1
|
Nikpasand M, Abbott RE, Kage CC, Singh S, Winkelstein BA, Barocas VH, Ellingson AM. Cervical facet capsular ligament mechanics: Estimations based on subject-specific anatomy and kinematics. JOR Spine 2023; 6:e1269. [PMID: 37780821 PMCID: PMC10540825 DOI: 10.1002/jsp2.1269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 10/03/2023] Open
Abstract
Background To understand the facet capsular ligament's (FCL) role in cervical spine mechanics, the interactions between the FCL and other spinal components must be examined. One approach is to develop a subject-specific finite element (FE) model of the lower cervical spine, simulating the motion segments and their components' behaviors under physiological loading conditions. This approach can be particularly attractive when a patient's anatomical and kinematic data are available. Methods We developed and demonstrated methodology to create 3D subject-specific models of the lower cervical spine, with a focus on facet capsular ligament biomechanics. Displacement-controlled boundary conditions were applied to the vertebrae using kinematics extracted from biplane videoradiography during planar head motions, including axial rotation, lateral bending, and flexion-extension. The FCL geometries were generated by fitting a surface over the estimated ligament-bone attachment regions. The fiber structure and material characteristics of the ligament tissue were extracted from available human cervical FCL data. The method was demonstrated by application to the cervical geometry and kinematics of a healthy 23-year-old female subject. Results FCL strain within the resulting subject-specific model were subsequently compared to models with generic: (1) geometry, (2) kinematics, and (3) material properties to assess the effect of model specificity. Asymmetry in both the kinematics and the anatomy led to asymmetry in strain fields, highlighting the importance of patient-specific models. We also found that the calculated strain field was largely independent of constitutive model and driven by vertebrae morphology and motion, but the stress field showed more constitutive-equation-dependence, as would be expected given the highly constrained motion of cervical FCLs. Conclusions The current study provides a methodology to create a subject-specific model of the cervical spine that can be used to investigate various clinical questions by coupling experimental kinematics with multiscale computational models.
Collapse
Affiliation(s)
- Maryam Nikpasand
- Department of Mechanical EngineeringUniversity of Minnesota—Twin CitiesMinneapolisMinnesotaUSA
| | - Rebecca E. Abbott
- Department of Rehabilitation MedicineUniversity of Minnesota—Twin CitiesMinneapolisMinnesotaUSA
| | - Craig C. Kage
- Department of Rehabilitation MedicineUniversity of Minnesota—Twin CitiesMinneapolisMinnesotaUSA
| | - Sagar Singh
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Beth A. Winkelstein
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Victor H. Barocas
- Department of Mechanical EngineeringUniversity of Minnesota—Twin CitiesMinneapolisMinnesotaUSA
- Department of Biomedical EngineeringUniversity of Minnesota—Twin CitiesMinneapolisMinnesotaUSA
| | - Arin M. Ellingson
- Department of Rehabilitation MedicineUniversity of Minnesota—Twin CitiesMinneapolisMinnesotaUSA
| |
Collapse
|
2
|
Gacek E, Bermel EA, Ellingson AM, Barocas VH. Through-thickness regional variation in the mechanical characteristics of the lumbar facet capsular ligament. Biomech Model Mechanobiol 2021; 20:1445-1457. [PMID: 33788068 PMCID: PMC9289988 DOI: 10.1007/s10237-021-01455-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
The human lumbar facet capsule, with the facet capsular ligament (FCL) that forms its primary constituent, is a common source of lower back pain. Prior studies on the FCL were limited to in-plane tissue behavior, but due to the presence of two distinct yet mechanically different regions, a novel out-of-plane study was conducted to further characterize the roles of the collagen and elastin regions. An experimental technique, called stretch-and-bend, was developed to study the tension-compression asymmetry of the FCL due to varying collagen fiber density throughout the thickness of the tissue. Each healthy excised cadaveric FCL sample was tested in four conditions depending on primary collagen fiber alignment and regional loading. Our results indicate that the FCL is stiffest when the collagen fibers (1) are aligned in the direction of loading, (2) are in tension, and (3) are stretched - 16% from its off-the-bone, undeformed state. An optimization routine was used to fit a four-parameter anisotropic, hyperplastic model to the experimental data. The average elastin modulus, E, and the average collagen fiber modulus, ξ, were 13.15 ± 3.59 kPa and 18.68 ± 13.71 MPa (95% CI), respectively.
Collapse
Affiliation(s)
- Elizabeth Gacek
- Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, MN, 55455, USA
| | - Emily A Bermel
- Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, MN, 55455, USA
| | - Arin M Ellingson
- Divisions of Physical Therapy and Rehabilitation Science, Departments of Rehabilitation Medicine and Orthopedic Surgery, University of Minnesota, 426 Church St. SE, 366A Children's Rehab Ctr, Minneapolis, MN, 55455, USA
| | - Victor H Barocas
- Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, MN, 55455, USA.
| |
Collapse
|
3
|
Myrick KM, Voss A, Feinn RS, Martin T, Mele BM, Garbalosa JC. Effects of season long participation on ACL volume in female intercollegiate soccer athletes. J Exp Orthop 2019; 6:12. [PMID: 30923976 PMCID: PMC6438997 DOI: 10.1186/s40634-019-0182-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/07/2019] [Indexed: 01/27/2023] Open
Abstract
Background The aim of this study was to characterize the volumetric changes of the anterior cruciate ligament over the course of a competitive soccer season in female athletes. Methods Seventeen Division-I collegiate soccer players were recruited. Two data collection sessions were conducted. The first data collection occurred prior to the start of the soccer season. Each subject completed a brief questionnaire, had height and weight measured, underwent a clinical assessment of their anterior cruciate ligaments and an eight sequence magnetic resonance imagery of their knees. Contours of the anterior cruciate ligaments were outlined in sagittal T-2 weighted MR images and volumes were calculated using Medical Image Processing, Analysis, and Visualization software. Presence or absence of edema within the ligament was determined in pre and post season scans. All subjects were followed during the season to determine if a lower extremity injury had been sustained. Results Mean ligament volume significantly increased from preseason to postseason (p=.006). There was a 10% increase in the percentage of knees with edema pre to post season. Conclusions The physical demand of a competitive soccer season in female collegiate athletes appears to cause an increase in volume of the anterior cruciate ligament. The increase in volume may be related to the accumulation of microscopic tears over the course of the season which induce inflammation and edema. The volumetric changes in the ligament may have significant clinical implications, however further studies must be done to determine the relationship between anterior cruciate ligament volume and risk of injury.
Collapse
Affiliation(s)
- Karen M Myrick
- Quinnipiac University, School of Nursing, Hamden, CT, USA
| | - Andreas Voss
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee, 11 93053, Regensburg, Germany. .,Department of Orthopaedic Sports Medicine, Technical University of Munich, Munich, Germany.
| | | | - Thomas Martin
- Quinnipiac University, School of Health Sciences, Hamden, CT, USA
| | | | - Juan C Garbalosa
- Quinnipiac University, School of Health Sciences, Hamden, CT, USA
| |
Collapse
|
4
|
Zarei V, Zhang S, Winkelstein BA, Barocas VH. Tissue loading and microstructure regulate the deformation of embedded nerve fibres: predictions from single-scale and multiscale simulations. J R Soc Interface 2018; 14:rsif.2017.0326. [PMID: 28978743 DOI: 10.1098/rsif.2017.0326] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/11/2017] [Indexed: 12/16/2022] Open
Abstract
Excessive deformation of nerve fibres (axons) in the spinal facet capsular ligaments (FCLs) can be a cause of pain. The axons are embedded in the fibrous extracellular matrix (ECM) of FCLs, so understanding how local fibre organization and micromechanics modulate their mechanical behaviour is essential. We constructed a computational discrete-fibre model of an axon embedded in a collagen fibre network attached to the axon by distinct fibre-axon connections. This model was used to relate the axonal deformation to the fibre alignment and collagen volume concentration of the surrounding network during transverse, axial and shear deformations. Our results showed that fibre alignment affects axonal deformation only during transverse and axial loading, but higher collagen volume concentration results in larger overall axonal strains for all loading cases. Furthermore, axial loading leads to the largest stretch of axonal microtubules and induces the largest forces on axon's surface in most cases. Comparison between this model and a multiscale continuum model for a representative case showed that although both models predicted similar averaged axonal strains, strain was more heterogeneous in the discrete-fibre model.
Collapse
Affiliation(s)
- Vahhab Zarei
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sijia Zhang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104-6321, USA
| | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104-6321, USA
| | - Victor H Barocas
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Picu RC, Deogekar S, Islam MR. Poisson's Contraction and Fiber Kinematics in Tissue: Insight From Collagen Network Simulations. J Biomech Eng 2018; 140:2663690. [PMID: 29131889 PMCID: PMC5816257 DOI: 10.1115/1.4038428] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 11/01/2017] [Indexed: 12/31/2022]
Abstract
Connective tissue mechanics is highly nonlinear, exhibits a strong Poisson's effect, and is associated with significant collagen fiber re-arrangement. Although the general features of the stress-strain behavior have been discussed extensively, the Poisson's effect received less attention. In general, the relationship between the microscopic fiber network mechanics and the macroscopic experimental observations remains poorly defined. The objective of the present work is to provide additional insight into this relationship. To this end, results from models of random collagen networks are compared with experimental data on reconstructed collagen gels, mouse skin dermis, and the human amnion. Attention is devoted to the mechanism leading to the large Poisson's effect observed in experiments. The results indicate that the incremental Poisson's contraction is directly related to preferential collagen orientation. The experimentally observed downturn of the incremental Poisson's ratio at larger strains is associated with the confining effect of fibers transverse to the loading direction and contributing little to load bearing. The rate of collagen orientation increases at small strains, reaches a maximum, and decreases at larger strains. The peak in this curve is associated with the transition of the network deformation from bending dominated, at small strains, to axially dominated, at larger strains. The effect of fiber tortuosity on network mechanics is also discussed, and a comparison of biaxial and uniaxial loading responses is performed.
Collapse
Affiliation(s)
- R. C. Picu
- Department of Mechanical, Aerospace
and Nuclear Engineering,
Rensselaer Polytechnic Institute,
Troy, NY 12180
e-mail:
| | - S. Deogekar
- Department of Mechanical, Aerospace and
Nuclear Engineering,
Rensselaer Polytechnic Institute,
Troy, NY 12180
e-mail:
| | - M. R. Islam
- Department of Mechanical, Aerospace and
Nuclear Engineering,
Rensselaer Polytechnic Institute,
Troy, NY 12180
e-mail:
| |
Collapse
|
6
|
Ban E, Zhang S, Zarei V, Barocas VH, Winkelstein BA, Picu CR. Collagen Organization in Facet Capsular Ligaments Varies With Spinal Region and With Ligament Deformation. J Biomech Eng 2018; 139:2606399. [PMID: 28241270 DOI: 10.1115/1.4036019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Indexed: 12/14/2022]
Abstract
The spinal facet capsular ligament (FCL) is primarily comprised of heterogeneous arrangements of collagen fibers. This complex fibrous structure and its evolution under loading play a critical role in determining the mechanical behavior of the FCL. A lack of analytical tools to characterize the spatial anisotropy and heterogeneity of the FCL's microstructure has limited the current understanding of its structure-function relationships. Here, the collagen organization was characterized using spatial correlation analysis of the FCL's optically obtained fiber orientation field. FCLs from the cervical and lumbar spinal regions were characterized in terms of their structure, as was the reorganization of collagen in stretched cervical FCLs. Higher degrees of intra- and intersample heterogeneity were found in cervical FCLs than in lumbar specimens. In the cervical FCLs, heterogeneity was manifested in the form of curvy patterns formed by collections of collagen fibers or fiber bundles. Tensile stretch, a common injury mechanism for the cervical FCL, significantly increased the spatial correlation length in the stretch direction, indicating an elongation of the observed structural features. Finally, an affine estimation for the change of correlation length under loading was performed which gave predictions very similar to the actual values. These findings provide structural insights for multiscale mechanical analyses of the FCLs from various spinal regions and also suggest methods for quantitative characterization of complex tissue patterns.
Collapse
Affiliation(s)
- Ehsan Ban
- Department of Materials Science and Engineering, University of Pennsylvania, 211 LRSM, 3231 Walnut Street, Philadelphia, PA 19104 e-mail:
| | - Sijia Zhang
- Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 S. 33rd Street, Philadelphia, PA 19104 e-mail:
| | - Vahhab Zarei
- Department of Mechanical Engineering, University of Minnesota-Twin Cities, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455 e-mail:
| | - Victor H Barocas
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455 e-mail:
| | - Beth A Winkelstein
- Departments of Bioengineering and Neurosurgery, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104 e-mail:
| | - Catalin R Picu
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 2048 Jonsson Engineering Center, 110 8th Street, Troy, NY 12180 e-mail:
| |
Collapse
|
7
|
Wilson MA, Baljon ARC. Microstructural Origins of Nonlinear Response in Associating Polymers under Oscillatory Shear. Polymers (Basel) 2017; 9:E556. [PMID: 30965862 PMCID: PMC6418794 DOI: 10.3390/polym9110556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/22/2017] [Accepted: 10/24/2017] [Indexed: 11/21/2022] Open
Abstract
The response of associating polymers with oscillatory shear is studied through large-scale simulations. A hybrid molecular dynamics (MD), Monte Carlo (MC) algorithm is employed. Polymer chains are modeled as a coarse-grained bead-spring system. Functionalized end groups, at both ends of the polymer chains, can form reversible bonds according to MC rules. Stress-strain curves show nonlinearities indicated by a non-ellipsoidal shape. We consider two types of nonlinearities. Type I occurs at a strain amplitude much larger than one, type II at a frequency at which the elastic storage modulus dominates the viscous loss modulus. In this last case, the network topology resembles that of the system at rest. The reversible bonds are broken and chains stretch when the system moves away from the zero-strain position. For type I, the chains relax and the number of reversible bonds peaks when the system is near an extreme of the motion. During the movement to the other extreme of the cycle, first a stress overshoot occurs, then a yield accompanied by shear-banding. Finally, the network restructures. Interestingly, the system periodically restores bonds between the same associating groups. Even though major restructuring occurs, the system remembers previous network topologies.
Collapse
Affiliation(s)
- Mark A Wilson
- Computational Materials and Data Science, Sandia National Laboratories, Albuquerque, NM 87123, USA.
| | - Arlette R C Baljon
- Department of Physics, San Diego State University, San Diego, CA 92182, USA.
| |
Collapse
|
8
|
Bassett DS, Khambhati AN, Grafton ST. Emerging Frontiers of Neuroengineering: A Network Science of Brain Connectivity. Annu Rev Biomed Eng 2017; 19:327-352. [PMID: 28375650 PMCID: PMC6005206 DOI: 10.1146/annurev-bioeng-071516-044511] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neuroengineering is faced with unique challenges in repairing or replacing complex neural systems that are composed of many interacting parts. These interactions form intricate patterns over large spatiotemporal scales and produce emergent behaviors that are difficult to predict from individual elements. Network science provides a particularly appropriate framework in which to study and intervene in such systems by treating neural elements (cells, volumes) as nodes in a graph and neural interactions (synapses, white matter tracts) as edges in that graph. Here, we review the emerging discipline of network neuroscience, which uses and develops tools from graph theory to better understand and manipulate neural systems from micro- to macroscales. We present examples of how human brain imaging data are being modeled with network analysis and underscore potential pitfalls. We then highlight current computational and theoretical frontiers and emphasize their utility in informing diagnosis and monitoring, brain-machine interfaces, and brain stimulation. A flexible and rapidly evolving enterprise, network neuroscience provides a set of powerful approaches and fundamental insights that are critical for the neuroengineer's tool kit.
Collapse
Affiliation(s)
- Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Ankit N Khambhati
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Scott T Grafton
- UCSB Brain Imaging Center and Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 93106
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California 93106
| |
Collapse
|
9
|
Papadopoulos L, Puckett JG, Daniels KE, Bassett DS. Evolution of network architecture in a granular material under compression. Phys Rev E 2016; 94:032908. [PMID: 27739788 DOI: 10.1103/physreve.94.032908] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Indexed: 01/26/2023]
Abstract
As a granular material is compressed, the particles and forces within the system arrange to form complex and heterogeneous collective structures. Force chains are a prime example of such structures, and are thought to constrain bulk properties such as mechanical stability and acoustic transmission. However, capturing and characterizing the evolving nature of the intrinsic inhomogeneity and mesoscale architecture of granular systems can be challenging. A growing body of work has shown that graph theoretic approaches may provide a useful foundation for tackling these problems. Here, we extend the current approaches by utilizing multilayer networks as a framework for directly quantifying the progression of mesoscale architecture in a compressed granular system. We examine a quasi-two-dimensional aggregate of photoelastic disks, subject to biaxial compressions through a series of small, quasistatic steps. Treating particles as network nodes and interparticle forces as network edges, we construct a multilayer network for the system by linking together the series of static force networks that exist at each strain step. We then extract the inherent mesoscale structure from the system by using a generalization of community detection methods to multilayer networks, and we define quantitative measures to characterize the changes in this structure throughout the compression process. We separately consider the network of normal and tangential forces, and find that they display a different progression throughout compression. To test the sensitivity of the network model to particle properties, we examine whether the method can distinguish a subsystem of low-friction particles within a bath of higher-friction particles. We find that this can be achieved by considering the network of tangential forces, and that the community structure is better able to separate the subsystem than a purely local measure of interparticle forces alone. The results discussed throughout this study suggest that these network science techniques may provide a direct way to compare and classify data from systems under different external conditions or with different physical makeup.
Collapse
Affiliation(s)
- Lia Papadopoulos
- Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - James G Puckett
- Department of Physics, Gettysburg College, Gettysburg, Pennsylvania 17325, USA
| | - Karen E Daniels
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Danielle S Bassett
- Departments of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
10
|
Giusti C, Papadopoulos L, Owens ET, Daniels KE, Bassett DS. Topological and geometric measurements of force-chain structure. Phys Rev E 2016; 94:032909. [PMID: 27739731 DOI: 10.1103/physreve.94.032909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Indexed: 06/06/2023]
Abstract
Developing quantitative methods for characterizing structural properties of force chains in densely packed granular media is an important step toward understanding or predicting large-scale physical properties of a packing. A promising framework in which to develop such methods is network science, which can be used to translate particle locations and force contacts into a graph in which particles are represented by nodes and forces between particles are represented by weighted edges. Recent work applying network-based community-detection techniques to extract force chains opens the door to developing statistics of force-chain structure, with the goal of identifying geometric and topological differences across packings, and providing a foundation on which to build predictions of bulk material properties from mesoscale network features. Here we discuss a trio of related but fundamentally distinct measurements of the mesoscale structure of force chains in two-dimensional (2D) packings, including a statistic derived using tools from algebraic topology, which together provide a tool set for the analysis of force chain architecture. We demonstrate the utility of this tool set by detecting variations in force-chain architecture with pressure. Collectively, these techniques can be generalized to 3D packings, and to the assessment of continuous deformations of packings under stress or strain.
Collapse
Affiliation(s)
- Chad Giusti
- Warren Center for Network and Data Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lia Papadopoulos
- Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eli T Owens
- Department of Physics, Presbyterian College, Clinton, South Carolina, USA
| | - Karen E Daniels
- Department of Physics, North Carolina State University, Raleigh, North Carolina, USA
| | - Danielle S Bassett
- Departments of Bioengineering and Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|