1
|
Sharpe CR, Ruxton GD. Can Predation Pressure Help Explain the Curious Evolution of Ballistic Seed Dispersal? Ecol Evol 2025; 15:e71081. [PMID: 40083737 PMCID: PMC11904313 DOI: 10.1002/ece3.71081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/16/2025] Open
Abstract
Ballistic seed dispersal (ballochory) involves the autonomous explosive release of seeds from adult plants. The unconventional mechanics of this strategy have understandably drawn considerable scientific attention. The explosive release of seeds is achieved by a variety of physical mechanisms but broadly involves the rapid coiling or shattering of seed pods to transfer kinetic energy to seeds, facilitated largely by either the evaporation or absorption of water in seed pod tissues. There has been a bias toward researching physiological and physical aspects of ballistic plants, with the evolutionary ecology being comparatively neglected. Although ballochory is represented in 23 plant families, it has never become common. This fact should invite curiosity regarding the selective pressures that encourage its evolution. Previous research has been unable to correlate ballochory with plant traits such as morphology, generation time or habitat preferences, and so we take an alternative approach in considering the evolutionary advantages that can provide insight on the shared set of circumstances that favour the evolution of this strategy. We review the known selective advantages that ballistic dispersal can confer to plants and promote a hypothesis that ballochory may be particularly selected for in instances of concentrated predation pressure on parental canopies. For plants in static and patchy landscapes, such a strategy could balance a trade-off between escaping concentrated natural enemies while maximising the probability of transport to suitable habitat. We account for its rarity by considering the major opportunity cost that may only be justified when other seed dispersal mechanisms are limited. Moving forward, we suggest experimental manipulations to test this hypothesis and promote a research agenda in the field of ballistic seed dispersal that illuminates its intriguing evolution.
Collapse
Affiliation(s)
- C. R. Sharpe
- Conservation Ecology Group, Department of BiosciencesDurham UniversityDurhamUK
| | - G. D. Ruxton
- School of Biology, Centre for Biological Diversity, Institute of Behavioural and Neural SciencesUniversity of St. AndrewsSt. AndrewsUK
| |
Collapse
|
2
|
Wang X, Pan C, Xia N, Zhang C, Hao B, Jin D, Su L, Zhao J, Majidi C, Zhang L. Fracture-driven power amplification in a hydrogel launcher. NATURE MATERIALS 2024; 23:1428-1435. [PMID: 39043929 DOI: 10.1038/s41563-024-01955-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/25/2024] [Indexed: 07/25/2024]
Abstract
Robotic tasks that require robust propulsion abilities such as jumping, ejecting or catapulting require power-amplification strategies where kinetic energy is generated from pre-stored energy. Here we report an engineered accumulated strain energy-fracture power-amplification method that is inspired by the pressurized fluidic squirting mechanism of Ecballium elaterium (squirting cucumber plants). We realize a light-driven hydrogel launcher that harnesses fast liquid vapourization triggered by the photothermal response of an embedded graphene suspension. This vapourization leads to appreciable elastic energy storage within the surrounding hydrogel network, followed by rapid elastic energy release within 0.3 ms. These soft hydrogel robots achieve controlled launching at high velocity with a predictable trajectory. The accumulated strain energy-fracture method was used to create an artificial squirting cucumber that disperses artificial seeds over metres, which can further achieve smart seeding through an integrated radio-frequency identification chip. This power-amplification strategy provides a basis for propulsive motion to advance the capabilities of miniaturized soft robotic systems.
Collapse
Affiliation(s)
- Xin Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Chengfeng Pan
- The State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, People's Republic of China.
| | - Neng Xia
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Chong Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Bo Hao
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Dongdong Jin
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Guangdong, People's Republic of China
| | - Lin Su
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Jinsheng Zhao
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Carmel Majidi
- Soft Machines Lab, Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong, People's Republic of China.
- Multi-Scale Medical Robotics Center, Hong Kong Science Park, Shatin NT, Hong Kong, People's Republic of China.
- CUHK T Stone Robotics Institute, The Chinese University of Hong Kong, Hong Kong, People's Republic of China.
- Chow Yuk Ho Technology Center for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, People's Republic of China.
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, People's Republic of China.
| |
Collapse
|
3
|
Cullen E, Hay A. Creating an explosion: Form and function in explosive fruit. CURRENT OPINION IN PLANT BIOLOGY 2024; 79:102543. [PMID: 38688200 DOI: 10.1016/j.pbi.2024.102543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 05/02/2024]
Abstract
Adaptations for seed dispersal are found everywhere in nature. However, only a fraction of this diversity is accessible through the study of model organisms. For example, Arabidopsis seeds are released by dehiscent fruit; and although many genes required for dehiscence have been identified, the genetic basis for the vast majority of seed dispersal strategies remains understudied. Explosive fruit generate mechanical forces to launch seeds over a wide area. Recent work indicates that key innovations required for explosive dispersal lie in localised lignin deposition and precise patterns of microtubule-dependent growth in the fruit valves, rather than dehiscence zone structure. These insights come from comparative approaches, which extend the reach of developmental genetics by developing experimental tools in less well-studied species, such as the Arabidopsis relative, Cardamine hirsuta.
Collapse
Affiliation(s)
- Erin Cullen
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Angela Hay
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany.
| |
Collapse
|
4
|
Hesse-Withbroe JL, Whitaker DL. Backspin in Ruellia ciliatiflora does not maximize seed dispersal range, but provides moderate dispersal range that is robust to launch conditions. J R Soc Interface 2024; 21:20230486. [PMID: 38471534 PMCID: PMC10932702 DOI: 10.1098/rsif.2023.0486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Ruellia ciliatiflora is a perennial herb whose fruits explosively dehisce, launching their thin disc-like seeds over 6 m with a backspin up to 1660 Hz. While it has been previously shown that the backspin launch orientation minimizes the aerodynamic drag experienced by the seeds, it is not immediately obvious whether backspin is also the range-maximizing launch orientation. Here the three-dimensional equation of motion of a thin, spinning disc flying through a fluid medium was derived and solved numerically to simulate the flight of seeds of R. ciliatiflora under different launch conditions. Simulations of seed flights reveal that the range-maximizing launch orientation lies between sidespin and topspin, far from the backspin that is observed in nature. While this range-maximizing orientation results in dispersal ranges of nearly 10 m, the precise orientation is highly sensitive to other launch parameters, chiefly spin rate and launch angle. By contrast, backspin, which yields moderate dispersal ranges about 60% of the range-maximizing orientation, is robust to perturbations in launch parameters that the plant cannot precisely control.
Collapse
Affiliation(s)
| | - Dwight L. Whitaker
- Department of Physics and Astronomy, Pomona College, Claremont, CA, USA
- California Botanic Garden, Claremont, CA, USA
| |
Collapse
|
5
|
Jorge JF, Patek SN. Elastic pinch biomechanisms can yield consistent launch speeds regardless of projectile mass. J R Soc Interface 2023; 20:20230234. [PMID: 37608709 PMCID: PMC10445031 DOI: 10.1098/rsif.2023.0234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023] Open
Abstract
Energetic trade-offs are particularly pertinent to bio-ballistic systems which impart energy to projectiles exclusively during launch. We investigated such trade-offs in the spring-propelled seeds of Loropetalum chinense, Hamamelis virginiana and Fortunearia sinensis. Using similar seed-shooting mechanisms, fruits of these confamilial plants (Hamamelidaceae) span an order of magnitude in spring and seed mass. We expected that as seed mass increases, launch speed decreases. Instead, launch speed was relatively constant regardless of seed mass. We tested if fruits shoot larger seeds by storing more elastic potential energy (PE). Spring mass and PE increased as seed mass increased (in order of increasing seed mass: L. chinense, H. virginiana, F. sinensis). As seed mass to spring mass ratio increased (ratios: H. virginiana = 0.50, F. sinensis = 0.65, L. chinense = 0.84), mass-specific PE storage increased. The conversion efficiency of PE to seed kinetic energy (KE) decreased with increasing fruit mass. Therefore, similar launch speeds across scales occurred because (i) larger fruits stored more PE and (ii) smaller fruits had higher mass-specific PE storage and improved PE to KE conversion. By examining integrated spring and projectile mechanics in our focal species, we revealed diverse, energetic scaling strategies relevant to spring-propelled systems navigating energetic trade-offs.
Collapse
Affiliation(s)
| | - S. N. Patek
- Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
6
|
Horstmann M, Buchheit H, Speck T, Poppinga S. The cracking of Scots pine ( Pinus sylvestris) cones. FRONTIERS IN PLANT SCIENCE 2022; 13:982756. [PMID: 36330256 PMCID: PMC9623100 DOI: 10.3389/fpls.2022.982756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Pine cones show functionally highly resilient, hygroscopically actuated opening and closing movements, which are repeatable and function even in millions of years old, coalified cones. Although the functional morphology and biomechanics behind the individual seed scale motions are well understood, the initial opening of the cone, which is often accompanied by an audible cracking noise, is not. We therefore investigated the initial opening events of mature fresh cones of Scots pine (Pinus sylvestris) and their subsequent motion patterns. Using high-speed and time lapse videography, 3D digital image correlation techniques, force measurements, thermographic and chemical-rheological resin analyses, we are able to draw a holistic picture of the initial opening process involving the rupture of resin seals and very fast seed scale motion in the millisecond regime. The rapid cone opening was not accompanied by immediate seed release in our experiments and, therefore, cannot be assigned to ballistochory. As the involved passive hydraulic-elastic processes in cracking are very fine-tuned, we hypothesize that they are under tight mechanical-structural control to ensure an ecologically optimized seed release upon environmental conditions suitable for wind dispersal. In this context, we propose an interplay of humidity and temperature to be the external "drivers" for the initial cone opening, in which resin works as a crucial chemical-mechanical latch system.
Collapse
Affiliation(s)
- Martin Horstmann
- Botanic Garden, Plant Biomechanics Group, University of Freiburg, Freiburg im Breisgau, Germany
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University Bochum, Bochum, Germany
| | - Hannah Buchheit
- Freiburg Materials Research Center and Institute for Macromolecular Chemistry, University of Freiburg, Freiburg im Breisgau, Germany
| | - Thomas Speck
- Botanic Garden, Plant Biomechanics Group, University of Freiburg, Freiburg im Breisgau, Germany
- Cluster of Excellence livMatS, University of Freiburg, Freiburg im Breisgau, Germany
| | - Simon Poppinga
- Department of Biology, Botanical Garden, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
7
|
Suissa JS. Fern fronds that move like pine cones: humidity-driven motion of fertile leaflets governs the timing of spore dispersal in a widespread fern species. ANNALS OF BOTANY 2022; 129:519-528. [PMID: 34878516 PMCID: PMC9007102 DOI: 10.1093/aob/mcab137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND AIMS The sensitive fern, Onoclea sensibilis, is a widespread species in eastern North America and has an atypical timing of spore dispersal among temperate ferns. During early summer, this dimorphic species produces heavily modified spore-bearing fronds with leaflets tightly enveloping their sporangia and spores. These fronds senesce and persist above ground as dead mature structures until the following early spring when the leaflets finally open and spores are dispersed. While this timing of spore dispersal has been observed for over 120 years, the structural mechanisms underpinning this phenology have remained elusive. METHODS Based on field observations, growth chamber manipulations and scanning electron microscopy, the mechanisms underlying this distinctive timing of spore dispersal in the sensitive fern were investigated. KEY RESULTS I show that fertile leaflets of the sensitive fern move in direct response to changes in humidity, exhibiting structural and functional parallels with multicellular hygromorphic structures in seed plants, such as pine cones. These parallels include differences in cellulose microfibril orientation in cells on the abaxial and adaxial sides of the leaflet. The dynamics of this hygroscopic movement concomitant with regular abscission zones along the pinnules and coordinated senescence lead to the specific timing of early spring spore dispersal in the sensitive fern. CONCLUSIONS While hygroscopic movement is common in seed-free plants, it mostly occurs in small structures that are either one or a few cells in size, such as the leptosporangium. Given its multicellular structure and integration across many cells and tissues, the movement and construction of the sensitive fern pinnules are more similar to structures in seed plants. The evolution of this complex trait in the sensitive fern efficiently regulates the timing of spore release, leading to early spring dispersal. This phenology likely gives gametophytes and subsequent sporophytes an advantage with early germination and growth.
Collapse
Affiliation(s)
- Jacob S Suissa
- The Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- The Arnold Arboretum of Harvard UniversityBoston, MA, USA
| |
Collapse
|
8
|
Mitchell N, Piatczyc NP, Wang DD, Edwards J. High-speed video and plant ultrastructure define mechanisms of gametophyte dispersal. APPLICATIONS IN PLANT SCIENCES 2022; 10:e11463. [PMID: 35495193 PMCID: PMC9039801 DOI: 10.1002/aps3.11463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/15/2021] [Accepted: 01/10/2022] [Indexed: 05/06/2023]
Abstract
Dispersal of gametophytes is critical for land plant survivorship and reproduction. It defines potential colonization and geographical distribution as well as genetic mixing and evolution. C. T. Ingold's classic works on Spore Discharge in Land Plants and Spore Liberation review mechanisms for spore release and dispersal based on real-time observations, basic histology, and light microscopy. Many mechanisms underlying spore liberation are explosive and have evolved independently multiple times. These mechanisms involve physiological processes such as water gain and loss, coupled with structural features using different plant tissues. Here we review how high-speed video and analyses of ultrastructure have defined new biomechanical mechanisms for the dispersal of gametophytes through the dissemination of haploid diaspores, including spores, pollen, and asexual reproductive propagules. This comparative review highlights the diversity and importance of rapid movements in plants for dispersing gametophytes and considerations for using combinations of high-speed video methods and microscopic techniques to understand these dispersal movements. A deeper understanding of these mechanisms is crucial not only for understanding gametophyte ecology but also for applied engineering and biomimetic applications used in human technologies.
Collapse
Affiliation(s)
- Nora Mitchell
- Department of BiologyUniversity of Wisconsin–Eau ClaireEau Claire54701WisconsinUSA
| | - Nancy P. Piatczyc
- Biology DepartmentWilliams College, WilliamstownMassachusetts01267USA
| | - Darren D. Wang
- Biology DepartmentWilliams College, WilliamstownMassachusetts01267USA
| | - Joan Edwards
- Biology DepartmentWilliams College, WilliamstownMassachusetts01267USA
| |
Collapse
|
9
|
Huss JC, Gierlinger N. Functional packaging of seeds. THE NEW PHYTOLOGIST 2021; 230:2154-2163. [PMID: 33629369 PMCID: PMC8252473 DOI: 10.1111/nph.17299] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/16/2021] [Indexed: 05/28/2023]
Abstract
The encapsulation of seeds in hard coats and fruit walls (pericarp layers) fulfils protective and dispersal functions in many plant families. In angiosperms, packaging structures possess a remarkable range of different morphologies and functionalities, as illustrated by thermo and hygro-responsive seed pods and appendages, as well as mechanically strong and water-impermeable shells. Key to these different functionalities are characteristic structural arrangements and chemical modifications of the underlying sclerenchymatous tissues. Although many ecological aspects of hard seed encapsulation have been well documented, a detailed understanding of the relationship between tissue structure and function only recently started to emerge, especially in the context of environmentally driven fruit opening and seed dispersal (responsive encapsulations) and the outstanding durability of some seed coats and indehiscent fruits (static encapsulations). In this review, we focus on the tissue properties of these two systems, with particular consideration of water interactions, mechanical resistance, and force generation. Common principles, as well as unique adaptations, are discussed in different plant species. Understanding how plants integrate a broad range of functions and properties for seed protection during storage and dispersal plays a central role for seed conservation, population dynamics, and plant-based material developments.
Collapse
Affiliation(s)
- Jessica C. Huss
- Department of NanobiotechnologyInstitute of BiophysicsUniversity of Natural Resources and Life Sciences (BOKU) ViennaMuthgasse 11/IIVienna1900Austria
| | - Notburga Gierlinger
- Department of NanobiotechnologyInstitute of BiophysicsUniversity of Natural Resources and Life Sciences (BOKU) ViennaMuthgasse 11/IIVienna1900Austria
| |
Collapse
|
10
|
Houghton S, Stevens MT, Meyer SE. Pods as sails but not as boats: dispersal ecology of a habitat-restricted desert milkvetch. AMERICAN JOURNAL OF BOTANY 2020; 107:864-875. [PMID: 32462674 DOI: 10.1002/ajb2.1473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/28/2020] [Indexed: 06/11/2023]
Abstract
PREMISE Adaptive seed dispersal mechanisms are fundamental to plant fitness, but dispersal advantage is scale-dependent. We tested the hypothesis that informed dispersal in response to an environmental cue enables dispersal by wind on a local scale for Astragalus holmgreniorum, a desert species restricted to swales and wash skirts with overland flow, but prevents longer-distance dispersal by water into unfavorable wash habitats. METHODS Pod biomechanics in A. holmgreniorum lead to major shape modifications with changes in moisture content. We performed laboratory experiments to examine the interaction of pod shape with wind and water, and conducted field experiments in A. holmgreniorum habitat evaluating the roles of wind, water, and seed predators on dispersal. RESULTS Dry pods exhibit a flattened crescent shape with partial dehiscence that facilitated wind dispersal by ground tumbling and seed scattering in laboratory experiments. Rain simulation experiments showed that even small precipitation events returned wetted pods to their cylindrical shape and opened the dorsal suture, exposing the seeds. In the field experiments, dry pods were moved locally by wind, whereas rain caused pod opening and washing out of seeds in place. Seed predators had minimal effect on pod movement. CONCLUSIONS Astragalus holmgreniorum exhibits pod structural remodeling in response to environmental change in a striking and novel demonstration of informed dispersal. Wind-driven movement of dry pods facilitates local seed dispersal, but rain causes pods to open and release seeds, ensuring that they are not transported out of suitable habitats and into active washes where they would be lost from the seed bank.
Collapse
Affiliation(s)
- Sydney Houghton
- Department of Biology, Utah Valley University, 800 W. University Parkway, Orem, Utah, 84058, USA
| | - Michael T Stevens
- Department of Biology, Utah Valley University, 800 W. University Parkway, Orem, Utah, 84058, USA
| | - Susan E Meyer
- USDA Forest Service Rocky Mountain Research Station, Shrub Sciences Laboratory, 735 North 500 East, Provo, UT, 84606, USA
| |
Collapse
|
11
|
Hesse L, Leupold J, Poppinga S, Wick M, Strobel K, Masselter T, Speck T. Resolving Form–Structure–Function Relationships in Plants with MRI for Biomimetic Transfer. Integr Comp Biol 2019; 59:1713-1726. [DOI: 10.1093/icb/icz051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract
In many biomimetic approaches, a deep understanding of the form–structure–function relationships in living and functionally intact organisms, which act as biological role models, is essential. This knowledge is a prerequisite for the identification of parameters that are relevant for the desired technical transfer of working principles. Hence, non-invasive and non-destructive techniques for static (3D) and dynamic (4D) high-resolution plant imaging and analysis on multiple hierarchical levels become increasingly important. In this study we demonstrate that magnetic resonance imaging (MRI) can be used to resolve the plants inner tissue structuring and functioning on the example of four plant concept generators with sizes larger than 5 mm used in current biomimetic research projects: Dragon tree (Dracaena reflexa var. angustifolia), Venus flytrap (Dionaea muscipula), Sugar pine (Pinus lambertiana) and Chinese witch hazel (Hamamelis mollis). Two different MRI sequences were applied for high-resolution 3D imaging of the differing material composition (amount, distribution, and density of various tissues) and condition (hydrated, desiccated, and mechanically stressed) of the four model organisms. Main aim is to better understand their biomechanics, development, and kinematics. The results are used as inspiration for developing novel design and fabrication concepts for bio-inspired technical fiber-reinforced branchings and smart biomimetic actuators.
Collapse
Affiliation(s)
- Linnea Hesse
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Freiburg im Breisgau, Germany
| | - Jochen Leupold
- Department of Radiology, Medical Physics, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Simon Poppinga
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Freiburg im Breisgau, Germany
| | | | | | - Tom Masselter
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Freiburg im Breisgau, Germany
| | - Thomas Speck
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Freiburg im Breisgau, Germany
- Cluster of Excellence livMatS—FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|