1
|
Huang Q, Zhou Y, Pan L, Chen Y, Wang N, Li K, Bai J, Ji X. Experimental Evaluation of an Ultrasound-Guided High-Intensity-Focused Ultrasound Probe for Sonication of Artery. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:2357-2373. [PMID: 39240034 DOI: 10.1002/jum.16571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/23/2024] [Accepted: 08/24/2024] [Indexed: 09/07/2024]
Abstract
OBJECTIVES This study aimed to develop an ultrasound-guided high-intensity-focused ultrasound (USgHIFU) probe for arterial sonication and to evaluate vascular contraction. METHODS The USgHIFU probe comprised two confocal spherical transducers for sonication and a US color Doppler flow imaging probe for guidance. A vessel-mimicking phantom was sonicated in two directions. In the vascular radial direction, an isolated rabbit aorta embedded in ex vivo pork liver was sonicated at different acoustic powers (245 and 519 W), flow rates (25, 30, and 50 mL/minute), and sonication energies (519, 980, and 1038 J). Changes in the postsonication vessels were evaluated using US imaging, microscopic observation, and histopathological analysis. RESULTS Beam focusing along the vascular radial direction caused significant deformation of both tube walls (n = 4), whereas focusing along the axial direction only affected the contraction of the anterior wall (n = 4). The contraction index (Dc) of the vessel sonicated at 245 W and 980 J was 56.2 ± 9.7% (n = 12) with 25 mL/minute. The Dc of the vessel sonicated at 519 W and 1038 J was 56.5 ± 7.8% (n = 17). The Dc of the vessel sonicated at 519 J total energy was 18.3 ± 5.1% (n = 12). CONCLUSION The developed USgHIFU probe induced greater vascular contractions by covering a larger area of the vessel wall in the radial direction. Sonication energy affects vascular contraction through temperature elevation of the vessel wall. When the acoustic power was high, an increase in acoustic power, even with comparable sonication energy, did not result in greater vessel contraction.
Collapse
Affiliation(s)
- Qianwen Huang
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Zhou
- Department of Ultrasonography, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Pan
- Department of Pathology, International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yini Chen
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Department of Ultrasonography, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nianou Wang
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jingfeng Bai
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Med-X Engineering Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Ji
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Med-X Engineering Research Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Collins HE, Alexander BT, Care AS, Davenport MH, Davidge ST, Eghbali M, Giussani DA, Hoes MF, Julian CG, LaVoie HA, Olfert IM, Ozanne SE, Bytautiene Prewit E, Warrington JP, Zhang L, Goulopoulou S. Guidelines for assessing maternal cardiovascular physiology during pregnancy and postpartum. Am J Physiol Heart Circ Physiol 2024; 327:H191-H220. [PMID: 38758127 PMCID: PMC11380979 DOI: 10.1152/ajpheart.00055.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Maternal mortality rates are at an all-time high across the world and are set to increase in subsequent years. Cardiovascular disease is the leading cause of death during pregnancy and postpartum, especially in the United States. Therefore, understanding the physiological changes in the cardiovascular system during normal pregnancy is necessary to understand disease-related pathology. Significant systemic and cardiovascular physiological changes occur during pregnancy that are essential for supporting the maternal-fetal dyad. The physiological impact of pregnancy on the cardiovascular system has been examined in both experimental animal models and in humans. However, there is a continued need in this field of study to provide increased rigor and reproducibility. Therefore, these guidelines aim to provide information regarding best practices and recommendations to accurately and rigorously measure cardiovascular physiology during normal and cardiovascular disease-complicated pregnancies in human and animal models.
Collapse
Grants
- HL169157 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HD088590 NICHD NIH HHS
- HD083132 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- The Biotechnology and Biological Sciences Research Council
- P20GM103499 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- British Heart Foundation (BHF)
- R21 HD111908 NICHD NIH HHS
- Distinguished University Professor
- The Lister Insititute
- ES032920 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- HL149608 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Royal Society (The Royal Society)
- U.S. Department of Defense (DOD)
- HL138181 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- MC_00014/4 UKRI | Medical Research Council (MRC)
- RG/17/8/32924 British Heart Foundation
- Jewish Heritage Fund for Excellence
- HD111908 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL163003 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- APP2002129 NHMRC Ideas Grant
- HL159865 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL131182 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL163818 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- NS103017 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- HL143459 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL146562 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL138181 NHLBI NIH HHS
- 20CSA35320107 American Heart Association (AHA)
- RG/17/12/33167 British Heart Foundation (BHF)
- National Heart Foundation Future Leader Fellowship
- P20GM121334 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- HL146562-04S1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL155295 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HD088590-06 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL147844 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- WVU SOM Synergy Grant
- R01 HL146562 NHLBI NIH HHS
- R01 HL159865 NHLBI NIH HHS
- Canadian Insitute's of Health Research Foundation Grant
- R01 HL169157 NHLBI NIH HHS
- HL159447 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- ES034646-01 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- HL150472 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 2021T017 Dutch Heart Foundation Dekker Grant
- MC_UU_00014/4 Medical Research Council
- R01 HL163003 NHLBI NIH HHS
- Christenson professor In Active Healthy Living
- National Heart Foundation
- Dutch Heart Foundation Dekker
- WVU SOM Synergy
- Jewish Heritage
- Department of Health | National Health and Medical Research Council (NHMRC)
- Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)
Collapse
Affiliation(s)
- Helen E Collins
- University of Louisville, Louisville, Kentucky, United States
| | - Barbara T Alexander
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Alison S Care
- University of Adelaide, Adelaide, South Australia, Australia
| | | | | | - Mansoureh Eghbali
- University of California Los Angeles, Los Angeles, California, United States
| | | | | | - Colleen G Julian
- University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Holly A LaVoie
- University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - I Mark Olfert
- West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | | | | | - Junie P Warrington
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Lubo Zhang
- Loma Linda University School of Medicine, Loma Linda, California, United States
| | | |
Collapse
|
3
|
Huang Q, Zhou Y, Li K, Pan L, Liu Y, Bai J, Ji X. Parameter effects on arterial vessel sonicated by high-intensity focused ultrasound: an ex vivo vascular phantom study. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac910c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. This study is aimed to explore the effects of vascular and sonication parameters on ex vivo vessel sonicated by high-intensity focused ultrasound. Approach. The vascular phantom embedding the polyolefin tube or ex vivo vessel was sonicated. The vascular phantom with 1.6 and 3.2 mm tubes was sonicated at three acoustic powers (2.0, 3.5, 5.3 W). The occlusion level of post-sonication tubes was evaluated using ultrasound imaging. The vascular phantom with the ex vivo abdominal aorta of rabbit for three flow rates (0, 5, 10 cm s−1) was sonicated at two acoustic powers (3.5 and 5.3 W). Different distances between focus and posterior wall (2, 4, 6 mm) and cooling times (0 and 10 s) were also evaluated. The diameter of the sonicated vessel was measured by B-mode imaging and microscopic photography. Histological examination was performed for the sonicated vessels. Main results. For the 5 cm s−1 flow rate, the contraction index of vascular diameter (Dc) with 5.3 W and 10 s cooling time at 2 mm distance was 39 ± 9% (n = 9). With the same parameters except for 0 cm s−1 flow rate, the Dc was increased to 45 ± 7% (n = 4). At 3.5 W, the Dc with 5 cm s−1 flow rate was 23 ± 15% (n = 4). The distance and cooling time influenced the lesion along the vessel wall. Significance. This study has demonstrated the flow rate and acoustic power have the great impact on the vessel contraction. Besides, the larger lesion covering the vessel wall would promote the vessel contraction. And the in vivo validation is required in the future study.
Collapse
|
4
|
Twin Reversed Arterial Perfusion Sequence: Prenatal Diagnosis and Treatment. MATERNAL-FETAL MEDICINE 2022. [DOI: 10.1097/fm9.0000000000000172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
5
|
Ichizuka K, Seo K, Izudepski T, Nagatsuka M. High-intensity focused ultrasound for noninvasive fetal therapy. J Med Ultrason (2001) 2022:10.1007/s10396-022-01199-2. [PMID: 35278169 DOI: 10.1007/s10396-022-01199-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/27/2022] [Indexed: 10/18/2022]
Abstract
High-intensity focused ultrasound (HIFU) consists of an ultrasonic beam that is focused within the body to induce tissue necrosis through both heat energy and as a result of cavitation, which occurs without damaging any intervening tissues. Therefore, it is possible to cauterize and treat tumors without surgical invasion by administering HIFU irradiation from outside the body. This approach has been clinically applied in various fields in recent years, and fetal therapy is no exception, with several clinical applications reported, mainly in basic experiments. This review summarizes the recent basic and clinical findings focusing on fetal treatment with HIFU.
Collapse
Affiliation(s)
- Kiyotake Ichizuka
- Department of Obstetrics and Gynecology, Showa University Northern Yokohama Hospital, Chigasakichuo, Tsuduki-ku, Yokohama City, Kanagawa, 224-8503, Japan.
| | - Kohei Seo
- Department of Obstetrics and Gynecology, Showa University Northern Yokohama Hospital, Chigasakichuo, Tsuduki-ku, Yokohama City, Kanagawa, 224-8503, Japan
| | - Tetsuya Izudepski
- Department of Obstetrics and Gynecology, Showa University Northern Yokohama Hospital, Chigasakichuo, Tsuduki-ku, Yokohama City, Kanagawa, 224-8503, Japan
| | - Masaaki Nagatsuka
- Department of Obstetrics and Gynecology, Showa University Northern Yokohama Hospital, Chigasakichuo, Tsuduki-ku, Yokohama City, Kanagawa, 224-8503, Japan
| |
Collapse
|
6
|
Van Mieghem T. Complex multiple pregnancies: what's new? Prenat Diagn 2021; 41:1479-1481. [PMID: 34699075 DOI: 10.1002/pd.6065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Tim Van Mieghem
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynaecology, Ontario Fetal Centre, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Mylrea-Foley B, Shaw CJ, Harikumar N, Legg S, Meher S, Lees CC. Early-onset twin-twin transfusion syndrome: Case series and systematic review. Australas J Ultrasound Med 2019; 22:286-294. [PMID: 34760571 DOI: 10.1002/ajum.12176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Introduction Data on the outcomes of early-onset twin-twin transfusion syndrome (TTTS), diagnosed before 18 weeks gestational age (GA), are sparse. We aimed to review the diagnosis, management and outcomes of early-onset TTTS. Material and methods Pregnancy records at a single referral unit 2010-6 were reviewed. In early-onset TTTS cases, data for pregnancy characteristics, interventions and outcomes were collected. PubMed and Scopus databases were searched for studies including pregnant women with early-onset TTTS. The primary outcome measure was livebirths. Results Case series: 58 cases of early-onset TTTS 2010-6, with full outcome data in 44. Diagnostic criteria were variable. Median GA at intervention was 17+4 (range 15+0-28+1); 67% of patients had laser therapy (39/58). Overall survival: 60% (53/88). At least one livebirth: 86% (38/44), Two livebirths: 34% (15/44); No survivors: 14% (6/44). GA at delivery was 32+1.5 (range 16+2-37+4). Systematic review: 16 studies included (n = 171 pregnancies). Diagnostic criteria varied widely: 79% of studies used Quintero staging. Most offered laser (89%) at median 17+0 weeks (range 16+0-21+6). GA at delivery was 23+0-39+5 weeks. Overall survival: 69% (129/186). At least one livebirth: 74% (127/171). Two livebirths: 59% (55/93). No survivors: 26% (44/171). Conclusions In comparison with the commonly accepted overall survival for TTTS treated after 18 weeks of 60-90%, outcomes in early-onset TTTS were at the lower bound of this range. Gestational age at intervention is similar to that of later onset TTTS, indicating a lack of therapeutic options when a diagnosis is made before 18 weeks.
Collapse
Affiliation(s)
- Bronacha Mylrea-Foley
- Queen Charlotte's and Chelsea Hospital Imperial College Healthcare NHS Trust London UK
| | - Caroline J Shaw
- Institute of Reproductive and Developmental Biology Imperial College London London W12 0HS UK
| | - Nirupama Harikumar
- Institute of Reproductive and Developmental Biology Imperial College London London W12 0HS UK
| | - Sophie Legg
- Institute of Reproductive and Developmental Biology Imperial College London London W12 0HS UK
| | - Shireen Meher
- Birmingham Women's and Children's NHS Foundation Trust Birmingham UK
| | - Christoph C Lees
- Institute of Reproductive and Developmental Biology Imperial College London London W12 0HS UK.,Department of Development & Regeneration KU Leuven Belgium
| |
Collapse
|