1
|
Smith AM, Flammang P. Analysis of the adhesive secreting cells of Arion subfuscus: insights into the role of microgels in a tough, fast-setting hydrogel glue. SOFT MATTER 2024; 20:4669-4680. [PMID: 38563822 DOI: 10.1039/d4sm00071d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The slug Arion subfuscus produces a tough, highly adhesive defensive secretion. This secretion is a flexible hydrogel that is toughened by a double network mechanism. While synthetic double network gels typically require extensive time to prepare, this slug creates a tough gel in seconds. To gain insight into how the glue forms a double-network hydrogel so rapidly, the secretory apparatus of this slug was analyzed. The goal was to determine how the major components of the glue were distributed and mixed. Most of the glue comes from two types of large unicellular glands; one secretes polyanionic polysaccharides in small, membrane-bound packets, the other secretes proteins that appear to form a cross-linked network. The latter gland shows distinct regions where cross-linking appears to be occurring. These regions are darker, more homogeneous and appear more solid than the rest of the secretory material. The enzyme catalase is highly abundant in these regions, as are basic proteins. These results suggest that a rapid oxidation event occurs in this protein-containing gland, triggering cross-linking before the glue is released. The cross-linked microgels would then join together after secretion to form a granular hydrogel. The polysaccharide-filled packets would be mixed and interspersed among these microgels and may contribute to joining them together. This is an unexpected and highly effective way to form a tough gel rapidly.
Collapse
Affiliation(s)
- Andrew M Smith
- Department of Biology, Ithaca College, Ithaca, NY 14850, USA.
| | - Patrick Flammang
- Biology of Marine Organisms and Biomimetics Unit, Research Institute for Biosciences, University of Mons, Mons 7000, Belgium
| |
Collapse
|
2
|
Chetruengchai W, Jirapatrasilp P, Srichomthong C, Assawapitaksakul A, Pholyotha A, Tongkerd P, Shotelersuk V, Panha S. De novo genome assembly and transcriptome sequencing in foot and mantle tissues of Megaustenia siamensis reveals components of adhesive substances. Sci Rep 2024; 14:13756. [PMID: 38877053 PMCID: PMC11178922 DOI: 10.1038/s41598-024-64425-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
The semislug Megaustenia siamensis, commonly found in Thailand, is notable for its exceptional capacity to produce biological adhesives, enabling it to adhere to tree leaves even during heavy rainfall. In this study, we generated the first reference genome for M. siamensis using a combination of three sequencing technologies: Illumina's short-read, Pac-Bio's HIFI long-read, and Hi-C. The assembled genome size was 2593 billion base pairs (bp), containing 34,882 protein-coding genes. Our analysis revealed positive selection in pathways associated with the ubiquitin-proteasome system. Furthermore, RNA sequencing of foot and mantle tissues unveiled the primary constituents of the adhesive, including lectin-like proteins (C-lectin, H-lectin, and C1q) and matrilin-like proteins (VWA and EGF). Additionally, antimicrobial peptides were identified. The comprehensive M. siamensis genome and tissue-specific transcriptomic data provided here offer valuable resources for understanding its biology and exploring potential medical applications.
Collapse
Affiliation(s)
- Wanna Chetruengchai
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Parin Jirapatrasilp
- Animal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chalurmpon Srichomthong
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Adjima Assawapitaksakul
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Arthit Pholyotha
- Animal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Piyoros Tongkerd
- Animal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand.
| | - Somsak Panha
- Animal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, 10300, Thailand
| |
Collapse
|
3
|
Bektas S, Kaptan E. Microbial lectins as a potential therapeutics for the prevention of certain human diseases. Life Sci 2024; 346:122643. [PMID: 38614308 DOI: 10.1016/j.lfs.2024.122643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Lectins are protein or glycoprotein molecules with a specific ability to bind to carbohydrates. From viruses to mammals, they are found in various organisms and exhibit remarkable diverse structures and functions. They are significant contributors to defense mechanisms against microbial attacks in plants. They are also involved in functions such as controlling lymphocyte migration, regulating glycoprotein biosynthesis, cell-cell recognition, and embryonic development in animals. In addition, lectins serve as invaluable molecular tools in various biological and medical disciplines due to their reversible binding ability and enable the monitoring of cell membrane changes in physiological and pathological contexts. Microbial lectins, often referred to as adhesins, play an important role in microbial colonization, pathogenicity, and interactions among microorganisms. Viral lectins are located in the bilayered viral membrane, whereas bacterial lectins are found intracellularly and on the bacterial cell surface. Microfungal lectins are typically intracellular and have various functions in host-parasite interaction, and in fungal growth and morphogenesis. Although microbial lectin studies are less extensive than those of plants and animals, they provide insights into the infection mechanisms and potential interventions. Glycan specificity, essential functions in infectious diseases, and applications in the diagnosis and treatment of viral and bacterial infections are critical aspects of microbial lectin research. In this review, we will discuss the application and therapeutic potential of viral, bacterial and microfungal lectins.
Collapse
Affiliation(s)
- Suna Bektas
- Institute of Graduate Studies in Sciences, Istanbul University, Istanbul 34116, Turkey.
| | - Engin Kaptan
- Istanbul University, Faculty of Science Department of Biology, 34134 Vezneciler, Istanbul, Turkey.
| |
Collapse
|