1
|
Keshavanarayana P, Spill F. A mechanical modeling framework to study endothelial permeability. Biophys J 2024; 123:334-348. [PMID: 38169215 PMCID: PMC10870174 DOI: 10.1016/j.bpj.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/06/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
The inner lining of blood vessels, the endothelium, is made up of endothelial cells. Vascular endothelial (VE)-cadherin protein forms a bond with VE-cadherin from neighboring cells to determine the size of gaps between the cells and thereby regulate the size of particles that can cross the endothelium. Chemical cues such as thrombin, along with mechanical properties of the cell and extracellular matrix are known to affect the permeability of endothelial cells. Abnormal permeability is found in patients suffering from diseases including cardiovascular diseases, cancer, and COVID-19. Even though some of the regulatory mechanisms affecting endothelial permeability are well studied, details of how several mechanical and chemical stimuli acting simultaneously affect endothelial permeability are not yet understood. In this article, we present a continuum-level mechanical modeling framework to study the highly dynamic nature of the VE-cadherin bonds. Taking inspiration from the catch-slip behavior that VE-cadherin complexes are known to exhibit, we model the VE-cadherin homophilic bond as cohesive contact with damage following a traction-separation law. We explicitly model the actin cytoskeleton and substrate to study their role in permeability. Our studies show that mechanochemical coupling is necessary to simulate the influence of the mechanical properties of the substrate on permeability. Simulations show that shear between cells is responsible for the variation in permeability between bicellular and tricellular junctions, explaining the phenotypic differences observed in experiments. An increase in the magnitude of traction force due to disturbed flow that endothelial cells experience results in increased permeability, and it is found that the effect is higher on stiffer extracellular matrix. Finally, we show that the cylindrical monolayer exhibits higher permeability than the planar monolayer under unconstrained cases. Thus, we present a contact mechanics-based mechanochemical model to investigate the variation in the permeability of endothelial monolayer due to multiple loads acting simultaneously.
Collapse
Affiliation(s)
| | - Fabian Spill
- School of Mathematics, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
2
|
Snyder Y, Jana S. Anisotropicity and flexibility in trilayered microfibrous substrates promote heart valve leaflet tissue engineering. Biomed Mater 2022; 17:10.1088/1748-605X/ac94ae. [PMID: 36150373 PMCID: PMC9629372 DOI: 10.1088/1748-605x/ac94ae] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/23/2022] [Indexed: 11/12/2022]
Abstract
Heart valve leaflet substrates with native trilayer and anisotropic structures are crucial for successful heart valve tissue engineering. In this study, we used the electrospinning technique to produce trilayer microfibrous leaflet substrates using two biocompatible and biodegradable polymers-poly (L-lactic acid) (PLLA) and polycaprolactone (PCL), separately. Different polymer concentrations for each layer were applied to bring a high degree of mechanical and structural anisotropy to the substrates. PCL leaflet substrates exhibited lower unidirectional tensile properties than PLLA leaflet substrates. However, the PLLA substrates exhibited a lower flexural modulus than the PCL substrates. These substrates were seeded with porcine valvular interstitial cells (PVICs) and cultured for one month in static conditions. Both substrates exhibited cellular adhesion and proliferation, resulting in the production of tissue-engineered constructs. The PLLA tissue-engineered constructs had more cellular growth than the PCL tissue-engineered constructs. The PLLA substrates showed higher hydrophilicity, lower crystallinity, and more significant anisotropy than PCL substrates, which may have enhanced their interactions with PVICs. Analysis of gene expression showed higherα-smooth muscle actin and collagen type 1 expression in PLLA tissue-engineered constructs than in PCL tissue-engineered constructs. The differences in anisotropic and flexural properties may have accounted for the different cellular behaviors in these two individual polymer substrates.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
3
|
Azuraini MJ, Vigneswari S, Huong KH, Khairul WM, H.P.S. AK, Ramakrishna S, Amirul AAA. Surface Modification of Sponge-like Porous Poly(3-hydroxybutyrate- co-4-hydroxybutyrate)/Gelatine Blend Scaffolds for Potential Biomedical Applications. Polymers (Basel) 2022; 14:1710. [PMID: 35566880 PMCID: PMC9104733 DOI: 10.3390/polym14091710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 12/04/2022] Open
Abstract
In this study, we described the preparation of sponge-like porous scaffolds that are feasible for medical applications. A porous structure provides a good microenvironment for cell attachment and proliferation. In this study, a biocompatible PHA, poly(3-hydroxybutyrate-co-4-hydroxybutyrate) was blended with gelatine to improve the copolymer's hydrophilicity, while structural porosity was introduced into the scaffold via a combination of solvent casting and freeze-drying techniques. Scanning electron microscopy results revealed that the blended scaffolds exhibited higher porosity when the 4HB compositions of P(3HB-co-4HB) ranged from 27 mol% to 50 mol%, but porosity decreased with a high 4HB monomer composition of 82 mol%. The pore size, water absorption capacity, and cell proliferation assay results showed significant improvement after the final weight of blend scaffolds was reduced by half from the initial 0.79 g to 0.4 g. The pore size of 0.79g-(P27mol%G10) increased three-fold while the water absorption capacity of 0.4g-(P50mol%G10) increased to 325%. Meanwhile, the cell proliferation and attachment of 0.4g-(P50mol%G10) and 0.4g-(P82mol%G7.5) increased as compared to the initial seeding number. Based on the overall data obtained, we can conclude that the introduction of a small amount of gelatine into P(3HB-co-4HB) improved the physical and biological properties of blend scaffolds, and the 0.4g-(P50mol%G10) shows great potential for medical applications considering its unique structure and properties.
Collapse
Affiliation(s)
- Mat Junoh Azuraini
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (M.J.A.); (K.-H.H.)
| | - Sevakumaran Vigneswari
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia; (S.V.); (W.M.K.)
| | - Kai-Hee Huong
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (M.J.A.); (K.-H.H.)
- Centre of Chemical Biology, Universiti Sains Malaysia, Penang 11900, Malaysia
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| | - Wan M. Khairul
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia; (S.V.); (W.M.K.)
| | - Abdul Khalil H.P.S.
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanotechnology and Sustainability, National University of Singapore, Singapore 119260, Singapore;
| | - Al-Ashraf Abdullah Amirul
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (M.J.A.); (K.-H.H.)
- Centre of Chemical Biology, Universiti Sains Malaysia, Penang 11900, Malaysia
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, NIBM, Penang 11700, Malaysia
| |
Collapse
|
4
|
Hermans LHL, Van Kelle MAJ, Oomen PJA, Lopata R.GP, Loerakker S, Bouten CVC. Scaffold Geometry-Imposed Anisotropic Mechanical Loading Guides the Evolution of the Mechanical State of Engineered Cardiovascular Tissues in vitro. Front Bioeng Biotechnol 2022; 10:796452. [PMID: 35252127 PMCID: PMC8888825 DOI: 10.3389/fbioe.2022.796452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular tissue engineering is a promising approach to develop grafts that, in contrast to current replacement grafts, have the capacity to grow and remodel like native tissues. This approach largely depends on cell-driven tissue growth and remodeling, which are highly complex processes that are difficult to control inside the scaffolds used for tissue engineering. For several tissue engineering approaches, adverse tissue growth and remodeling outcomes were reported, such as aneurysm formation in vascular grafts, and leaflet retraction in heart valve grafts. It is increasingly recognized that the outcome of tissue growth and remodeling, either physiological or pathological, depends at least partly on the establishment of a homeostatic mechanical state, where one or more mechanical quantities in a tissue are maintained in equilibrium. To design long-term functioning tissue engineering strategies, understanding how scaffold parameters such as geometry affect the mechanical state of a construct, and how this state guides tissue growth and remodeling, is therefore crucial. Here, we studied how anisotropic versus isotropic mechanical loading—as imposed by initial scaffold geometry—influences tissue growth, remodeling, and the evolution of the mechanical state and geometry of tissue-engineered cardiovascular constructs in vitro. Using a custom-built bioreactor platform and nondestructive mechanical testing, we monitored the mechanical and geometric changes of elliptical and circular, vascular cell-seeded, polycaprolactone-bisurea scaffolds during 14 days of dynamic loading. The elliptical and circular scaffold geometries were designed using finite element analysis, to induce anisotropic and isotropic dynamic loading, respectively, with similar maximum stretch when cultured in the bioreactor platform. We found that the initial scaffold geometry-induced (an)isotropic loading of the engineered constructs differentially dictated the evolution of their mechanical state and geometry over time, as well as their final structural organization. These findings demonstrate that controlling the initial mechanical state of tissue-engineered constructs via scaffold geometry can be used to influence tissue growth and remodeling and determine tissue outcomes.
Collapse
Affiliation(s)
- L. H. L. Hermans
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - M. A. J. Van Kelle
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - P. J. A. Oomen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - R .G. P. Lopata
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - S. Loerakker
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
- *Correspondence: S. Loerakker,
| | - C. V. C. Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
5
|
Luketich SK, Cosentino F, Di Giuseppe M, Menallo G, Nasello G, Livreri P, Wagner WR, D'Amore A. Engineering in-plane mechanics of electrospun polyurethane scaffolds for cardiovascular tissue applications. J Mech Behav Biomed Mater 2022; 128:105126. [DOI: 10.1016/j.jmbbm.2022.105126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
|
6
|
Szafron JM, Ramachandra AB, Breuer CK, Marsden AL, Humphrey JD. Optimization of Tissue-Engineered Vascular Graft Design Using Computational Modeling. Tissue Eng Part C Methods 2019; 25:561-570. [PMID: 31218941 DOI: 10.1089/ten.tec.2019.0086] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Tissue-engineered vascular grafts hold great promise in many clinical applications, especially in pediatrics wherein growth potential is critical. A continuing challenge, however, is identification of optimal scaffold parameters for promoting favorable neovessel development. In particular, given the countless design parameters available, including those related to polymeric microstructure, material behavior, and degradation kinetics, the number of possible scaffold designs is almost limitless. Advances in computationally modeling the growth and remodeling of native blood vessels suggest that similar simulations could help reduce the search space for candidate scaffold designs in tissue engineering. In this study, we meld a computational model of in vivo neovessel formation with a surrogate management framework to identify optimal scaffold designs for use in the extracardiac Fontan circulation while comparing the utility of different objective functions. We show that evolving luminal radius and graft compliance can be matched to that of the native vein by the end of the simulation period with judicious combinations of scaffold parameters, although the inability to match these metrics at all times reveals constraints engendered by current materials. We emphasize further that there is yet a need to examine additional metrics, and combinations thereof, when seeking to optimize functionality and reduce the potential for adverse outcomes. Impact Statement Tissue-engineered vascular grafts have considerable promise for treating myriad conditions, and multiple designs are now in FDA-approved trials. Nevertheless, the search continues for the optimal design of the underlying polymeric scaffold. We present a novel melding of a computational model of vascular adaptation and a formal method of optimization that can aid in identifying optimal design parameters, with potential to save development time and costs while improving clinical outcomes.
Collapse
Affiliation(s)
- Jason M Szafron
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Abhay B Ramachandra
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | | | - Alison L Marsden
- Departments of Pediatrics and Bioengineering, Stanford University, Stanford, California
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut.,Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|