deltaproteobacteria class. Transmission electron microscope observations reveal that WYHR-1 cells contain tens of magnetite magnetosomes that are organized into a single chain bundle along the cell long axis. Mature WYHR-1 magnetosomes are bullet-shaped, straight, and elongated along the [001] direction, with a large flat end terminated by a {100} face at the base and a conical top. This crystal morphology is distinctively different from bullet-shaped magnetosomes produced by other MTB in the Deltaproteobacteria class and the Nitrospirae phylum. This indicates that WYHR-1 may have a different crystal growth process and mechanism from other species, which results from species-specific magnetosome biomineralization in MTB.IMPORTANCE Magnetotactic bacteria (MTB) represent a model system for understanding biomineralization and are also studied intensively in biogeomagnetic and paleomagnetic research. However, many uncultured MTB strains have not been identified phylogenetically or investigated structurally at the single-cell level, which limits comprehensive understanding of MTB diversity and their role in biomineralization. We have identified a novel MTB strain, WYHR-1, from a freshwater lake using a coupled fluorescence and scanning electron microscopy approach at the single-cell scale. Our analyses further indicate that strain WYHR-1 represents a novel genus from the Deltaproteobacteria class. In contrast to bullet-shaped magnetosomes produced by other MTB in the Deltaproteobacteria class and the Nitrospirae phylum, WYHR-1 magnetosomes are bullet-shaped, straight, and highly elongated along the [001] direction, are terminated by a large {100} face at their base, and have a conical top. Our findings imply that, consistent with phylogenetic diversity of MTB, bullet-shaped magnetosomes have diverse crystal habits and growth patterns.
Collapse
|
26
|
Ashraf N, Ahmad F, Da-Wei L, Zhou RB, Feng-Li H, Yin DC. Iron/iron oxide nanoparticles: advances in microbial fabrication, mechanism study, biomedical, and environmental applications. Crit Rev Microbiol 2019; 45:278-300. [PMID: 30985230 DOI: 10.1080/1040841x.2019.1593101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microbially synthesized iron oxide nanoparticles (FeONPs) hold great potential for biomedical, clinical, and environmental applications owing to their several unique features. Biomineralization, a process that exists in almost every living organism playing a significant role in the fabrication of FeONPs through the involvement of 5-100 nm sized protein compartments such as dodecameric (Dps), ferritin, and encapsulin with their diameters 9, 12, and ∼32 nm, respectively. This contribution provides a detailed overview of the green synthesis of FeONPs by microbes and their applications in biomedical and environmental fields. The first part describes our understanding in the biological fabrication of zero-valent FeONPs with special emphasis on ferroxidase (FO) mediated series of steps involving in the translocation, oxidation, nucleation, and storage of iron in Dps, ferritin, and encapsulin protein nano-compartments. Secondly, this review elaborates the significance of biologically synthesized FeONPs in biomedical science for the detection, treatment, and prevention of various diseases. Thirdly, we tried to provide the recent advances of using FeONPs in the environmental process, e.g. detection, degradation, remediation and treatment of toxic pesticides, dyes, metals, and wastewater.
Collapse
Affiliation(s)
- Noreen Ashraf
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - Fiaz Ahmad
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - Li Da-Wei
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - Ren-Bin Zhou
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - He Feng-Li
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| | - Da-Chuan Yin
- a Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University , Xi'an , PR China
| |
Collapse
|
27
|
Vargas G, Cypriano J, Correa T, Leão P, Bazylinski DA, Abreu F. Applications of Magnetotactic Bacteria, Magnetosomes and Magnetosome Crystals in Biotechnology and Nanotechnology: Mini-Review. Molecules 2018; 23:E2438. [PMID: 30249983 PMCID: PMC6222368 DOI: 10.3390/molecules23102438] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 12/31/2022] Open
Abstract
Magnetotactic bacteria (MTB) biomineralize magnetosomes, which are defined as intracellular nanocrystals of the magnetic minerals magnetite (Fe₃O₄) or greigite (Fe₃S₄) enveloped by a phospholipid bilayer membrane. The synthesis of magnetosomes is controlled by a specific set of genes that encode proteins, some of which are exclusively found in the magnetosome membrane in the cell. Over the past several decades, interest in nanoscale technology (nanotechnology) and biotechnology has increased significantly due to the development and establishment of new commercial, medical and scientific processes and applications that utilize nanomaterials, some of which are biologically derived. One excellent example of a biological nanomaterial that is showing great promise for use in a large number of commercial and medical applications are bacterial magnetite magnetosomes. Unlike chemically-synthesized magnetite nanoparticles, magnetosome magnetite crystals are stable single-magnetic domains and are thus permanently magnetic at ambient temperature, are of high chemical purity, and display a narrow size range and consistent crystal morphology. These physical/chemical features are important in their use in biotechnological and other applications. Applications utilizing magnetite-producing MTB, magnetite magnetosomes and/or magnetosome magnetite crystals include and/or involve bioremediation, cell separation, DNA/antigen recovery or detection, drug delivery, enzyme immobilization, magnetic hyperthermia and contrast enhancement of magnetic resonance imaging. Metric analysis using Scopus and Web of Science databases from 2003 to 2018 showed that applied research involving magnetite from MTB in some form has been focused mainly in biomedical applications, particularly in magnetic hyperthermia and drug delivery.
Collapse
Affiliation(s)
- Gabriele Vargas
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, UFRJ, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Jefferson Cypriano
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, UFRJ, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Tarcisio Correa
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, UFRJ, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Pedro Leão
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, UFRJ, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV 89154-4004, USA.
| | - Fernanda Abreu
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, UFRJ, Rio de Janeiro, RJ 21941-902, Brazil.
| |
Collapse
|
28
|
Teng Z, Zhang Y, Zhang W, Pan H, Xu J, Huang H, Xiao T, Wu LF. Diversity and Characterization of Multicellular Magnetotactic Prokaryotes From Coral Reef Habitats of the Paracel Islands, South China Sea. Front Microbiol 2018; 9:2135. [PMID: 30271390 PMCID: PMC6142882 DOI: 10.3389/fmicb.2018.02135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/21/2018] [Indexed: 02/01/2023] Open
Abstract
While multicellular magnetotactic prokaryotes (MMPs) are ubiquitous in marine environments, the diversity of MMPs in sediments of coral reef ecosystems has rarely been reported. In this study, we made an investigation on the diversity and characteristics of MMPs in sediments at 11 stations in coral reef habitats of the Paracel Islands. The results showed that MMPs were present at nine stations, with spherical mulberry-like MMPs (s-MMPs) found at all stations and ellipsoidal pineapple-like MMPs (e-MMPs) found at seven stations. The maximum abundance of MMPs was 6 ind./cm3. Phylogenetic analysis revealed the presence of one e-MMP species and five s-MMP species including two species of a new genus. The results indicate that coral reef habitats of the Paracel Islands have a high diversity of MMPs that bio-mineralize multiple intracellular chains of iron crystals and play important role in iron cycling in such oligotrophic environment. These observations provide new perspective of the diversity of MMPs in general and expand knowledge of the occurrence of MMPs in coral reef habitats.
Collapse
Affiliation(s)
- Zhaojie Teng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuyang Zhang
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Wenyan Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China
| | - Hongmiao Pan
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China
| | - Jianhong Xu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Hui Huang
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Tian Xiao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China
| | - Long-Fei Wu
- Aix Marseille University, CNRS, LCB, Marseille, France.,International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA-MagMC), CNRS-CAS, Qingdao, China
| |
Collapse
|
29
|
Magnetic-field induced rotation of magnetosome chains in silicified magnetotactic bacteria. Sci Rep 2018; 8:7699. [PMID: 29769616 PMCID: PMC5955880 DOI: 10.1038/s41598-018-25972-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/19/2018] [Indexed: 11/21/2022] Open
Abstract
Understanding the biological processes enabling magnetotactic bacteria to maintain oriented chains of magnetic iron-bearing nanoparticles called magnetosomes is a major challenge. The study aimed to constrain the role of an external applied magnetic field on the alignment of magnetosome chains in Magnetospirillum magneticum AMB-1 magnetotactic bacteria immobilized within a hydrated silica matrix. A deviation of the chain orientation was evidenced, without significant impact on cell viability, which was preserved after the field was turned-off. Transmission electron microscopy showed that the crystallographic orientation of the nanoparticles within the chains were preserved. Off-axis electron holography evidenced that the change in magnetosome orientation was accompanied by a shift from parallel to anti-parallel interactions between individual nanocrystals. The field-induced destructuration of the chain occurs according to two possible mechanisms: (i) each magnetosome responds individually and reorients in the magnetic field direction and/or (ii) short magnetosome chains deviate in the magnetic field direction. This work enlightens the strong dynamic character of the magnetosome assembly and widens the potentialities of magnetotactic bacteria in bionanotechnology.
Collapse
|
30
|
Baumgartner J, Menguy N, Gonzalez TP, Morin G, Widdrat M, Faivre D. Elongated magnetite nanoparticle formation from a solid ferrous precursor in a magnetotactic bacterium. J R Soc Interface 2017; 13:rsif.2016.0665. [PMID: 27881802 PMCID: PMC5134017 DOI: 10.1098/rsif.2016.0665] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/27/2016] [Indexed: 11/23/2022] Open
Abstract
Magnetotactic bacteria are aquatic microorganisms that intracellularly mineralize ferrimagnetic nanoparticles enabling the cells to align with the geomagnetic field. The bacteria produce a magnetic mineral of species-specific phase (magnetite Fe(II)Fe(III)2O4 or greigite Fe(II)Fe(III)2S4), size, morphology and particle assembly. Several species produce crystals of unusual elongated particle shapes, which break the symmetry of the thermodynamically favoured isometric morphology. Such morphologies are thought to affect domain size and orientation of the internal magnetization. Therefore, they are interesting study objects to develop new synthetic strategies for the morphological control of nanoparticles. We investigate the formation of such irregularly shaped nanomagnets in the species Desulfovibrio magneticus RS-1. In contrast to previously described organisms, this bacterium accumulates iron predominantly as Fe(II) rather than Fe(III) consistent with an alternative oxidative biomineralization route. Further, using high-resolution electron microscopy, we observe an epitaxial relationship between precursor and the final mineral phase supporting the notion of a solid-state transformation pathway. The precursor is likely a green rust previously thought to convert to magnetite only by dissolution and re-precipitation. Our findings represent a novel observation in the interconversion of iron (oxyhydr)oxide materials and suggest that solid-state growth processes could be required to produce irregularly shaped, elongated magnetite nanocrystals.
Collapse
Affiliation(s)
- Jens Baumgartner
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Nicolas Menguy
- Institut de Minéralogie et de Physique des Milieux Condensés, Unité Mixte de Recherche 7590 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Institut de Recherches pour le Développement, Campus Jussieu, 75005 Paris, France
| | - Teresa Perez Gonzalez
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Guillaume Morin
- Institut de Minéralogie et de Physique des Milieux Condensés, Unité Mixte de Recherche 7590 Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Institut de Recherches pour le Développement, Campus Jussieu, 75005 Paris, France
| | - Marc Widdrat
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| | - Damien Faivre
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany
| |
Collapse
|
31
|
Single-Cell Resolution of Uncultured Magnetotactic Bacteria via Fluorescence-Coupled Electron Microscopy. Appl Environ Microbiol 2017; 83:AEM.00409-17. [PMID: 28389550 PMCID: PMC5452806 DOI: 10.1128/aem.00409-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/05/2017] [Indexed: 12/02/2022] Open
Abstract
Magnetotactic bacteria (MTB) form intracellular chain-assembled nanocrystals of magnetite or greigite termed magnetosomes. The characterization of magnetosome crystals requires electron microscopy due to their nanoscopic sizes. However, electron microscopy does not provide phylogenetic information for MTB. We have developed a strategy for the simultaneous and rapid phylogenetic and biomineralogical characterization of uncultured MTB at the single-cell level. It consists of four steps: (i) enrichment of MTB cells from an environmental sample, (ii) 16S rRNA gene sequencing of MTB, and (iii) fluorescence in situ hybridization analyses coordinated with (iv) transmission or scanning electron microscopy of the probe-hybridized cells. The application of this strategy identified a magnetotactic Gammaproteobacteria strain, SHHR-1, from brackish sediments collected from the Shihe River estuary in Qinhuangdao City, China. SHHR-1 magnetosomes are elongated prismatic magnetites which can be idealized as hexagonal prisms. Taxonomic groups of uncultured MTB were also identified in freshwater sediments from Lake Miyun in northern Beijing via this novel coordinated fluorescence and scanning electron microscopy method based on four group-specific rRNA-targeted probes. Our analyses revealed that major magnetotactic taxonomic groups can be accurately determined only with coordinated scanning electron microscopy observations on fluorescently labeled single cells due to limited group coverage and specificity for existing group-specific MTB fluorescence in situ hybridization (FISH) probes. Our reported strategy is simple and efficient, offers great promise toward investigating the diversity and biomineralization of MTB, and may also be applied to other functional groups of microorganisms. IMPORTANCE Magnetotactic bacteria (MTB) are phylogenetically diverse and biomineralize morphologically diverse magnetic nanocrystals of magnetite or greigite in intracellular structures termed magnetosomes. However, many uncultured MTB strains have not been phylogenetically identified or structurally investigated at the single-cell level, which limits our comprehensive understanding of the diversity of MTB and their role in biomineralization. We developed a fluorescence-coupled electron microscopy method for the rapid phylogenetic and biomineralogical characterization of uncultured MTB at the single-cell level. Using this novel method, we successfully identified taxonomic groups of several uncultured MTB and one novel magnetotactic Gammaproteobacteria strain, SHHR-1, from natural environments. Our analyses further indicate that strain SHHR-1 forms elongated prismatic magnetites. Our findings provide a promising strategy for the rapid characterization of phylogenetic and biomineralogical properties of uncultured MTB at the single-cell level. Furthermore, due to its simplicity and generalized methodology, this strategy can also be useful in the study of the diversity and biomineralization properties of microbial taxa involved in other mineralization processes.
Collapse
|
32
|
Zhang H, Menguy N, Wang F, Benzerara K, Leroy E, Liu P, Liu W, Wang C, Pan Y, Chen Z, Li J. Magnetotactic Coccus Strain SHHC-1 Affiliated to Alphaproteobacteria Forms Octahedral Magnetite Magnetosomes. Front Microbiol 2017; 8:969. [PMID: 28611762 PMCID: PMC5447723 DOI: 10.3389/fmicb.2017.00969] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/15/2017] [Indexed: 11/13/2022] Open
Abstract
Magnetotactic bacteria (MTB) are morphologically and phylogenetically diverse prokaryotes. They can form intracellular chain-assembled magnetite (Fe3O4) or greigite (Fe3S4) nanocrystals each enveloped by a lipid bilayer membrane called a magnetosome. Magnetotactic cocci have been found to be the most abundant morphotypes of MTB in various aquatic environments. However, knowledge on magnetosome biomineralization within magnetotactic cocci remains elusive due to small number of strains that have been cultured. By using a coordinated fluorescence and scanning electron microscopy method, we discovered a unique magnetotactic coccus strain (tentatively named SHHC-1) in brackish sediments collected from the estuary of Shihe River in Qinhuangdao city, eastern China. It phylogenetically belongs to the Alphaproteobacteria class. Transmission electron microscopy analyses reveal that SHHC-1 cells formed many magnetite-type magnetosomes organized as two bundles in each cell. Each bundle contains two parallel chains with smaller magnetosomes generally located at the ends of each chain. Unlike most magnetotactic alphaproteobacteria that generally form magnetosomes with uniform crystal morphologies, SHHC-1 magnetosomes display a more diverse variety of crystal morphology even within a single cell. Most particles have rectangular and rhomboidal projections, whilst others are triangular, or irregular. High resolution transmission electron microscopy observations coupled with morphological modeling indicate an idealized model-elongated octahedral crystals, a form composed of eight {111} faces. Furthermore, twins, multiple twins and stack dislocations are frequently observed in the SHHC-1 magnetosomes. This suggests that biomineralization of strain SHHC-1 magnetosome might be less biologically controlled than other magnetotactic alphaproteobacteria. Alternatively, SHHC-1 is more sensitive to the unfavorable environments under which it lives, or a combination of both factors may have controlled the magnetosome biomineralization process within this unique MTB.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Life Science and Technology, Heilongjiang Bayi Agricultural UniversityDaqing, China.,Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of SciencesBeijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China.,France-China Biomineralization and Nano-structures Laboratory, Chinese Academy of SciencesBeijing, China
| | - Nicolas Menguy
- France-China Biomineralization and Nano-structures Laboratory, Chinese Academy of SciencesBeijing, China.,IMPMC, Centre National de la Recherche Scientifique, UMR 7590, Sorbonne Universités, MNHN, UPMC, IRD UMR 206Paris, France
| | - Fuxian Wang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of SciencesBeijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China.,France-China Biomineralization and Nano-structures Laboratory, Chinese Academy of SciencesBeijing, China
| | - Karim Benzerara
- IMPMC, Centre National de la Recherche Scientifique, UMR 7590, Sorbonne Universités, MNHN, UPMC, IRD UMR 206Paris, France
| | - Eric Leroy
- France Chimie Me'tallurgique des Terres Rares, ICMPE, UMR 7182, Centre National de la Recherche ScientifiqueThiais, France
| | - Peiyu Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of SciencesBeijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China.,France-China Biomineralization and Nano-structures Laboratory, Chinese Academy of SciencesBeijing, China
| | - Wenqi Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of SciencesBeijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China.,France-China Biomineralization and Nano-structures Laboratory, Chinese Academy of SciencesBeijing, China
| | - Chunli Wang
- Department of Life Science and Technology, Heilongjiang Bayi Agricultural UniversityDaqing, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of SciencesBeijing, China.,France-China Biomineralization and Nano-structures Laboratory, Chinese Academy of SciencesBeijing, China
| | - Zhibao Chen
- Department of Life Science and Technology, Heilongjiang Bayi Agricultural UniversityDaqing, China
| | - Jinhua Li
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of SciencesBeijing, China.,Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China.,France-China Biomineralization and Nano-structures Laboratory, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
33
|
Galloway JM, Bird SM, Talbot JE, Shepley PM, Bradley RC, El-Zubir O, Allwood DA, Leggett GJ, Miles JJ, Staniland SS, Critchley K. Nano- and micro-patterning biotemplated magnetic CoPt arrays. NANOSCALE 2016; 8:11738-11747. [PMID: 27221982 DOI: 10.1039/c6nr03330j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Patterned thin-films of magnetic nanoparticles (MNPs) can be used to make: surfaces for manipulating and sorting cells, sensors, 2D spin-ices and high-density data storage devices. Conventional manufacture of patterned magnetic thin-films is not environmentally friendly because it uses high temperatures (hundreds of degrees Celsius) and high vacuum, which requires expensive specialised equipment. To tackle these issues, we have taken inspiration from nature to create environmentally friendly patterns of ferromagnetic CoPt using a biotemplating peptide under mild conditions and simple apparatus. Nano-patterning via interference lithography (IL) and micro-patterning using micro-contact printing (μCP) were used to create a peptide resistant mask onto a gold surface under ambient conditions. We redesigned a biotemplating peptide (CGSGKTHEIHSPLLHK) to self-assemble onto gold surfaces, and mineralised the patterns with CoPt at 18 °C in water. Ferromagnetic CoPt is biotemplated by the immobilised peptides, and the patterned MNPs maintain stable magnetic domains. This bioinspired study offers an ecological route towards developing biotemplated magnetic thin-films for use in applications such as sensing, cell manipulation and data storage.
Collapse
Affiliation(s)
- J M Galloway
- School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK and School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - S M Bird
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, S3 7HF, UK
| | - J E Talbot
- School of Computer Science, University of Manchester, Kilburn Building, Oxford Road, Manchester, M13 9PL, UK
| | - P M Shepley
- School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - R C Bradley
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Maplin Street, Sheffield, S1 3JD, UK
| | - O El-Zubir
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, S3 7HF, UK and School of Chemistry, University of Newcastle, Chemical Nanoscience Laboratories, Bedson Building, Newcastle Upon Tyne, NE1 7RU, UK
| | - D A Allwood
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Maplin Street, Sheffield, S1 3JD, UK
| | - G J Leggett
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, S3 7HF, UK
| | - J J Miles
- School of Computer Science, University of Manchester, Kilburn Building, Oxford Road, Manchester, M13 9PL, UK
| | - S S Staniland
- Department of Chemistry, University of Sheffield, Dainton Building, Brook Hill, S3 7HF, UK
| | - K Critchley
- School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
34
|
Prozorov T. Magnetic microbes: Bacterial magnetite biomineralization. Semin Cell Dev Biol 2015; 46:36-43. [DOI: 10.1016/j.semcdb.2015.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/26/2015] [Accepted: 09/01/2015] [Indexed: 11/27/2022]
|