1
|
Zuo D, Zhu M, Chen D, Xue Q, Avril S, Hackl K, He Y. Three-dimensional anisotropic unified continuum model for simulating the healing of damaged soft biological tissues. Biomech Model Mechanobiol 2024; 23:2193-2212. [PMID: 39414653 DOI: 10.1007/s10237-024-01888-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/11/2024] [Indexed: 10/18/2024]
Abstract
The soft biological tissues have the ability to heal and self-repair after damage or injury. During the healing process, damaged tissues are replaced by newly produced undamaged tissue to restore homeostasis. Computational modeling serves as an effective tool for simulating the healing process and understanding the underlying mechanisms. In previous work, we developed the first unified continuum damage model for the healing of soft biological tissues. However, the initial theory lacked generalizability to more realistic scenarios and applicability to biomechanical problems due to the simplicity of the isotropic constitutive model and two-dimensional simulations. Therefore, we further improve our approach by developing a three-dimensional anisotropic unified healing model to address more realistic challenges. By using the Holzapfel-Gasser-Ogden model as the hyperelastic term, the influence of the collagen fibers is considered and the reorientation of fibers in healing is simulated. Three numerical examples related to hypertension, aneurysm, and restenosis of the atherosclerotic artery after balloon angioplasty are presented to demonstrate the effectiveness of the proposed model. By comparing numerical solutions and reference solutions, we demonstrate the ability of the proposed model in simulating long-term tissue healing process and analyze the impact of anisotropic terms.
Collapse
Affiliation(s)
- Di Zuo
- Department of Engineering Mechanics, Dalian Jiaotong University, Dalian, 116028, People's Republic of China
| | - Mingji Zhu
- Department of Engineering Mechanics, Dalian Jiaotong University, Dalian, 116028, People's Republic of China
| | - Daye Chen
- Department of Engineering Mechanics, Dalian Jiaotong University, Dalian, 116028, People's Republic of China
| | - Qiwen Xue
- Department of Engineering Mechanics, Dalian Jiaotong University, Dalian, 116028, People's Republic of China
| | - Stéphane Avril
- Mines Saint-Étienne, Université Jean Monnet, Inserm, Sainbiose U1059, 42023, Saint-Étienne, France
| | - Klaus Hackl
- Institute of Mechanics of Materials, Ruhr-Universität Bochum, 44801, Bochum, Germany
| | - Yiqian He
- Institute of Mechanics of Materials, Ruhr-Universität Bochum, 44801, Bochum, Germany.
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116024, People's Republic of China.
| |
Collapse
|
2
|
Gacek E, Ellingson AM, Barocas VH. Residual Strain and Joint Pressurization Maintain Collagen Tension for On-Joint Lumbar Facet Capsular Ligaments. J Biomech Eng 2024; 146:111005. [PMID: 39082759 PMCID: PMC11369690 DOI: 10.1115/1.4066091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/25/2024] [Indexed: 08/21/2024]
Abstract
Modeling the lumbar facet capsular ligament's (FCL) mechanical behavior under various physiological motions has often been a challenge due to limited knowledge about the on-joint in situ ligament state arising from attachment to the bone or other internal loads. Building on prior work, this study presents an enhanced computational model of the lumbar facet capsular ligament by incorporating residual strain and joint pressurization strain, factors neglected in prior models. Further, the model can predict strain and stress distribution across the ligament under various spinal motions, highlighting the influence of the ligament's attachment to the bone, internal synovial fluid pressurization, and distribution of collagen fiber alignment on the overall mechanical response of the ligament. Joint space inflation was found to influence the total observed stress and strain fields, both at rest and during motion. A significant portion of the ligament was found to be in tension, even in the absence of external load. Additionally, the model's ability to account for residual strain offers a more realistic portrayal of the collagen fibers and elastin matrix's role in ligament mechanics. We conclude that (1) computational models of the lumbar facet capsular ligament should not assume that the ligament is unloaded when the joint is in its neutral position, and (2) the ligament is nearly always in tension, which may be important in terms of its long-term growth and remodeling.
Collapse
Affiliation(s)
- Elizabeth Gacek
- Department of Biomedical Engineering, University of Minnesota - Twin Cities, Minneapolis, MN 55455
| | - Arin M Ellingson
- Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota - Twin Cities, Minneapolis, MN 55455
| | - Victor H Barocas
- Department of Biomedical Engineering, University of Minnesota - Twin Cities, Minneapolis, MN 55455
| |
Collapse
|
3
|
Zuo D, Zhu M, Chen D, Xue Q. A computationally efficient gradient-enhanced healing model for soft biological tissues. Biomech Model Mechanobiol 2024; 23:1491-1509. [PMID: 38733532 DOI: 10.1007/s10237-024-01851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
Soft biological tissues, such as arterial tissue, have the ability to grow and remodel in response to damage. Computational method plays a critical role in understanding the underlying mechanisms of tissue damage and healing. However, the existing healing model often requires huge computation time and it is inconvenient to implement finite element simulation. In this paper, we propose a computationally efficient gradient-enhanced healing model that combines the advantages of the gradient-enhanced damage model, the homeostatic-driven turnover remodeling model, and the damage-induced growth model. In the proposed model, the evolution of healing-related parameters can be solved explicitly. Additionally, an adaptive time increment method is used to further reduce computation time. The proposed model can be easily implemented in Abaqus, requiring only a user subroutine UMAT. The effectiveness of proposed model is verified through a semi-analytical example, and the influence of the variables in the proposed model is investigated using uniaxial tension and open-hole plate tests. Finally, the long-term development of aneurysms is simulated to demonstrate the potential applications of the proposed model in real biomechanical problems.
Collapse
Affiliation(s)
- Di Zuo
- Department of Engineering Mechanics, Dalian Jiaotong University, Dalian, 116028, People's Republic of China.
| | - Mingji Zhu
- Department of Engineering Mechanics, Dalian Jiaotong University, Dalian, 116028, People's Republic of China
| | - Daye Chen
- Department of Engineering Mechanics, Dalian Jiaotong University, Dalian, 116028, People's Republic of China
| | - Qiwen Xue
- Department of Engineering Mechanics, Dalian Jiaotong University, Dalian, 116028, People's Republic of China
| |
Collapse
|
4
|
Karkhaneh Yousefi AA, Pierrat B, Le Ruyet A, Avril S. Patient-specific computational simulations of wound healing following midline laparotomy closure. Biomech Model Mechanobiol 2023; 22:1589-1605. [PMID: 37024600 DOI: 10.1007/s10237-023-01708-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/01/2023] [Indexed: 04/08/2023]
Abstract
In the current study, we developed a new computational methodology to simulate wound healing in soft tissues. We assumed that the injured tissue recovers partially its mechanical strength and stiffness by gradually increasing the volume fraction of collagen fibers. Following the principles of the constrained mixture theory, we assumed that new collagen fibers are deposited at homeostatic tension while the already existing tissue undergoes a permanent deformation due to the effects of remodeling. The model was implemented in the finite-element software Abaqus® through a VUMAT subroutine and applied to a complex and realistic case: simulating wound healing following midline laparotomy closure. The incidence of incisional hernia is still quite significant clinically, and our goal was to investigate different conditions hampering the success of these procedures. We simulated wound healing over periods of 6 months on a patient-specific geometry. One of the outcomes of the finite-element simulations was the width of the wound tissue, which was found to be clinically correlated with the development of incisional hernia after midline laparotomy closure. We studied the impact of different suturing modalities and the effects of situations inducing increased intra-abdominal pressure or its intermittent variations such as coughing. Eventually, the results showed that the main risks of developing an incisional hernia mostly depend on the elastic strains reached in the wound tissue after degradation of the suturing wires. Despite the need for clinical validation, these results are promising for establishing a digital twin of wound healing in midline laparotomy incision.
Collapse
Affiliation(s)
| | - Baptiste Pierrat
- Mines Saint-Étienne, Université Jean Monnet, INSERM, U1059 SAINBIOSE, 42023, Saint-Étienne, France
| | | | - Stéphane Avril
- Mines Saint-Étienne, Université Jean Monnet, INSERM, U1059 SAINBIOSE, 42023, Saint-Étienne, France.
| |
Collapse
|
5
|
Adebayo OE, Urcun S, Rolin G, Bordas SPA, Trucu D, Eftimie R. Mathematical investigation of normal and abnormal wound healing dynamics: local and non-local models. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:17446-17498. [PMID: 37920062 DOI: 10.3934/mbe.2023776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The movement of cells during (normal and abnormal) wound healing is the result of biomechanical interactions that combine cell responses with growth factors as well as cell-cell and cell-matrix interactions (adhesion and remodelling). It is known that cells can communicate and interact locally and non-locally with other cells inside the tissues through mechanical forces that act locally and at a distance, as well as through long non-conventional cell protrusions. In this study, we consider a non-local partial differential equation model for the interactions between fibroblasts, macrophages and the extracellular matrix (ECM) via a growth factor (TGF-$ \beta $) in the context of wound healing. For the non-local interactions, we consider two types of kernels (i.e., a Gaussian kernel and a cone-shaped kernel), two types of cell-ECM adhesion functions (i.e., adhesion only to higher-density ECM vs. adhesion to higher-/lower-density ECM) and two types of cell proliferation terms (i.e., with and without decay due to overcrowding). We investigate numerically the dynamics of this non-local model, as well as the dynamics of the localised versions of this model (i.e., those obtained when the cell perception radius decreases to 0). The results suggest the following: (ⅰ) local models explain normal wound healing and non-local models could also explain abnormal wound healing (although the results are parameter-dependent); (ⅱ) the models can explain two types of wound healing, i.e., by primary intention, when the wound margins come together from the side, and by secondary intention when the wound heals from the bottom up.
Collapse
Affiliation(s)
- O E Adebayo
- Laboratoire de mathématiques de Besançon, UMR CNRS 6623, Université de Franche-Comté, Besançon 25000, France
| | - S Urcun
- Department of Engineering, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - G Rolin
- INSERM CIC-1431, CHU Besançon, Besançon 25000, France
- Université de Franche-Comté, EFS, INSERM, UMR RIGHT, F-25000 Besançon, France
| | - S P A Bordas
- Department of Engineering, Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - D Trucu
- Division of Mathematics, University of Dundee, Dundee, DD1 4HN, United Kingdom
| | - R Eftimie
- Laboratoire de mathématiques de Besançon, UMR CNRS 6623, Université de Franche-Comté, Besançon 25000, France
- Division of Mathematics, University of Dundee, Dundee, DD1 4HN, United Kingdom
| |
Collapse
|
6
|
Guo Y, Mofrad MRK, Tepole AB. On modeling the multiscale mechanobiology of soft tissues: Challenges and progress. BIOPHYSICS REVIEWS 2022; 3:031303. [PMID: 38505274 PMCID: PMC10903412 DOI: 10.1063/5.0085025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/12/2022] [Indexed: 03/21/2024]
Abstract
Tissues grow and remodel in response to mechanical cues, extracellular and intracellular signals experienced through various biological events, from the developing embryo to disease and aging. The macroscale response of soft tissues is typically nonlinear, viscoelastic anisotropic, and often emerges from the hierarchical structure of tissues, primarily their biopolymer fiber networks at the microscale. The adaptation to mechanical cues is likewise a multiscale phenomenon. Cell mechanobiology, the ability of cells to transform mechanical inputs into chemical signaling inside the cell, and subsequent regulation of cellular behavior through intra- and inter-cellular signaling networks, is the key coupling at the microscale between the mechanical cues and the mechanical adaptation seen macroscopically. To fully understand mechanics of tissues in growth and remodeling as observed at the tissue level, multiscale models of tissue mechanobiology are essential. In this review, we summarize the state-of-the art modeling tools of soft tissues at both scales, the tissue level response, and the cell scale mechanobiology models. To help the interested reader become more familiar with these modeling frameworks, we also show representative examples. Our aim here is to bring together scientists from different disciplines and enable the future leap in multiscale modeling of tissue mechanobiology.
Collapse
Affiliation(s)
- Yifan Guo
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Mohammad R. K. Mofrad
- Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California 94720, USA
| | - Adrian Buganza Tepole
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
7
|
A Review on Damage and Rupture Modelling for Soft Tissues. Bioengineering (Basel) 2022; 9:bioengineering9010026. [PMID: 35049735 PMCID: PMC8773318 DOI: 10.3390/bioengineering9010026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/16/2022] Open
Abstract
Computational modelling of damage and rupture of non-connective and connective soft tissues due to pathological and supra-physiological mechanisms is vital in the fundamental understanding of failures. Recent advancements in soft tissue damage models play an essential role in developing artificial tissues, medical devices/implants, and surgical intervention practices. The current article reviews the recently developed damage models and rupture models that considered the microstructure of the tissues. Earlier review works presented damage and rupture separately, wherein this work reviews both damage and rupture in soft tissues. Wherein the present article provides a detailed review of various models on the damage evolution and tear in soft tissues focusing on key conceptual ideas, advantages, limitations, and challenges. Some key challenges of damage and rupture models are outlined in the article, which helps extend the present damage and rupture models to various soft tissues.
Collapse
|
8
|
Marino M, Vairo G, Wriggers P. Mechano-chemo-biological Computational Models for Arteries in Health, Disease and Healing: From Tissue Remodelling to Drug-eluting Devices. Curr Pharm Des 2021; 27:1904-1917. [PMID: 32723253 DOI: 10.2174/1381612826666200728145752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/14/2020] [Indexed: 11/22/2022]
Abstract
This review aims to highlight urgent priorities for the computational biomechanics community in the framework of mechano-chemo-biological models. Recent approaches, promising directions and open challenges on the computational modelling of arterial tissues in health and disease are introduced and investigated, together with in silico approaches for the analysis of drug-eluting stents that promote pharmacological-induced healing. The paper addresses a number of chemo-biological phenomena that are generally neglected in biomechanical engineering models but are most likely instrumental for the onset and the progression of arterial diseases. An interdisciplinary effort is thus encouraged for providing the tools for an effective in silico insight into medical problems. An integrated mechano-chemo-biological perspective is believed to be a fundamental missing piece for crossing the bridge between computational engineering and life sciences, and for bringing computational biomechanics into medical research and clinical practice.
Collapse
Affiliation(s)
- Michele Marino
- Institute of Continuum Mechanics, Leibniz Universität Hannover, An der Universität 1, 30823 Garbsen, Germany
| | - Giuseppe Vairo
- Department of Civil Engineering and Computer Science, University of Rome "Tor Vergata" via del Politecnico 1, 00133 Rome, Italy
| | - Peter Wriggers
- Institute of Continuum Mechanics, Leibniz Universität Hannover, An der Universität 1, 30823 Garbsen, Germany
| |
Collapse
|
9
|
Maes L, Vastmans J, Avril S, Famaey N. A Chemomechanobiological Model of the Long-Term Healing Response of Arterial Tissue to a Clamping Injury. Front Bioeng Biotechnol 2021; 8:589889. [PMID: 33575250 PMCID: PMC7870691 DOI: 10.3389/fbioe.2020.589889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/29/2020] [Indexed: 11/22/2022] Open
Abstract
Vascular clamping often causes injury to arterial tissue, leading to a cascade of cellular and extracellular events. A reliable in silico prediction of these processes following vascular injury could help us to increase our understanding thereof, and eventually optimize surgical techniques or drug delivery to minimize the amount of long-term damage. However, the complexity and interdependency of these events make translation into constitutive laws and their numerical implementation particularly challenging. We introduce a finite element simulation of arterial clamping taking into account acute endothelial denudation, damage to extracellular matrix, and smooth muscle cell loss. The model captures how this causes tissue inflammation and deviation from mechanical homeostasis, both triggering vascular remodeling. A number of cellular processes are modeled, aiming at restoring this homeostasis, i.e., smooth muscle cell phenotype switching, proliferation, migration, and the production of extracellular matrix. We calibrated these damage and remodeling laws by comparing our numerical results to in vivo experimental data of clamping and healing experiments. In these same experiments, the functional integrity of the tissue was assessed through myograph tests, which were also reproduced in the present study through a novel model for vasodilator and -constrictor dependent smooth muscle contraction. The simulation results show a good agreement with the in vivo experiments. The computational model was then also used to simulate healing beyond the duration of the experiments in order to exploit the benefits of computational model predictions. These results showed a significant sensitivity to model parameters related to smooth muscle cell phenotypes, highlighting the pressing need to further elucidate the biological processes of smooth muscle cell phenotypic switching in the future.
Collapse
Affiliation(s)
- Lauranne Maes
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Julie Vastmans
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Stéphane Avril
- Mines Saint-Etienne, Université de Lyon, Université Jean Monnet, INSERM, Saint-Étienne, France
| | - Nele Famaey
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Ghavamian A, Mousavi SJ, Avril S. Computational modeling of the role of smooth muscle cells contractility on the progression of aortic aneurysms. Comput Methods Biomech Biomed Engin 2020. [DOI: 10.1080/10255842.2020.1812845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- A. Ghavamian
- Mines Saint-Etienne, Université Lyon, Université Jean Monnet, INSERM, Sainbiose, Centre CIS, Saint-Etienne, France
| | - S. J. Mousavi
- Mines Saint-Etienne, Université Lyon, Université Jean Monnet, INSERM, Sainbiose, Centre CIS, Saint-Etienne, France
| | - S. Avril
- Mines Saint-Etienne, Université Lyon, Université Jean Monnet, INSERM, Sainbiose, Centre CIS, Saint-Etienne, France
| |
Collapse
|
11
|
Zuo D, Avril S, Yang H, Mousavi SJ, Hackl K, He Y. Three-dimensional numerical simulation of soft-tissue wound healing using constrained-mixture anisotropic hyperelasticity and gradient-enhanced damage mechanics. J R Soc Interface 2020; 17:20190708. [PMID: 31964269 DOI: 10.1098/rsif.2019.0708] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Healing of soft biological tissues is the process of self-recovery or self-repair after injury or damage to the extracellular matrix (ECM). In this work, we assume that healing is a stress-driven process, which works at recovering a homeostatic stress metric in the tissue by replacing the damaged ECM with a new undamaged one. For that, a gradient-enhanced continuum healing model is developed for three-dimensional anisotropic tissues using the modified anisotropic Holzapfel-Gasser-Ogden constitutive model. An adaptive stress-driven approach is proposed for the deposition of new collagen fibres during healing with orientations assigned depending on the principal stress direction. The intrinsic length scales of soft tissues are considered through the gradient-enhanced term, and growth and remodelling are simulated by a constrained-mixture model with temporal homogenization. The proposed model is implemented in the finite-element package Abaqus by means of a user subroutine UEL. Three numerical examples have been achieved to illustrate the performance of the proposed model in simulating the healing process with various damage situations, converging towards stress homeostasis. The orientations of newly deposited collagen fibres and the sensitivity to intrinsic length scales are studied through these examples, showing that both have a significant impact on temporal evolutions of the stress distribution and on the size of the damage region. Applications of the approach to carry out in silico experiments of wound healing are promising and show good agreement with existing experiment results.
Collapse
Affiliation(s)
- Di Zuo
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Stéphane Avril
- Mines Saint-Etienne, University of Lyon, University Jean Monnet, INSERM, SAINBIOSE U1059, Saint-Etienne 42023, France
| | - Haitian Yang
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - S Jamaleddin Mousavi
- Mines Saint-Etienne, University of Lyon, University Jean Monnet, INSERM, SAINBIOSE U1059, Saint-Etienne 42023, France
| | - Klaus Hackl
- Mechanik - Materialtheorie, Ruhr-Universität Bochum, Bochum, Germany
| | - Yiqian He
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, People's Republic of China
| |
Collapse
|
12
|
Patient-specific predictions of aneurysm growth and remodeling in the ascending thoracic aorta using the homogenized constrained mixture model. Biomech Model Mechanobiol 2019; 18:1895-1913. [DOI: 10.1007/s10237-019-01184-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/05/2019] [Indexed: 12/19/2022]
|
13
|
He Y, Zuo D, Hackl K, Yang H, Mousavi SJ, Avril S. Gradient-enhanced continuum models of healing in damaged soft tissues. Biomech Model Mechanobiol 2019; 18:1443-1460. [PMID: 31037513 DOI: 10.1007/s10237-019-01155-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/20/2019] [Indexed: 01/19/2023]
Abstract
Healing of soft biological tissue is the process of self-recovering or self-repairing the injured or damaged extracellular matrix (ECM). Healing is assumed to be stress-driven, with the objective of returning to a homeostatic stress metrics in the tissue after replacing the damaged ECM with new undamaged one. However, based on the existence of intrinsic length scales in soft tissues, it is thought that computational models of healing should be non-local. In the present study, we introduce for the first time two gradient-enhanced constitutive healing models for soft tissues including non-local variables. The first model combines a continuum damage model with a temporally homogenized growth model, where the growth direction is determined according to local principal stress directions. The second one is based on a gradient-enhanced healing model with continuously recoverable damage variable. Both models are implemented in the finite-element package Abaqus by means of a user subroutine UEL. Three two-dimensional situations simulating the healing process of soft tissues are modeled numerically with both models, and their application for simulation of balloon angioplasty is provided by illustrating the change of damage field and geometry in the media layer throughout the healing process.
Collapse
Affiliation(s)
- Yiqian He
- State Key Lab of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Di Zuo
- State Key Lab of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Klaus Hackl
- Mechanik - Materialtheorie, Ruhr-Universität Bochum, Bochum, Germany
| | - Haitian Yang
- State Key Lab of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - S Jamaleddin Mousavi
- State Key Lab of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116024, People's Republic of China
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U1059 SAINBIOSE, 42023, Saint-Étienne, France
- Mechanik - Materialtheorie, Ruhr-Universität Bochum, Bochum, Germany
| | - Stéphane Avril
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U1059 SAINBIOSE, 42023, Saint-Étienne, France.
| |
Collapse
|
14
|
Marino M, Pontrelli G, Vairo G, Wriggers P. A chemo-mechano-biological formulation for the effects of biochemical alterations on arterial mechanics: the role of molecular transport and multiscale tissue remodelling. J R Soc Interface 2018; 14:rsif.2017.0615. [PMID: 29118114 DOI: 10.1098/rsif.2017.0615] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/11/2017] [Indexed: 12/21/2022] Open
Abstract
This paper presents a chemo-mechano-biological framework for arterial physiopathology. The model accounts for the fine remodelling in the multiscale hierarchical arrangement of tissue constituents and for the diffusion of molecular species involved in cell-cell signalling pathways. Effects in terms of alterations in arterial compliance are obtained. A simple instructive example is introduced. Although oversimplified with respect to realistic case studies, the proposed application mimics the biochemical activity of matrix metalloproteinases, transforming growth factors beta and interleukins on tissue remodelling. Effects of macrophage infiltration, of intimal thickening and of a healing phase are investigated, highlighting the corresponding influence on arterial compliance. The obtained results show that the present approach is able to capture changes in arterial mechanics as a consequence of the alterations in tissue biochemical environment and cellular activity, as well as to incorporate the protective role of both autoimmune responses and pharmacological treatments.
Collapse
Affiliation(s)
- Michele Marino
- Institut für Kontinuumsmechanik, Leibniz Universität Hannover, Hannover, Germany
| | - Giuseppe Pontrelli
- Istituto per le Applicazioni del Calcolo, National Research Council (CNR), Rome, Italy
| | - Giuseppe Vairo
- Dipartimento di Ingegneria Civile e Ingegneria Informatica, Università degli Studi di Roma 'Tor Vergata', Rome, Italy
| | - Peter Wriggers
- Institut für Kontinuumsmechanik, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
15
|
Mousavi SJ, Farzaneh S, Avril S. Computational predictions of damage propagation preceding dissection of ascending thoracic aortic aneurysms. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e2944. [PMID: 29171175 DOI: 10.1002/cnm.2944] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/10/2017] [Accepted: 11/12/2017] [Indexed: 06/07/2023]
Abstract
Dissections of ascending thoracic aortic aneurysms (ATAAs) cause significant morbidity and mortality worldwide. They occur when a tear in the intima-media of the aorta permits the penetration of the blood and the subsequent delamination and separation of the wall in 2 layers, forming a false channel. To predict computationally the risk of tear formation, stress analyses should be performed layer-specifically and they should consider internal or residual stresses that exist in the tissue. In the present paper, we propose a novel layer-specific damage model based on the constrained mixture theory, which intrinsically takes into account these internal stresses and can predict appropriately the tear formation. The model is implemented in finite-element commercial software Abaqus coupled with user material subroutine. Its capability is tested by applying it to the simulation of different exemplary situations, going from in vitro bulge inflation experiments on aortic samples to in vivo overpressurizing of patient-specific ATAAs. The simulations reveal that damage correctly starts from the intimal layer (luminal side) and propagates across the media as a tear but never hits the adventitia. This scenario is typically the first stage of development of an acute dissection, which is predicted for pressures of about 2.5 times the diastolic pressure by the model after calibrating the parameters against experimental data performed on collected ATAA samples. Further validations on a larger cohort of patients should hopefully confirm the potential of the model in predicting patient-specific damage evolution and possible risk of dissection during aneurysm growth for clinical applications.
Collapse
Affiliation(s)
- S Jamaleddin Mousavi
- CIS-EMSE, Ecole des Mines de Saint-Étienne, F-42023 Saint-Étienne, France
- INSERM, U1059, SAINBIOSE, F-42023 Saint-Étienne, France
- Université de Lyon, F-69000 Lyon, France
| | - Solmaz Farzaneh
- CIS-EMSE, Ecole des Mines de Saint-Étienne, F-42023 Saint-Étienne, France
- INSERM, U1059, SAINBIOSE, F-42023 Saint-Étienne, France
- Université de Lyon, F-69000 Lyon, France
| | - Stéphane Avril
- CIS-EMSE, Ecole des Mines de Saint-Étienne, F-42023 Saint-Étienne, France
- INSERM, U1059, SAINBIOSE, F-42023 Saint-Étienne, France
- Université de Lyon, F-69000 Lyon, France
| |
Collapse
|
16
|
Vanderburgh JP, Guelcher SA, Sterling JA. 3D bone models to study the complex physical and cellular interactions between tumor and the bone microenvironment. J Cell Biochem 2018; 119:5053-5059. [PMID: 29600556 DOI: 10.1002/jcb.26774] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/02/2018] [Indexed: 12/13/2022]
Abstract
As the complexity of interactions between tumor and its microenvironment has become more evident, a critical need to engineer in vitro models that veritably recapitulate the 3D microenvironment and relevant cell populations has arisen. This need has caused many groups to move away from the traditional 2D, tissue culture plastic paradigms in favor of 3D models with materials that more closely replicate the in vivo milieu. Creating these 3D models remains a difficult endeavor for hard and soft tissues alike as the selection of materials, fabrication processes, and optimal conditions for supporting multiple cell populations makes model development a nontrivial task. Bone tissue in particular is uniquely difficult to model in part because of the limited availability of materials that can accurately capture bone rigidity and architecture, and also due to the dependence of both bone and tumor cell behavior on mechanical signaling. Additionally, the bone is a complex cellular microenvironment with multiple cell types present, including relatively immature, pluripotent cells in the bone marrow. This prospect will focus on the current 3D models in development to more accurately replicate the bone microenvironment, which will help facilitate improved understanding of bone turnover, tumor-bone interactions, and drug response. These studies have demonstrated the importance of accurately modelling the bone microenvironment in order to fully understand signaling and drug response, and the significant effects that model properties such as architecture, rigidity, and dynamic mechanical factors have on tumor and bone cell response.
Collapse
Affiliation(s)
- Joseph P Vanderburgh
- Vanderbilt Center for Bone Biology, Nashville, Tennessee.,Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee
| | - Scott A Guelcher
- Vanderbilt Center for Bone Biology, Nashville, Tennessee.,Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee.,Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Julie A Sterling
- Vanderbilt Center for Bone Biology, Nashville, Tennessee.,Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
17
|
Menon SN, Hall CL, McCue SW, McElwain DLS. A model for one-dimensional morphoelasticity and its application to fibroblast-populated collagen lattices. Biomech Model Mechanobiol 2017; 16:1743-1763. [PMID: 28523375 DOI: 10.1007/s10237-017-0917-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 05/03/2017] [Indexed: 11/26/2022]
Abstract
The mechanical behaviour of solid biological tissues has long been described using models based on classical continuum mechanics. However, the classical continuum theories of elasticity and viscoelasticity cannot easily capture the continual remodelling and associated structural changes in biological tissues. Furthermore, models drawn from plasticity theory are difficult to apply and interpret in this context, where there is no equivalent of a yield stress or flow rule. In this work, we describe a novel one-dimensional mathematical model of tissue remodelling based on the multiplicative decomposition of the deformation gradient. We express the mechanical effects of remodelling as an evolution equation for the effective strain, a measure of the difference between the current state and a hypothetical mechanically relaxed state of the tissue. This morphoelastic model combines the simplicity and interpretability of classical viscoelastic models with the versatility of plasticity theory. A novel feature of our model is that while most models describe growth as a continuous quantity, here we begin with discrete cells and develop a continuum representation of lattice remodelling based on an appropriate limit of the behaviour of discrete cells. To demonstrate the utility of our approach, we use this framework to capture qualitative aspects of the continual remodelling observed in fibroblast-populated collagen lattices, in particular its contraction and its subsequent sudden re-expansion when remodelling is interrupted.
Collapse
Affiliation(s)
- Shakti N Menon
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai, 600113, India
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Cameron L Hall
- Mathematics Applications Consortium with Science and Industry, University of Limerick, Castletroy, Limerick, V94 T9PX, Ireland
- Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK
| | - Scott W McCue
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, 4001, Australia.
| | - D L Sean McElwain
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| |
Collapse
|
18
|
Gasser TC, Grytsan A. Biomechanical modeling the adaptation of soft biological tissue. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017. [DOI: 10.1016/j.cobme.2017.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|