1
|
Hu Z, Xu H, Zhang Z, Lu Y, Zhou Y, Zhu J, Deng Q, Wang X, Liu Y, Zhang Y, Wang Y. Comparative analysis of the performance, egg quality and ovarian immune function of fast and slow feather strains in tianfu green shell laying hens at various stages of egg production. Poult Sci 2025; 104:104747. [PMID: 39754927 PMCID: PMC11758209 DOI: 10.1016/j.psj.2024.104747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/21/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025] Open
Abstract
This objective of this experiment was to compare and evaluate the performance, egg quality, and immune function of Tianfu green shell laying hens with varying feather growth rates, in order to provide a reference for their rational utilization. A total of 120 one-day-old healthy Tianfu green shell laying hens were classified into the early-feathering (EF) and late-feathering (LF) groups through phenotypic identification of feather length and qPCR molecular identification. Each group was subdivided into four replicates, with 30 chickens in each replicate. Under the identical feeding and management conditions, the live weight, tibial length, egg production performance, egg quality, serum biochemical indexes, immune protein content, and the expression of related genes in uterine and ovarian tissues were assessed and analyzed. The results indicated that LF hens exhibited significantly greater live weights at 4, 16, 27, and 43 weeks (P < 0.05) and longer tibia lengths at 4 and 16 weeks (P < 0.05) compared to EF hens, suggesting enhanced early growth performance. Conversely, EF hens demonstrated superior egg-laying performance, characterized by a higher laying rate during both peak (27 weeks) and late (43 weeks) laying periods (P < 0.05), despite their eggs being lighter in weight (P < 0.05). Furthermore, EF hens exhibited the production of eggs with significantly thicker and stronger shells during the peak laying period (P < 0.05), while no notable differences were observed in other egg quality parameters. Immunologically, EF hens demonstrated elevated peak serum levels of IgA, IgG, and IgM compared to LF hens. Additionally, the expression levels of IFN-γ and interleukin 6 (IL-6) genes in the ovaries were markedly higher in EF hens. These findings indicate that although LF hens excel in early growth stages, EF hens exhibit superior egg production capabilities and enhanced immune responses.
Collapse
Affiliation(s)
- Zhi Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Hengyong Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Zhipeng Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Yuxiang Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Yuxin Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Jiajun Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Qingqing Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Xi Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Yiping Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu 611130, PR China
| | - Yan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, PR China.
| |
Collapse
|
2
|
Argyris GA, Lluch Lafuente A, Tribastone M, Tschaikowski M, Vandin A. Reducing Boolean networks with backward equivalence. BMC Bioinformatics 2023; 24:212. [PMID: 37221494 DOI: 10.1186/s12859-023-05326-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/05/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Boolean Networks (BNs) are a popular dynamical model in biology where the state of each component is represented by a variable taking binary values that express, for instance, activation/deactivation or high/low concentrations. Unfortunately, these models suffer from the state space explosion, i.e., there are exponentially many states in the number of BN variables, which hampers their analysis. RESULTS We present Boolean Backward Equivalence (BBE), a novel reduction technique for BNs which collapses system variables that, if initialized with same value, maintain matching values in all states. A large-scale validation on 86 models from two online model repositories reveals that BBE is effective, since it is able to reduce more than 90% of the models. Furthermore, on such models we also show that BBE brings notable analysis speed-ups, both in terms of state space generation and steady-state analysis. In several cases, BBE allowed the analysis of models that were originally intractable due to the complexity. On two selected case studies, we show how one can tune the reduction power of BBE using model-specific information to preserve all dynamics of interest, and selectively exclude behavior that does not have biological relevance. CONCLUSIONS BBE complements existing reduction methods, preserving properties that other reduction methods fail to reproduce, and vice versa. BBE drops all and only the dynamics, including attractors, originating from states where BBE-equivalent variables have been initialized with different activation values The remaining part of the dynamics is preserved exactly, including the length of the preserved attractors, and their reachability from given initial conditions, without adding any spurious behaviours. Given that BBE is a model-to-model reduction technique, it can be combined with further reduction methods for BNs.
Collapse
Affiliation(s)
- Georgios A Argyris
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Alberto Lluch Lafuente
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | | | - Max Tschaikowski
- Department of Computer Science, University of Aalborg, Aalborg, Denmark
| | - Andrea Vandin
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark.
- Department of Excellence EMbeDS and Institute of Economics, Sant'Anna School for Advanced Studies, Pisa, Italy.
| |
Collapse
|
3
|
Sun C, Jin K, Zhou J, Zuo Q, Song J, Yani Z, Chen G, Li B. Role and function of the Hintw in early sex differentiation in chicken ( Gallus gallus) embryo. Anim Biotechnol 2023; 34:56-66. [PMID: 34153202 DOI: 10.1080/10495398.2021.1935981] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mono-Sex culturing is an important methodology for intensive livestock and poultry production. Here, Hintw was identified as a potential key gene in sex-determination process in chickens via RNA-seq. Then we developed an effective method to interfere or overexpress Hintw in chicken embryos through the intravascular injection. QRT-PCR, ELISA and H&E staining were used to detect the effects of Hintw on gonadal development of chicken embryos. Results showed that Hintw exhibited a female-biased expression pattern in the early stage of PGCs (primordial germ cells) in embryonic gonads. The qRT-PCR analysis showed that Foxl2, Cyp19a1 in females were upregulated under the overexpression of Hintw, while Sox9 and Dmrt1 were downregulated Hintw. Overexpression of Hintw can promote the development of gonadal cortex, while interference with Hintw show the opposite result. Additionally, we found that overexpression of the Hintw in male chicken embryos could inhibit androgen levels and increase estrogen levels. On the other hand, interfering with Hintw in female chicken embryos decreased estrogen levels and increased androgen levels. In conclusion, this work sets the basis for the understanding of the molecular regulatory network for the sex-determination process in chicken embryos as well as providing the theoretical basis for mono-sex culturing of poultry.
Collapse
Affiliation(s)
- Changhua Sun
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Department of Food technology, College of Biochemical Engineering, Yangzhou Polytechnic College, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Kai Jin
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jing Zhou
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Qisheng Zuo
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jiuzhou Song
- Animal & Avian Sciences, University of Maryland, College Park, MD, USA
| | - Zhang Yani
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Guohong Chen
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Bichun Li
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Smirnov AF, Leoke DY, Trukhina AV. Natural and Experimental Sex Reversal in Birds and Other Groups of Vertebrates, with the Exception of Mammals. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422060114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Schwanz LE, Georges A. Sexual Development and the Environment: Conclusions from 40 Years of Theory. Sex Dev 2021; 15:7-22. [PMID: 34130303 DOI: 10.1159/000515221] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/29/2021] [Indexed: 11/19/2022] Open
Abstract
In this review, we consider the insight that has been gained through theoretical examination of environmental sex determination (ESD) and thermolability - how theory has progressed our understanding of the ecological and evolutionary dynamics associated with ESD, the transitional pathways between different modes of sex determination, and the underlying mechanisms. Following decades of theory on the adaptive benefits of ESD, several hypotheses seem promising. These hypotheses focus on the importance of differential fitness (sex-specific effects of temperature on fitness) in generating selection for ESD, but highlight alternative ways differential fitness arises: seasonal impacts on growth, sex-specific ages of maturation, and sex-biased dispersal. ESD has the potential to generate biased sex ratios quite easily, leading to complex feedbacks between the ecology and evolution of ESD. Frequency-dependent selection on sex acts on ESD-related traits, driving local adaptation or plasticity to restore equilibrium sex ratio. However, migration and overlapping generations ("mixing") diminish local adaptation and leave each cohort/population with the potential for biased sex ratios. Incorporating mechanism into ecology and evolution models reveals similarities between different sex-determining systems. Dosage and gene regulatory network models of sexual development are beginning to shed light on how temperature sensitivity and thresholds may arise. The unavoidable temperature sensitivity in sex-determining systems inherent to these models suggests that evolutionary transitions between genotypic sex determination (GSD) and temperature-dependent sex determination, and between different forms of GSD, are simple and elegant. Theoretical models are often best-served by considering a single piece of a puzzle; however, there is much to gain from reflecting on all of the pieces together in one integrative picture.
Collapse
Affiliation(s)
- Lisa E Schwanz
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
6
|
Dechaud C, Volff JN, Schartl M, Naville M. Sex and the TEs: transposable elements in sexual development and function in animals. Mob DNA 2019; 10:42. [PMID: 31700550 PMCID: PMC6825717 DOI: 10.1186/s13100-019-0185-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/21/2019] [Indexed: 12/23/2022] Open
Abstract
Transposable elements are endogenous DNA sequences able to integrate into and multiply within genomes. They constitute a major source of genetic innovations, as they can not only rearrange genomes but also spread ready-to-use regulatory sequences able to modify host gene expression, and even can give birth to new host genes. As their evolutionary success depends on their vertical transmission, transposable elements are intrinsically linked to reproduction. In organisms with sexual reproduction, this implies that transposable elements have to manifest their transpositional activity in germ cells or their progenitors. The control of sexual development and function can be very versatile, and several studies have demonstrated the implication of transposable elements in the evolution of sex. In this review, we report the functional and evolutionary relationships between transposable elements and sexual reproduction in animals. In particular, we highlight how transposable elements can influence expression of sexual development genes, and how, reciprocally, they are tightly controlled in gonads. We also review how transposable elements contribute to the organization, expression and evolution of sexual development genes and sex chromosomes. This underscores the intricate co-evolution between host functions and transposable elements, which regularly shift from a parasitic to a domesticated status useful to the host.
Collapse
Affiliation(s)
- Corentin Dechaud
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d’Italie, F-69364 Lyon, France
| | - Jean-Nicolas Volff
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d’Italie, F-69364 Lyon, France
| | - Manfred Schartl
- Entwicklungsbiochemie, Biozentrum, Universität Würzburg, Würzburg, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX USA
| | - Magali Naville
- Institut de Genomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Superieure de Lyon, Universite Claude Bernard Lyon 1, 46 allee d’Italie, F-69364 Lyon, France
| |
Collapse
|
7
|
Li XY, Gui JF. Diverse and variable sex determination mechanisms in vertebrates. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1503-1514. [PMID: 30443862 DOI: 10.1007/s11427-018-9415-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/27/2018] [Indexed: 11/28/2022]
Abstract
Sex is prevalent in nature and sex determination is one of the most fundamental biological processes, while the way of initiating female and male development exhibits remarkable diversity and variability across vertebrates. The knowledge on why and how sex determination mechanisms evolve unusual plasticity remains limited. Here, we summarize sex determination systems, master sex-determining genes and gene-regulatory networks among vertebrates. Recent research advancements on sex determination system transition are also introduced and discussed in some non-model animals with multiple sex determination mechanisms. This review will provide insights into the origin, transition and evolutionary adaption of different sex determination strategies in vertebrates, as well as clues for future perspectives in this field.
Collapse
Affiliation(s)
- Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, College of Modern Agriculture Sciences, University of Chinese Academy of Sciences, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
8
|
Morris KR, Hirst CE, Major AT, Ezaz T, Ford M, Bibby S, Doran TJ, Smith CA. Gonadal and Endocrine Analysis of a Gynandromorphic Chicken. Endocrinology 2018; 159:3492-3502. [PMID: 30124802 DOI: 10.1210/en.2018-00553] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/10/2018] [Indexed: 02/08/2023]
Abstract
Birds have a ZZ male and ZW female sex chromosome system. The relative roles of genetics and hormones in regulating avian sexual development have been revealed by studies on gynandromorphs. Gynandromorphs are rare bilateral sex chimeras, male on one side of the body and female on the other. We examined a naturally occurring gynandromorphic chicken that was externally male on the right side of the body and female on the left. The bird was diploid but with a mix of ZZ and ZW cells that correlated with the asymmetric sexual phenotype. The male side was 96% ZZ, and the female side was 77% ZZ and 23% ZW. The gonads of this bird at sexual maturity were largely testicular. The right gonad was a testis, with SOX9+ Sertoli cells, DMRT1+ germ cells, and active spermatogenesis. The left gonad was primarily testicular, but with some peripheral aromatase-expressing follicles. The bird had low levels of serum estradiol and high levels of testosterone, as expected for a male. Despite the low percentage of ZW cells on that side, the left side had female sex-linked feathering, smaller muscle mass, smaller leg and spur, and smaller wattle than the male side. This indicates that these sexually dimorphic structures must be at least partly independent of sex steroid effects. Even a small percentage of ZW cells appears sufficient to support female sexual differentiation. Given the lack of chromosome-wide dosage compensation in birds, various sexually dimorphic features may arise due to Z-gene dosage differences between the sexes.
Collapse
Affiliation(s)
- Kirsten R Morris
- Commonwealth Scientific and Industrial Research Organisation Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Claire E Hirst
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Andrew T Major
- Commonwealth Scientific and Industrial Research Organisation Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Mark Ford
- Commonwealth Scientific and Industrial Research Organisation Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Susan Bibby
- 2Bridges Consulting, Bendigo, Victoria, Australia
| | - Tim J Doran
- Commonwealth Scientific and Industrial Research Organisation Health and Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - Craig A Smith
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|