1
|
Howell E, White A, Lurz PWW, Boots M. Immune interactions and heterogeneity in transmission drives the pathogen-mediated invasion of grey squirrels in the UK. J Anim Ecol 2024; 93:663-675. [PMID: 38494654 DOI: 10.1111/1365-2656.14074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/06/2024] [Indexed: 03/19/2024]
Abstract
Mathematical models highlighted the importance of pathogen-mediated invasion, with the replacement of red squirrels by squirrelpox virus (SQPV) carrying grey squirrels in the UK, a well-known example. In this study, we combine new epidemiological models, with a range of infection characteristics, with recent longitudinal field and experimental studies on the SQPV dynamics in red and grey squirrel populations to better infer the mechanistic basis of the disease interaction. A key finding is that a model with either partial immunity or waning immunity and reinfection, where individuals become seropositive on the second exposure to infection, that up to now has been shown in experimental data only, can capture the key aspects of the field study observations. By fitting to SQPV epidemic observations in isolated red squirrel populations, we can infer that SQPV transmission between red squirrels is significantly (4×) higher than the transmission between grey squirrels and as a result our model shows that disease-mediated replacement of red squirrels by greys is considerably more rapid than replacement in the absence of SQPV. Our findings recover the key results of the previous model studies, which highlights the value of simple strategic models that are appropriate when there are limited data, but also emphasise the likely complexity of immune interactions in wildlife disease and how models can help infer disease processes from field data.
Collapse
Affiliation(s)
- E Howell
- Department of Mathematics and the Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, UK
| | - A White
- Department of Mathematics and the Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, UK
| | - P W W Lurz
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Roslin, UK
| | - M Boots
- Department of Integrative Biology, University of California, Berkeley, California, USA
- Centre for Ecology and Conservation, Biosciences, University of Exeter, Cornwall, UK
| |
Collapse
|
2
|
Fabri ND, Heesterbeek H, Cromsigt JPGM, Ecke F, Sprong H, Nijhuis L, Hofmeester TR, Hartemink N. Exploring the influence of host community composition on the outbreak potential of Anaplasma phagocytophilum and Borrelia burgdorferi s.l. Ticks Tick Borne Dis 2024; 15:102275. [PMID: 37922668 DOI: 10.1016/j.ttbdis.2023.102275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
In large parts of the northern hemisphere, multiple deer species coexist, and management actions can strongly influence wild deer communities. Such changes may also indirectly influence other species in the community, such as small mammals and birds, because deer can have strong effects on their habitats and resources. Deer, small mammals and birds play an important role in the dynamics of tick-borne zoonotic diseases. It is, however, relatively underexplored how the abundance and composition of vertebrate communities may affect the outbreak potential, maintenance and circulation of tick-borne pathogens. In this study we focus on the outbreak potential by exploring how the basic reproduction number R0 for different tick-borne pathogens depends on host community composition. We used published data on co-varying roe deer (Capreolus capreolus) and fallow deer (Dama dama) densities following a hunting ban, and different small mammal and bird densities, to investigate how the change in host community influences the R0 of four tick-borne pathogens: one non-zoonotic, namely Anaplasma phagocytophilum ecotype 2, and three zoonotic, namely A. phagocytophilum ecotype 1, Borrelia afzelii and Borrelia garinii. We calculated R0 using a next generation matrix approach, and used elasticities to quantify the contributions to R0 of the different groups of host species. The value of R0 for A. phagocytophilum ecotype 1 was higher with high fallow deer density and low roe deer density, while it was the other way round for A. phagocytophilum ecotype 2. For B. afzelii, R0 was mostly related to the density of small mammals and for B. garinii it was mostly determined by bird density. Our results show that the effect of species composition is substantial in the outbreak potential of tick-borne pathogens. This implies that also management actions that change this composition, can (indirectly and unintentionally) affect the outbreak potential of tick-borne diseases.
Collapse
Affiliation(s)
- Nannet D Fabri
- Department of Wildlife, Fish, and Environmental Studies, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden; Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, the Netherlands
| | - Hans Heesterbeek
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, the Netherlands
| | - Joris P G M Cromsigt
- Department of Wildlife, Fish, and Environmental Studies, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden; Centre for African Conservation Ecology, Department of Zoology, Nelson Mandela University, PO Box 77000, Port Elizabeth 6031, South Africa; Copernicus Institute of Sustainable Development, Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands
| | - Frauke Ecke
- Department of Wildlife, Fish, and Environmental Studies, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Hein Sprong
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands
| | - Lonneke Nijhuis
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 7, 3584 CL Utrecht, the Netherlands
| | - Tim R Hofmeester
- Department of Wildlife, Fish, and Environmental Studies, Faculty of Forest Sciences, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden
| | - Nienke Hartemink
- Biometris, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands.
| |
Collapse
|
3
|
Gómez-Hernández EA, Moreno-Gómez FN, Bravo-Gaete M, Córdova-Lepe F. Concurrent dilution and amplification effects in an intraguild predation eco-epidemiological model. Sci Rep 2023; 13:6425. [PMID: 37081120 PMCID: PMC10119278 DOI: 10.1038/s41598-023-33345-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 04/12/2023] [Indexed: 04/22/2023] Open
Abstract
The dilution and amplification effects are important concepts in the field of zoonotic diseases. While the dilution effect predicts that pathogen prevalence is negatively correlated with increased species diversity, the opposite trend is observed when the amplification effect occurs. Understanding how interspecific interactions such as predation and competition within a community influence disease transmission is highly relevant. We explore the conditions under which the dilution and amplification effects arise, using compartmental models that integrate ecological and epidemiological interactions. We formulate an intraguild predation model where each species is divided into two compartments: susceptible and infected individuals. We obtained that increasing predation increases the disease transmission potential of the predator and the density of infected individuals, but decreases the disease transmission potential of the prey, as well as their density. Also, we found that interspecific competition always helps to decrease the number of infected individuals in the population of the two species. Therefore, dilution and amplification effects can be observed simultaneously but depending on different types of cological interactions.
Collapse
Affiliation(s)
- Enith A Gómez-Hernández
- Doctorado en Modelamiento Matemático Aplicado, Universidad Católica del Maule, Talca, Chile.
| | - Felipe N Moreno-Gómez
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| | - Moisés Bravo-Gaete
- Departamento de Matemática, Física y Estadística, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| | - Fernando Córdova-Lepe
- Departamento de Matemática, Física y Estadística, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
4
|
Wauters LA, Lurz PWW, Santicchia F, Romeo C, Ferrari N, Martinoli A, Gurnell J. Interactions between native and invasive species: A systematic review of the red squirrel-gray squirrel paradigm. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1083008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
The eastern gray squirrel (Sciurus carolinensis) has been labeled as one of the 100 worst invasive alien species by the IUCN. In Europe, the species has been introduced to Britain, Ireland and Italy, and its subsequent spread has resulted in wide-scale extinction of native Eurasian red squirrels (Sciurus vulgaris) from the areas colonized by the gray squirrel. This replacement of a native by an alien competitor is one of the best documented cases of the devastating effects of biological invasions on native fauna. To understand how this replacement occurs, we present a systematic review of the literature on competition and interactions between red and gray squirrels. We describe the patterns of red and gray squirrel distribution in those parts of Europe where gray squirrels occur and summarize the evidence on the different processes and mechanisms determining the outcome of competition between the native and alien species including the influence of predators and pathogens. Some of the drivers behind the demise of the red squirrel have been intensively studied and documented in the past 30 years, but recent field studies and mathematical models revealed that the mechanisms underlying the red-gray paradigm are more complex than previously thought and affected by landscape-level processes. Therefore, we consider habitat type and multi-species interactions, including host-parasite and predator-prey relationships, to determine the outcome of the interaction between the two species and to better address gray squirrel control efforts.
Collapse
|
5
|
Slade A, White A, Lurz PW, Shuttleworth C, Tosh DG, Twining JP. Indirect effects of pine marten recovery result in benefits to native prey through suppression of an invasive species and a shared pathogen. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2022.110216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
6
|
Roberts M, Dobson A, Restif O, Wells K. Challenges in modelling the dynamics of infectious diseases at the wildlife-human interface. Epidemics 2021; 37:100523. [PMID: 34856500 PMCID: PMC8603269 DOI: 10.1016/j.epidem.2021.100523] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 02/01/2023] Open
Abstract
The Covid-19 pandemic is of zoonotic origin, and many other emerging infections of humans have their origin in an animal host population. We review the challenges involved in modelling the dynamics of wildlife–human interfaces governing infectious disease emergence and spread. We argue that we need a better understanding of the dynamic nature of such interfaces, the underpinning diversity of pathogens and host–pathogen association networks, and the scales and frequencies at which environmental conditions enable spillover and host shifting from animals to humans to occur. The major drivers of the emergence of zoonoses are anthropogenic, including the global change in climate and land use. These, and other ecological processes pose challenges that must be overcome to counterbalance pandemic risk. The development of more detailed and nuanced models will provide better tools for analysing and understanding infectious disease emergence and spread.
Collapse
Affiliation(s)
- Mick Roberts
- School of Natural & Computational Sciences, New Zealand Institute for Advanced Study and the Infectious Disease Research Centre, Massey University, Private Bag 102 904, North Shore Mail Centre, Auckland, New Zealand.
| | - Andrew Dobson
- EEB, Eno Hall, Princeton University, Princeton, NJ 08544, USA; Santa Fe Institute, Hyde Park Rd., Santa Fe, NM, USA
| | - Olivier Restif
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Konstans Wells
- Department of Biosciences, Swansea University, Swansea SA2 8PP, UK
| |
Collapse
|