1
|
Zhou Y, Xiong Y, Liu Y, Zhang W, Wu Y, Li Q, Zhang D. Multimodal Visible-Infrared Subwavelength Structures with Decoupled Modulation of Reflection Spectra. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27020-27029. [PMID: 40275432 DOI: 10.1021/acsami.5c02531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Visible-infrared reflectivity carries an important part of identity information for most kinds of objects, and its decoupled modulation holds significant application value in the field of identity information reconstruction, such as display, camouflage, and anticounterfeiting. Some well-designed materials or devices have exhibited remarkable abilities in the decoupled modulation of optical reflectivity, but it is difficult to concisely describe their modulation performance as the involved controllable reflectivity characteristics are at least two. Here, a systematic evaluation strategy that comprehensively assesses both the decoupling degree and the changing range through a single quantitative indicator is first proposed, and a set of subwavelength structures is presented for the complex decoupled modulation of four visible-infrared reflectivity characteristics. The decoupled modulation ability of the subwavelength structures is evaluated utilizing the new strategy, where the magnitudes of the indicators align with the modulation flexibility, thus verifying the validity of the proposed evaluation approach. The set of structures possesses robustness and can be fabricated by a controllable electrochemical process. Based on the obtained modulation structures, a multiple identity information display is successfully implemented.
Collapse
Affiliation(s)
- Yitong Zhou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuqin Xiong
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yili Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wang Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuxuan Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Di Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Bernenko D, Li M, Månefjord H, Jansson S, Runemark A, Kirkeby C, Brydegaard M. Insect diversity estimation in polarimetric lidar. PLoS One 2024; 19:e0312770. [PMID: 39485810 PMCID: PMC11530007 DOI: 10.1371/journal.pone.0312770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/12/2024] [Indexed: 11/03/2024] Open
Abstract
Identifying flying insects is a significant challenge for biologists. Entomological lidar offers a unique solution, enabling rapid identification and classification in field settings. No other method can match its speed and efficiency in identifying insects in flight. This non-intrusive tool is invaluable for assessing insect biodiversity, informing conservation planning, and evaluating efforts to address declining insect populations. Although the species richness of co-existing insects can reach tens of thousands, current photonic sensors and lidars can differentiate roughly one hundred signal types. While the retrieved number of clusters correlate with Malaise trap diversity estimates, this taxonomic specificity, the number of discernible signal types is currently limited by instrumentation and algorithm sophistication. In this study, we report 32,533 observations of wild flying insects along a 500-meter transect. We report the benefits of lidar polarization bands for differentiating species and compare the performance of two unsupervised clustering algorithms, namely Hierarchical Cluster Analysis and Gaussian Mixture Model. Our analysis shows that polarimetric properties could be partially predicted even with unpolarized light, thus polarimetric lidar bands provide only a minor improvement in specificity. Finally, we use the physical properties of the clustered observations, such as wing beat frequency, daily activity patterns, and spatial distribution, to establish a lower bound for the number of species represented by the differentiated signal types.
Collapse
Affiliation(s)
| | - Meng Li
- Dept. Physics, Lund University, Lund, Sweden
| | | | | | | | - Carsten Kirkeby
- Dept. of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- FaunaPhotonics, Copenhagen, Denmark
| | - Mikkel Brydegaard
- Dept. Physics, Lund University, Lund, Sweden
- Dept. Biology, Lund University, Lund, Sweden
- FaunaPhotonics, Copenhagen, Denmark
- Norsk Elektro Optikk, Oslo, Norway
| |
Collapse
|
3
|
Chen H, Li M, Månefjord H, Travers P, Salvador J, Müller L, Dreyer D, Alison J, Høye TT, Gao Hu, Warrant E, Brydegaard M. Lidar as a potential tool for monitoring migratory insects. iScience 2024; 27:109588. [PMID: 38646171 PMCID: PMC11031831 DOI: 10.1016/j.isci.2024.109588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/29/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
The seasonal migrations of insects involve a substantial displacement of biomass with significant ecological and economic consequences for regions of departure and arrival. Remote sensors have played a pivotal role in revealing the magnitude and general direction of bioflows above 150 m. Nevertheless, the takeoff and descent activity of insects below this height is poorly understood. Our lidar observations elucidate the low-height dusk movements and detailed information of insects in southern Sweden from May to July, during the yearly northward migration period. Importantly, by filtering out moths from other insects based on optical information and wingbeat frequency, we have introduced a promising new method to monitor the flight activities of nocturnal moths near the ground, many of which participate in migration through the area. Lidar thus holds the potential to enhance the scientific understanding of insect migratory behavior and improve pest control strategies.
Collapse
Affiliation(s)
- Hui Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
- Lund Vision Group, Department Of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - Meng Li
- Department Physics, Lund University, Sölvegatan 14c, 22363 Lund, Sweden
| | - Hampus Månefjord
- Department Physics, Lund University, Sölvegatan 14c, 22363 Lund, Sweden
| | - Paul Travers
- Department Biological Engineering, Polytech Clermont, 2 Av. Blaise Pascal, 63100 Aubière, France
| | - Jacobo Salvador
- Department Physics, Lund University, Sölvegatan 14c, 22363 Lund, Sweden
| | - Lauro Müller
- Department Physics, Lund University, Sölvegatan 14c, 22363 Lund, Sweden
| | - David Dreyer
- Lund Vision Group, Department Of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - Jamie Alison
- Department Ecoscience, Aarhus University, C. F. Møllers Allé 8, 8000 Aarhus C, Denmark
| | - Toke T. Høye
- Department Ecoscience, Aarhus University, C. F. Møllers Allé 8, 8000 Aarhus C, Denmark
- Arctic Research Centre, Aarhus University, Ole Worms Allé 1, 8000 Aarhus C, Denmark
| | - Gao Hu
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
| | - Eric Warrant
- Lund Vision Group, Department Of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - Mikkel Brydegaard
- Department Physics, Lund University, Sölvegatan 14c, 22363 Lund, Sweden
- Department Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
- FaunaPhotonics, Støberigade 14, 2450 Copenhagen, Denmark
- Norsk Elektro Optikk, Østensjøveien 34, 0667 Oslo, Norway
| |
Collapse
|
4
|
Li M, Runemark A, Hernandez J, Rota J, Bygebjerg R, Brydegaard M. Discrimination of Hover Fly Species and Sexes by Wing Interference Signals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304657. [PMID: 37847885 PMCID: PMC10700183 DOI: 10.1002/advs.202304657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/08/2023] [Indexed: 10/19/2023]
Abstract
Remote automated surveillance of insect abundance and diversity is poised to revolutionize insect decline studies. The study reveals spectral analysis of thin-film wing interference signals (WISs) can discriminate free-flying insects beyond what can be accomplished by machine vision. Detectable by photonic sensors, WISs are robust indicators enabling species and sex identification. The first quantitative survey of insect wing thickness and modulation through shortwave-infrared hyperspectral imaging of 600 wings from 30 hover fly species is presented. Fringy spectral reflectance of WIS can be explained by four optical parameters, including membrane thickness. Using a Naïve Bayes Classifier with five parameters that can be retrieved remotely, 91% is achieved accuracy in identification of species and sexes. WIS-based surveillance is therefore a potent tool for remote insect identification and surveillance.
Collapse
Affiliation(s)
- Meng Li
- Department of PhysicsLund UniversitySölvegatan 14cLund22363Sweden
| | - Anna Runemark
- Department of BiologyLund UniversitySölvegatan 35Lund22362Sweden
| | | | - Jadranka Rota
- Biological Museum, Department of BiologyLund UniversitySölvegatan 37Lund22362Sweden
| | - Rune Bygebjerg
- Biological Museum, Department of BiologyLund UniversitySölvegatan 37Lund22362Sweden
| | - Mikkel Brydegaard
- Department of PhysicsLund UniversitySölvegatan 14cLund22363Sweden
- Department of BiologyLund UniversitySölvegatan 35Lund22362Sweden
- Norsk Elektro OptikkØstensjøveien 34Oslo0667Norway
- FaunaPhotonicsStøberigade 14Copenhagen2450Denmark
| |
Collapse
|
5
|
Li Y, Han Z, Nessler R, Yi Z, Hemmer P, Brick R, Sokolov AV, Scully MO. Optical multiband polarimetric modulation sensing for gender and species identification of flying native solitary pollinators. iScience 2023; 26:108265. [PMID: 38026192 PMCID: PMC10654587 DOI: 10.1016/j.isci.2023.108265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/13/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Native pollinators are crucial to local ecosystems but are under threat with the introduction of managed pollinators, e.g., honeybees (Apis mellifera). We explored the feasibility of employing the entomological lidar technique in native pollinator abundance studies. This study included individuals of both genders of three common solitary bee species, Osmia californica, Osmia lignaria, and Osmia ribifloris, native to North America. Properties including optical cross-section, degree of linear polarization, and wingbeat power spectra at all three wavelengths have been extracted from the insect signals collected by a compact stand-off sensing system. These properties are then used in the classification analysis. For species with temporal and spatial overlapping, the highest accuracies of our method exceed 96% (O. ribifloris & O. lignaria) and 93% (O. lignaria & O. californica). The benefit of employing the seasonal activity and foraging preference information in enhancing identification accuracy has been emphasized.
Collapse
Affiliation(s)
- Yiyun Li
- Institute for Quantum Science and Engineering, Department of Physics and Astronomy, Texas, A&M University, College Station, TX 77843–4242, USA
| | - Zehua Han
- Institute for Quantum Science and Engineering, Department of Physics and Astronomy, Texas, A&M University, College Station, TX 77843–4242, USA
| | - Reed Nessler
- Institute for Quantum Science and Engineering, Department of Physics and Astronomy, Texas, A&M University, College Station, TX 77843–4242, USA
| | - Zhenhuan Yi
- Institute for Quantum Science and Engineering, Department of Physics and Astronomy, Texas, A&M University, College Station, TX 77843–4242, USA
| | - Philip Hemmer
- Institute for Quantum Science and Engineering, Department of Physics and Astronomy, Texas, A&M University, College Station, TX 77843–4242, USA
- Department of Electrical & Computer Engineering, Texas, A&M University, College Station, TX 77843–3127, USA
| | - Robert Brick
- Institute for Quantum Science and Engineering, Department of Physics and Astronomy, Texas, A&M University, College Station, TX 77843–4242, USA
| | - Alexei V. Sokolov
- Institute for Quantum Science and Engineering, Department of Physics and Astronomy, Texas, A&M University, College Station, TX 77843–4242, USA
- Department of Physics, Baylor University, Waco, TX 76798, USA
| | - Marlan O. Scully
- Institute for Quantum Science and Engineering, Department of Physics and Astronomy, Texas, A&M University, College Station, TX 77843–4242, USA
- Department of Physics, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
6
|
Saha T, Genoud AP, Williams GM, Thomas BP. Monitoring the abundance of flying insects and atmospheric conditions during a 9-month campaign using an entomological optical sensor. Sci Rep 2023; 13:15606. [PMID: 37731042 PMCID: PMC10511543 DOI: 10.1038/s41598-023-42884-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023] Open
Abstract
Monitoring the dynamics of insect populations is key to assessing the impact of human activities on insect populations. However, traditional methodologies relying on physical traps have inherent limitations in accurately monitoring insect abundance. Here, we present findings from a 9-month campaign conducted in New Jersey, USA, utilizing a near-infrared optical sensor known as eBoss. From April to December 2022, the eBoss derived the aerial density (insect/m3) and biomass density (mg/m3) with a 1-min resolution from a total of 302,093 insect observations. The data collected were analyzed in relation to air temperature, relative humidity, and wind speed. The results revealed that the abundance of flying insects exhibited an initial increase from April to June, reaching a peak of 0.094 insect/m3 and 1.34 mg/m3, followed by a subsequent decline towards the end of the year. Our investigation showed a surge in insect abundance above 12.5 °C, with particularly high levels observed between 19 and 31 °C. The impact of relative humidity and wind speed on insect populations was also explored. Overall, this campaign demonstrated the efficacy of photonic sensors in gathering novel and extensive data for the field of entomology, paving the way for improved understanding and management of insect populations.
Collapse
Affiliation(s)
- Topu Saha
- Department of Physics, New Jersey Institute of Technology, Newark, NJ, USA
| | - Adrien P Genoud
- Institute of Light and Matter, Claude Bernard University, Lyon, France
| | | | - Benjamin P Thomas
- Department of Physics, New Jersey Institute of Technology, Newark, NJ, USA.
| |
Collapse
|
7
|
Müller L, Li M, Månefjord H, Salvador J, Reistad N, Hernandez J, Kirkeby C, Runemark A, Brydegaard M. Remote Nanoscopy with Infrared Elastic Hyperspectral Lidar. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207110. [PMID: 36965063 PMCID: PMC10214245 DOI: 10.1002/advs.202207110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/17/2023] [Indexed: 05/27/2023]
Abstract
Monitoring insects of different species to understand the factors affecting their diversity and decline is a major challenge. Laser remote sensing and spectroscopy offer promising novel solutions to this. Coherent scattering from thin wing membranes also known as wing interference patterns (WIPs) have recently been demonstrated to be species specific. The colors of WIPs arise due to unique fringy spectra, which can be retrieved over long distances. To demonstrate this, a new concept of infrared (950-1650 nm) hyperspectral lidar with 64 spectral bands based on a supercontinuum light source using ray-tracing and 3D printing is developed. A lidar with an unprecedented number of spectral channels, high signal-to-noise ratio, and spatio-temporal resolution enabling detection of free-flying insects and their wingbeats. As proof of principle, coherent scatter from a damselfly wing at 87 m distance without averaging (4 ms recording) is retrieved. The fringed signal properties are used to determine an effective wing membrane thickness of 1412 nm with ±4 nm precision matching laboratory recordings of the same wing. Similar signals from free flying insects (2 ms recording) are later recorded. The accuracy and the method's potential are discussed to discriminate species by capturing coherent features from free-flying insects.
Collapse
Affiliation(s)
- Lauro Müller
- Department of PhysicsLund UniversitySölvegatan 14cLund22363Sweden
| | - Meng Li
- Department of PhysicsLund UniversitySölvegatan 14cLund22363Sweden
| | - Hampus Månefjord
- Department of PhysicsLund UniversitySölvegatan 14cLund22363Sweden
| | - Jacobo Salvador
- Department of PhysicsLund UniversitySölvegatan 14cLund22363Sweden
| | - Nina Reistad
- Department of PhysicsLund UniversitySölvegatan 14cLund22363Sweden
- Centre for Environmental and Climate ScienceLund UniversitySölvegatan 37LundSE‐223 62Sweden
| | | | - Carsten Kirkeby
- Department of Veterinary and Animal SciencesCopenhagen UniversityFrederiksberg1870Denmark
- FaunaPhotonicsStøberigade 14Copenhagen2450Denmark
| | - Anna Runemark
- Department of BiologyLund UniversitySölvegatan 35Lund22362Sweden
| | - Mikkel Brydegaard
- Department of PhysicsLund UniversitySölvegatan 14cLund22363Sweden
- Norsk Elektro Optikk A/SØstensjøveien 34Oslo0667Norway
- FaunaPhotonicsStøberigade 14Copenhagen2450Denmark
- Department of BiologyLund UniversitySölvegatan 35Lund22362Sweden
| |
Collapse
|
8
|
Santos V, Costa-Vera C, Rivera-Parra P, Burneo S, Molina J, Encalada D, Salvador J, Brydegaard M. Dual-Band Infrared Scheimpflug Lidar Reveals Insect Activity in a Tropical Cloud Forest. APPLIED SPECTROSCOPY 2023:37028231169302. [PMID: 37072925 DOI: 10.1177/00037028231169302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We describe an entomological dual-band 808 and 980 nm lidar system which has been implemented in a tropical cloud forest (Ecuador). The system was successfully tested at a sample rate of 5 kHz in a cloud forest during challenging foggy conditions (extinction coefficients up to 20 km-1). At times, the backscattered signal could be retrieved from a distance of 2.929 km. We present insect and bat observations up to 200 m during a single night with an emphasis on fog aspects, potentials, and benefits of such dual-band systems. We demonstrate that the modulation contrast between insects and fog is high in the frequency domain compared to intensity in the time domain, thus allowing for better identification and quantification in misty forests. Oscillatory lidar extinction effects are shown in this work for the first time, caused by the combination of dense fog and large moths partially obstructing the beam. We demonstrate here an interesting case of a moth where left- and right-wing movements induced oscillations in both intensity and pixel spread. In addition, we were able to identify the dorsal and ventral sides of the wings by estimating the corresponding melanization with the dual-band lidar. We demonstrate that the wing beat trajectories in the dual-band parameter space are complementary rather than covarying or redundant, thus a dual-band entomological lidar approach to biodiversity studies is feasible in situ and endows species specificity differentiation. Future improvements are discussed. The introduction of these methodologies opens the door to a wealth of possible experiments to monitor, understand, and safeguard the biological resources of one of the most biodiverse countries on Earth.
Collapse
Affiliation(s)
- Victor Santos
- Departmento de Física, Escuela Politécnica Nacional, Quito
| | | | | | | | - Juan Molina
- Departmento de Física, Escuela Politécnica Nacional, Quito
| | - Diana Encalada
- Departmento de Economía, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja, Ecuador
| | | | - Mikkel Brydegaard
- Department of Physics, Lund University, Lund, Sweden
- Norsk Elektro Optikk AS, Oslo, Norway
| |
Collapse
|
9
|
These 'drab' moths dazzle when the light is right. Nature 2022. [PMID: 35729295 DOI: 10.1038/d41586-022-01714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|