1
|
Levavi L, Bar-On B. How do roses build failure-resistant anchoring tools? PNAS NEXUS 2024; 3:pgae501. [PMID: 39660068 PMCID: PMC11631222 DOI: 10.1093/pnasnexus/pgae501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/25/2024] [Indexed: 12/12/2024]
Abstract
Rose prickles are small-scale, plant-based anchoring tools of multifunctional biomechanical roles, combining physical defense against herbivores and growth support on surrounding objects. By employing multiscale structural observations, nanomechanical characterizations, and finite-element simulations, we unveil that the dog rose (Rosa canina Linnaeus) prickle incorporates structural-mechanical modifications at different length scales, resulting in macroscopic stress-locking effects that provide the prickle extreme damage-resistant capabilities and secure its functional form against catastrophic failures. These functional design strategies, unique to plant-based biomechanical tools, may promote futuristic micro-engineered anchoring platforms for micro-robotics locomotion, biomedical microinjection, and micromechanical systems.
Collapse
Affiliation(s)
- Liat Levavi
- Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Benny Bar-On
- Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
2
|
Zhang B, Baskota B, Anderson PSL. Being thin-skinned can still reduce damage from dynamic puncture. J R Soc Interface 2024; 21:20240311. [PMID: 39439314 PMCID: PMC11496953 DOI: 10.1098/rsif.2024.0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/30/2024] [Accepted: 08/29/2024] [Indexed: 10/25/2024] Open
Abstract
The integumentary system in animals serves as an important line of defence against physiological and mechanical external forces. Over time, integuments have evolved layered structures (scales, cuticle and skin) with high toughness and strength to resist damage and prevent wound expansion. While previous studies have examined their defensive performance under low-rate conditions, the failure response and damage resistance of these thin layers under dynamic biological puncture remain underexplored. Here, we utilize a novel experimental framework to investigate the mechanics of dynamic puncture in both bilayer structures of synthetic tissue-mimicking composite materials and natural skin tissues. Our findings reveal the remarkable efficiency of a thin outer skin layer in reducing the overall extent of dynamic puncture damage. This enhanced damage resistance is governed by interlayer properties through puncture energetics and diminishes in strength at higher puncture rates due to rate-dependent effects in silicone tissue simulants. In addition, natural skin tissues exhibit unique material properties and failure behaviours, leading to superior damage reduction capability compared with synthetic counterparts. These findings contribute to a deeper understanding of the inherent biomechanical complexity of biological puncture systems with layered composite material structures. They lay the groundwork for future comparative studies and bio-inspired applications.
Collapse
Affiliation(s)
- Bingyang Zhang
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, 505 S. Goodwin Avenue, Urbana, IL61801, USA
| | - Bishal Baskota
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, 505 S. Goodwin Avenue, Urbana, IL61801, USA
| | - Philip S. L. Anderson
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, 505 S. Goodwin Avenue, Urbana, IL61801, USA
| |
Collapse
|
3
|
Flaum B, Blumer MJ, Dean MN, Ekstrom LJ. Functional morphology of the pharyngeal teeth of the ocean sunfish, Mola mola. Anat Rec (Hoboken) 2024. [PMID: 39155777 DOI: 10.1002/ar.25531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 08/20/2024]
Abstract
Many fish use a set of pharyngeal jaws in their throat to aid in prey capture and processing, particularly of large or complex prey. In this study-combining dissection, CT scanning, histology, and performance testing-we demonstrate a novel use of pharyngeal teeth in the ocean sunfish (Mola mola), a species for which pharyngeal jaw anatomy had not been described. We show that sunfish possesses only dorsal pharyngeal jaws where, in contrast to their beaklike oral teeth, teeth are recurved spikes, arranged in three loosely connected rows. Fang-like pharyngeal teeth were tightly socketed in the skeletal tissue, with shorter, incompletely-formed teeth erupting between, suggesting tooth replacement. Trichrome staining revealed teeth anchored into their sockets via a combination of collagen bundles originating from the jaw connective tissue and mineralized trabeculae extending from the teeth bases. In resting position, teeth are nearly covered by soft tissue; however, manipulation of a straplike muscle, running transversely on the dorsal jaw face, everted teeth like a cat's claws. Adult sunfish suction feed almost exclusively on gelatinous prey (e.g., jellyfish) and have been observed to jet water during feeding and other activities; flume experiments simulating jetting behavior demonstrated adult teeth caught simulated gelatinous prey with 70%-100% success, with the teeth immobile in their sockets, even at 50x the jetting force, demonstrating high safety factor. We propose that sunfish pharyngeal teeth function as an efficient retention cage for mechanically challenging prey, a curious evolutionary convergence with the throat spikes of divergent taxa that employ spitting and jetting.
Collapse
Affiliation(s)
| | - Michael J Blumer
- Institute of Clinical and Functional Anatomy, Medical University Innsbruck, Innsbruck, Austria
| | - Mason N Dean
- City University of Hong Kong, Kowloon, Hong Kong
| | | |
Collapse
|
4
|
Zhang B, Baskota B, Chabain JJ, Anderson PSL. Curving expectations: The minimal impact of structural curvature in biological puncture mechanics. SCIENCE ADVANCES 2024; 10:eadp8157. [PMID: 39141731 PMCID: PMC11323891 DOI: 10.1126/sciadv.adp8157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/10/2024] [Indexed: 08/16/2024]
Abstract
Living organisms have evolved various biological puncture tools, such as fangs, stingers, and claws, for prey capture, defense, and other critical biological functions. These tools exhibit diverse morphologies, including a wide range of structural curvatures, from straight cactus spines to crescent-shaped talons found in raptors. While the influence of such curvature on the strength of the tool has been explored, its biomechanical role in puncture performance remains untested. Here, we investigate the effect of curvature on puncture mechanics by integrating experiments with finite element simulations. Our findings reveal that within a wide biologically relevant range, structural curvature has a minimal impact on key metrics of damage initiation or the energies required for deep penetration in isotropic and homogeneous target materials. This unexpected result improves our understanding of the biomechanical pressures driving the morphological diversity of curved puncture tools and provides fundamental insights into the crucial roles of curvature in the biomechanical functions of living puncture systems.
Collapse
Affiliation(s)
- Bingyang Zhang
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, 505 S. Goodwin Ave., Urbana 61801, IL, USA
| | - Bishal Baskota
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, 505 S. Goodwin Ave., Urbana 61801, IL, USA
| | - Jules J. Chabain
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, 505 S. Goodwin Ave., Urbana 61801, IL, USA
| | | |
Collapse
|
5
|
Cohen KE, Fitzpatrick AR, Huie JM. Dental Dynamics: A Fast New Tool for Quantifying Tooth and Jaw Biomechanics in 3D Slicer. Integr Org Biol 2024; 6:obae015. [PMID: 39045422 PMCID: PMC11263487 DOI: 10.1093/iob/obae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/07/2024] [Accepted: 05/08/2024] [Indexed: 07/25/2024] Open
Abstract
Teeth reveal how organisms interact with their environment. Biologists have long looked at the diverse form and function of teeth to study the evolution of feeding, fighting, and development. The exponential rise in the quantity and accessibility of computed tomography (CT) data has enabled morphologists to study teeth at finer resolutions and larger macroevolutionary scales. Measuring tooth function is no easy task, in fact, much of our mechanical understanding is derived from dental shape. Categorical descriptors of tooth shape such as morphological homodonty and heterodonty, overlook nuances in function by reducing tooth diversity for comparative analysis. The functional homodonty method quantitatively assesses the functional diversity of whole dentitions from tooth shape. This method uses tooth surface area and position to calculate the transmission of stress and estimates a threshold for functionally homodont teeth through bootstrapping and clustering techniques. However, some vertebrates have hundreds or thousands of teeth and measuring the shape and function of every individual tooth can be a painstaking task. Here, we present Dental Dynamics, a module for 3D Slicer that allows for the fast and precise quantification of dentitions and jaws. The tool automates the calculation of several tooth traits classically used to describe form and function (i.e., aspect ratio, mechanical advantage, force, etc.). To demonstrate the usefulness of our module we used Dental Dynamics to quantify 780 teeth across 20 salamanders that exhibit diverse ecologies. We coupled these data with the functional homodonty method to investigate the hypothesis that arboreal Aneides salamanders have novel tooth functions. Dental Dynamics provides a new and fast way to measure teeth and increases the accessibility of the functional homodonty method. We hope Dental Dynamics will encourage further theoretical and methodological development for quantifying and studying teeth.
Collapse
Affiliation(s)
- K E Cohen
- California State University Fullerton, Biological Science, Fullerton, CA 98231, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- University of Florida, Museum of Natural History, Gainesville, FL 32611, USA
| | - A R Fitzpatrick
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - J M Huie
- Department of Biology, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
6
|
Quan H, Liang X, Zhang X, Meyers MA, McMeeking RM, Arzt E. The shape of Nature's stingers revealed. Proc Natl Acad Sci U S A 2024; 121:e2316320121. [PMID: 38319966 PMCID: PMC10873632 DOI: 10.1073/pnas.2316320121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/06/2023] [Indexed: 02/08/2024] Open
Abstract
Stinger-like structures in living organisms evolved convergently across taxa for both defensive and offensive purposes, with the main goal being penetration and damage. Our observations over a broad range of taxa and sizes, from microscopic radiolarians to narwhals, reveal a self-similar geometry of the stinger extremity: the diameter (d) increases along the distance from the tip (x) following a power law [Formula: see text] , with the tapering exponent varying universally between 2 and 3. We demonstrate, through analytical and experimental mechanics involving three-dimensional (3D) printing, that this geometry optimizes the stinger's performance; it represents a trade-off between the propensity to buckle, for n smaller than 2, and increased penetration force, for n greater than 3. Moreover, we find that this optimal tapering exponent does not depend on stinger size and aspect ratio (base diameter over length). We conclude that for Nature's stingers, composed of biological materials with moduli ranging from hundreds of megapascals to ten gigapascals, the necessity for a power-law contour increases with sharpness to ensure sufficient stability for penetration of skin-like tissues. Our results offer a solution to the puzzle underlying this universal geometric trait of biological stingers and may provide a new strategy to design needle-like structures for engineering or medical applications.
Collapse
Affiliation(s)
- Haocheng Quan
- Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing210023, China
- Institute for New Materials–Leibniz Institute for New Materials, Saarbrücken66123, Germany
| | - Xudong Liang
- School of Science, Harbin Institute of Technology, Shenzhen518055, China
| | - Xuan Zhang
- Department of Advanced Manufacturing and Robotics, College of Engineering, Peking University, Beijing100871, China
| | - Marc A. Meyers
- Department of Nanoengineering, University of California, San Diego, CA92093
| | - Robert M. McMeeking
- Institute for New Materials–Leibniz Institute for New Materials, Saarbrücken66123, Germany
- Departments of Materials and Mechanical Engineering, University of California, Santa Barbara, CA93106
| | - Eduard Arzt
- Institute for New Materials–Leibniz Institute for New Materials, Saarbrücken66123, Germany
- Department of Materials Science and Engineering, Saarland University, Saarbrücken66123, Germany
- Department of Mechanical and Aerospace Engineering, Program in Materials Science and Engineering, University of California, San Diego, CA92093
| |
Collapse
|
7
|
Püffel F, Walthaus OK, Kang V, Labonte D. Biomechanics of cutting: sharpness, wear sensitivity and the scaling of cutting forces in leaf-cutter ant mandibles. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220547. [PMID: 37839449 PMCID: PMC10577030 DOI: 10.1098/rstb.2022.0547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/01/2023] [Indexed: 10/17/2023] Open
Abstract
Herbivores large and small need to mechanically process plant tissue. Their ability to do so is determined by two forces: the maximum force they can generate, and the minimum force required to fracture the plant tissue. The ratio of these forces determines the relative mechanical effort; how this ratio varies with animal size is challenging to predict. We measured the forces required to cut thin polymer sheets with mandibles from leaf-cutter ant workers which vary by more than one order of magnitude in body mass. Cutting forces were independent of mandible size, but differed by a factor of two between pristine and worn mandibles. Mandibular wear is thus likely a more important determinant of cutting force than mandible size. We rationalize this finding with a biomechanical analysis, which suggests that pristine mandibles are ideally 'sharp'-cutting forces are close to a theoretical minimum, which is independent of tool size and shape, and instead solely depends on the geometric and mechanical properties of the cut tissue. The increase of cutting force due to mandibular wear may be particularly problematic for small ants, which generate lower absolute bite forces, and thus require a larger fraction of their maximum bite force to cut the same plant. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.
Collapse
Affiliation(s)
- Frederik Püffel
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - O. K. Walthaus
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Victor Kang
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - David Labonte
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
8
|
Crofts SB, Anderson PSL. How venom pore placement may influence puncture performance in snake fangs. J Exp Biol 2023; 226:jeb245666. [PMID: 37642375 DOI: 10.1242/jeb.245666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
When designing experimental studies, it is important to understand the biological context of the question being asked. For example, many biological puncture experiments embed the puncture tool to a standardized depth based on a percentage of the total tool length, to compare the performance between tools. However, this may not always be biologically relevant to the question being asked. To understand how definitions of penetration depth may influence comparative results, we performed puncture experiments on a series of venomous snake fangs using the venom pore location as a functionally relevant depth standard. After exploring variation in pore placement across snake phylogeny, we compared the work expended during puncture experiments across a set of snake fangs using various depth standards: puncture initiation, penetration to a series of depths defined by the venom pore and penetration to 15% of fang length. Contrary to our hypothesis, we found almost no pattern in pore placement between clades, dietary groups or venom toxicity. Rank correlation statistics of our experimental energetics results showed no difference in the broad comparison of fangs when different puncture depth standards were used. However, pairwise comparisons between fangs showed major shifts in significance patterns between the different depth standards used. These results imply that the interpretation of experimental puncture data will heavily depend upon which depth standard is used during the experiments. Our results illustrate the importance of understanding the biological context of the question being addressed when designing comparative experiments.
Collapse
Affiliation(s)
| | - Philip S L Anderson
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
9
|
Zhang B, Anderson PSL. Investigation of the rate-mediated form-function relationship in biological puncture. Sci Rep 2023; 13:12097. [PMID: 37495672 PMCID: PMC10372153 DOI: 10.1038/s41598-023-39092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
Puncture is a vital mechanism for survival in a wide range of organisms across phyla, serving biological functions such as prey capture, defense, and reproduction. Understanding how the shape of the puncture tool affects its functional performance is crucial to uncovering the mechanics underlying the diversity and evolution of puncture-based systems. However, such form-function relationships are often complicated by the dynamic nature of living systems. Puncture systems in particular operate over a wide range of speeds to penetrate biological tissues. Current studies on puncture biomechanics lack systematic characterization of the complex, rate-mediated, interaction between tool and material across this dynamic range. To fill this knowledge gap, we establish a highly controlled experimental framework for dynamic puncture to investigate the relationship between the puncture performance (characterized by the depth of puncture) and the tool sharpness (characterized by the cusp angle) across a wide range of bio-relevant puncture speeds (from quasi-static to [Formula: see text] 50 m/s). Our results show that the sensitivity of puncture performance to variations in tool sharpness reduces at higher puncture speeds. This trend is likely due to rate-based viscoelastic and inertial effects arising from how materials respond to dynamic loads. The rate-dependent form-function relationship has important biological implications: While passive/low-speed puncture organisms likely rely heavily on sharp puncture tools to successfully penetrate and maintain functionalities, higher-speed puncture systems may allow for greater variability in puncture tool shape due to the relatively geometric-insensitive puncture performance, allowing for higher adaptability during the evolutionary process to other mechanical factors.
Collapse
Affiliation(s)
- Bingyang Zhang
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Philip S L Anderson
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|