1
|
De Falco F, Cutarelli A, Leonardi L, Marcus I, Roperto S. Vertical Intrauterine Bovine and Ovine Papillomavirus Coinfection in Pregnant Cows. Pathogens 2024; 13:453. [PMID: 38921751 PMCID: PMC11206582 DOI: 10.3390/pathogens13060453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
There is very little information available about transplacental infections by the papillomavirus in ruminants. However, recent evidence has emerged of the first report of vertical infections of bovine papillomavirus (BPV) in fetuses from naturally infected, pregnant cows. This study reports the coinfection of BPV and ovine papillomavirus (OaPV) in bovine fetuses from infected pregnant cows suffering from bladder tumors caused by simultaneous, persistent viral infections. Some molecular mechanisms involving the binary complex composed of Eras and platelet-derived growth factor β receptor (PDGFβR), by which BPVs and OaPVs contribute to reproductive disorders, have been investigated. A droplet digital polymerase chain reaction (ddPCR) was used to detect and quantify the nucleic acids of the BPVs of the Deltapapillomavirus genus (BPV1, BPV2, BPV13, and BPV14) and OaPVs belonging to the Deltapapillomavirus (OaPV1, OaPV2, and OaPV4) and Dyokappapapillomavirus (OaPV3) genera in the placenta and fetal organs (heart, lung, liver, and kidneys) of four bovine fetuses from four pregnant cows with neoplasia of the urinary bladder. A papillomaviral evaluation was also performed on the bladder tumors and peripheral blood of these pregnant cows. In all fetal and maternal samples, the genotype distribution of BPVs and OaPVs were evaluated using both their DNA and RNA. A BPV and OaPV coinfection was seen in bladder tumors, whereas only BPV infection was found in peripheral blood. The genotype distribution of both the BPVs and OaPVs detected in placentas and fetal organs indicated a stronger concordance with the viral genotypes detected in bladder tumors rather than in peripheral blood. This suggests that the viruses found in placentas and fetuses may have originated from infected bladders. Our study highlights the likelihood of vertical infections with BPVs and OaPVs and emphasizes the importance of gaining further insights into the mechanisms and consequences of this exposure. This study warrants further research as adverse pregnancy outcomes are a major source of economic losses in cattle breeding.
Collapse
Affiliation(s)
- Francesca De Falco
- Dipartimento di Medicina Veterinaria e delle Produzioni Animali, Università degli Studi di Napoli Federico II, 80137 Naples, Italy;
- Area Science Park, Campus di Baronissi, Università degli Studi di Salerno, 84081 Baronissi, Italy
| | - Anna Cutarelli
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy;
| | - Leonardo Leonardi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, 06126 Perugia, Italy;
| | - Ioan Marcus
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400000 Cluj-Napoca, Romania;
| | - Sante Roperto
- Dipartimento di Medicina Veterinaria e delle Produzioni Animali, Università degli Studi di Napoli Federico II, 80137 Naples, Italy;
| |
Collapse
|
2
|
De Falco F, Perillo A, Del Piero F, Del Prete C, Zizzo N, Marcus I, Roperto S. ERAS Is Constitutively Expressed in the Tissues of Adult Horses and May Be a Key Player in Basal Autophagy. Front Vet Sci 2022; 9:818294. [PMID: 35685342 PMCID: PMC9171053 DOI: 10.3389/fvets.2022.818294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/03/2022] [Indexed: 01/18/2023] Open
Abstract
ERas is a new gene of the Ras family found in murine embryonic stem (ES) cells. Its human ortholog is not expressed in human ES cells. So far ERas gene has only been found to be expressed in the tissues of adult cynomolgus monkeys and cattle; however, information about ERAS expression or its potential functions in equine tissues is lacking. This study was performed to investigate whether Eras is an equine functional gene and whether ERAS is expressed in the tissues of adult horses and determine its potential physiological role. Expression of the ERas gene was detected in all examined adult tissues, and the RT-PCR assay revealed ERAS transcripts. Protein expression was also detected by Western blot analysis. Quantitative real time RT-qPCR analysis revealed that different expression levels of ERAS transcripts were most highly expressed in the testis. Immunohistochemically, ERAS was found to be localized prevalently in the plasmatic membrane as well as cytoplasm of the cells. ERAS was a physical partner of activated PDGFβR leading to the AKT signaling. ERAS was found to interact with a network of proteins (BAG3, CHIP, Hsc70/Hsp70, HspB8, Synpo2, and p62) known to play a role in the chaperone-assisted selective autophagy (CASA), which is also known as BAG3-mediated selective macroautophagy, an adaptive mechanism to maintain cellular homeostasis. Furthermore, ERAS was found to interact with parkin. PINK1, BNIP3, laforin. All these proteins are known to play a role in parkin-dependent and -independent mitophagy. This is the first study demonstrating that Eras is a functional gene, and that ERAS is constitutively expressed in the tissues of adult horses. ERAS appears to play a physiological role in cellular proteostasis maintenance, thus mitigating the proteotoxicity of accumulated misfolded proteins and contributing to protection against disease. Finally, it is conceivable that activation of AKT pathway by PDGFRs promotes actin reorganization, directed cell movements, stimulation of cell growth.
Collapse
Affiliation(s)
- Francesca De Falco
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Antonella Perillo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Fabio Del Piero
- Department of Pathobiological Sciences and Louisiana Animal Disease Diagnostic Laboratory-LADDL, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Chiara Del Prete
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Nicola Zizzo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari “Aldo Moro”, Bari, Italy
| | - Ioan Marcus
- Pathology Department, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Sante Roperto
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- *Correspondence: Sante Roperto ; orcid.org/0000-0001-6210-5519
| |
Collapse
|
3
|
Quan Y, Wang M, Xu C, Wang X, Wu Y, Qin D, Lin Y, Lu X, Lu F, Li L. Cnot8 eliminates naïve regulation networks and is essential for naïve-to-formative pluripotency transition. Nucleic Acids Res 2022; 50:4414-4435. [PMID: 35390160 PMCID: PMC9071485 DOI: 10.1093/nar/gkac236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 03/11/2022] [Accepted: 03/26/2022] [Indexed: 11/14/2022] Open
Abstract
Mammalian early epiblasts at different phases are characterized by naïve, formative, and primed pluripotency states, involving extensive transcriptome changes. Here, we report that deadenylase Cnot8 of Ccr4-Not complex plays essential roles during the transition from naïve to formative state. Knock out (KO) Cnot8 resulted in early embryonic lethality in mice, but Cnot8 KO embryonic stem cells (ESCs) could be established. Compared with the cells differentiated from normal ESCs, Cnot8 KO cells highly expressed a great many genes during their differentiation into the formative state, including several hundred naïve-like genes enriched in lipid metabolic process and gene expression regulation that may form the naïve regulation networks. Knockdown expression of the selected genes of naïve regulation networks partially rescued the differentiation defects of Cnot8 KO ESCs. Cnot8 depletion led to the deadenylation defects of its targets, increasing their poly(A) tail lengths and half-life, eventually elevating their expression levels. We further found that Cnot8 was involved in the clearance of targets through its deadenylase activity and the binding of Ccr4-Not complex, as well as the interacting with Tob1 and Pabpc1. Our results suggest that Cnot8 eliminates naïve regulation networks through mRNA clearance, and is essential for naïve-to-formative pluripotency transition.
Collapse
Affiliation(s)
- Yujun Quan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meijiao Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengpeng Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxiao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dandan Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuxuan Lin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xukun Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Falong Lu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Stem Cell and Regeneration, Beijing Institute of Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
ERAS, a Member of the Ras Superfamily, Acts as an Oncoprotein in the Mammary Gland. Cancers (Basel) 2021; 13:cancers13215588. [PMID: 34771750 PMCID: PMC8582886 DOI: 10.3390/cancers13215588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The genes of the RAS family are among the group of genes most frequently mutated in human cancer. ERAS is a relatively unknown gene of this family. Although ERAS is overexpressed in some tumoral samples and in several cancer cell lines of human origin, it is not known if its expression drives tumor formation or if, alternatively, its expression is a secondary event in tumoral transformation. In this report, in order to clarify the role of ERAS in mammary tumorigenesis, we studied transgenic mice expressing ERAS in myoepithelial cells of mammary and other exocrine glands and in basal cells of stratified epithelia. These mice displayed an altered development and function of the mammary glands, and suffered high-frequency tumoral lesions in the mammary glands resembling a rare human breast tumor named malignant adenomyoepithelioma. Our results clearly demonstrate that ERAS is a true oncogene able to produce mammary tumors when inappropriately expressed. Abstract ERAS is a relatively uncharacterized gene of the Ras superfamily. It is expressed in ES cells and in the first stages of embryonic development; later on, it is silenced in the majority of cell types and tissues. Although there are several reports showing ERAS expression in tumoral cell lines and human tumor samples, it is unknown if ERAS deregulated expression is enough to drive tumor development. In this report, we have generated transgenic mice expressing ERAS in myoepithelial basal cells of the mammary gland and in basal cells of stratified epithelia. In spite of the low level of ERAS expression, these transgenic mice showed phenotypic alterations resembling overgrowth syndromes caused by the activation of the AKT-PI3K pathway. In addition, their mammary glands present developmental and functional disabilities accompanied by morphological and biochemical alterations in the myoepithelial cells. These mice suffer from tumoral transformation in the mammary glands with high incidence. These mammary tumors resemble, both histologically and by the expression of differentiation markers, malignant adenomyoepitheliomas. In sum, our results highlight the importance of ERAS silencing in adult tissues and define a truly oncogenic role for ERAS in mammary gland cells when inappropriately expressed.
Collapse
|
5
|
Okamoto K, Watanabe TM, Horie M, Nishiyama M, Harada Y, Fujita H. Pressure-induced changes on the morphology and gene expression in mammalian cells. Biol Open 2021; 10:270921. [PMID: 34258610 PMCID: PMC8325925 DOI: 10.1242/bio.058544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 06/07/2021] [Indexed: 01/07/2023] Open
Abstract
We evaluated the effect of high hydrostatic pressure on mouse embryonic fibroblasts (MEFs) and mouse embryonic stem (ES) cells. Hydrostatic pressures of 15, 30, 60, and 90 MPa were applied for 10 min, and changes in gene expression were evaluated. Among genes related to mechanical stimuli, death-associated protein 3 was upregulated in MEF subjected to 90 MPa pressure; however, other genes known to be upregulated by mechanical stimuli did not change significantly. Genes related to cell differentiation did not show a large change in expression. On the other hand, genes related to pluripotency, such as Oct4 and Sox2, showed a twofold increase in expression upon application of 60 MPa hydrostatic pressure for 10 min. Although these changes did not persist after overnight culture, cells that were pressurized to 15 MPa showed an increase in pluripotency genes after overnight culture. When mouse ES cells were pressurized, they also showed an increase in the expression of pluripotency genes. These results show that hydrostatic pressure activates pluripotency genes in mammalian cells. This article has an associated First Person interview with the first author of the paper. Summary: Application of high hydrostatic pressure on somatic cells induce changes in gene expression including upregulation in pluripotency genes.
Collapse
Affiliation(s)
- Kazuko Okamoto
- RIKEN Center for Biosystems Dynamics Research, Laboratory for Comprehensive Bioimaging, Kobe, Hyogo 650-0047, Japan
| | - Tomonobu M Watanabe
- RIKEN Center for Biosystems Dynamics Research, Laboratory for Comprehensive Bioimaging, Kobe, Hyogo 650-0047, Japan.,Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Hiroshima 734-8553, Japan
| | - Masanobu Horie
- Radioisotope Research Center, Division of biochemical engineering, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Masayoshi Nishiyama
- Department of Physics, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Yoshie Harada
- Institute for Protein Research, Laboratory of Nanobiology, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hideaki Fujita
- RIKEN Center for Biosystems Dynamics Research, Laboratory for Comprehensive Bioimaging, Kobe, Hyogo 650-0047, Japan.,Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Hiroshima 734-8553, Japan
| |
Collapse
|
6
|
Wang X, Xiang Y, Yu Y, Wang R, Zhang Y, Xu Q, Sun H, Zhao ZA, Jiang X, Wang X, Lu X, Qin D, Quan Y, Zhang J, Shyh-Chang N, Wang H, Jing N, Xie W, Li L. Formative pluripotent stem cells show features of epiblast cells poised for gastrulation. Cell Res 2021; 31:526-541. [PMID: 33608671 PMCID: PMC8089102 DOI: 10.1038/s41422-021-00477-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/22/2021] [Indexed: 01/29/2023] Open
Abstract
The pluripotency of mammalian early and late epiblast could be recapitulated by naïve embryonic stem cells (ESCs) and primed epiblast stem cells (EpiSCs), respectively. However, these two states of pluripotency may not be sufficient to reflect the full complexity and developmental potency of the epiblast during mammalian early development. Here we report the establishment of self-renewing formative pluripotent stem cells (fPSCs) which manifest features of epiblast cells poised for gastrulation. fPSCs can be established from different mouse ESCs, pre-/early-gastrula epiblasts and induced PSCs. Similar to pre-/early-gastrula epiblasts, fPSCs show the transcriptomic features of formative pluripotency, which are distinct from naïve ESCs and primed EpiSCs. fPSCs show the unique epigenetic states of E6.5 epiblast, including the super-bivalency of a large set of developmental genes. Just like epiblast cells immediately before gastrulation, fPSCs can efficiently differentiate into three germ layers and primordial germ cells (PGCs) in vitro. Thus, fPSCs highlight the feasibility of using PSCs to explore the development of mammalian epiblast.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- grid.410726.60000 0004 1797 8419State Key Laboratory of Stem Cell and Reproductive Biology, Innovation Academy for Stem Cell and Regeneration, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yunlong Xiang
- grid.203458.80000 0000 8653 0555Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016 China
| | - Yang Yu
- grid.410726.60000 0004 1797 8419State Key Laboratory of Stem Cell and Reproductive Biology, Innovation Academy for Stem Cell and Regeneration, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Ran Wang
- grid.9227.e0000000119573309State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Yu Zhang
- grid.12527.330000 0001 0662 3178Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Qianhua Xu
- grid.12527.330000 0001 0662 3178Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Hao Sun
- grid.410726.60000 0004 1797 8419State Key Laboratory of Stem Cell and Reproductive Biology, Innovation Academy for Stem Cell and Regeneration, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Zhen-Ao Zhao
- grid.410726.60000 0004 1797 8419State Key Laboratory of Stem Cell and Reproductive Biology, Innovation Academy for Stem Cell and Regeneration, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xiangxiang Jiang
- grid.410726.60000 0004 1797 8419State Key Laboratory of Stem Cell and Reproductive Biology, Innovation Academy for Stem Cell and Regeneration, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xiaoqing Wang
- grid.410726.60000 0004 1797 8419State Key Laboratory of Stem Cell and Reproductive Biology, Innovation Academy for Stem Cell and Regeneration, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xukun Lu
- grid.410726.60000 0004 1797 8419State Key Laboratory of Stem Cell and Reproductive Biology, Innovation Academy for Stem Cell and Regeneration, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Dandan Qin
- grid.410726.60000 0004 1797 8419State Key Laboratory of Stem Cell and Reproductive Biology, Innovation Academy for Stem Cell and Regeneration, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yujun Quan
- grid.410726.60000 0004 1797 8419State Key Laboratory of Stem Cell and Reproductive Biology, Innovation Academy for Stem Cell and Regeneration, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jiaqi Zhang
- grid.410726.60000 0004 1797 8419State Key Laboratory of Stem Cell and Reproductive Biology, Innovation Academy for Stem Cell and Regeneration, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Ng Shyh-Chang
- grid.410726.60000 0004 1797 8419State Key Laboratory of Stem Cell and Reproductive Biology, Innovation Academy for Stem Cell and Regeneration, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Hongmei Wang
- grid.410726.60000 0004 1797 8419State Key Laboratory of Stem Cell and Reproductive Biology, Innovation Academy for Stem Cell and Regeneration, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| | - Naihe Jing
- grid.9227.e0000000119573309State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031 China ,grid.9227.e0000000119573309Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530 China
| | - Wei Xie
- grid.12527.330000 0001 0662 3178Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Lei Li
- grid.410726.60000 0004 1797 8419State Key Laboratory of Stem Cell and Reproductive Biology, Innovation Academy for Stem Cell and Regeneration, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
7
|
Miura K, Oiwa Y, Kawamura Y. Induced Pluripotent Stem Cells from Cancer-Resistant Naked Mole-Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:329-339. [PMID: 34424523 DOI: 10.1007/978-3-030-65943-1_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Stem cells play essential roles in the development and tissue homeostasis of animals and are closely associated with carcinogenesis and aging. Also, the somatic cell reprogramming process to induced pluripotent stem (iPS) cells shares several characteristics with carcinogenesis. In this chapter, we focus on iPS cells and the reprogramming process of somatic cells in the naked mole-rat (NMR), the longest-living rodent with remarkable cancer resistance capabilities. NMR somatic cells show resistance to reprogramming induction, and generated NMR-iPS cells have a unique tumor-resistant phenotype. This phenotype is regulated by expressional activation of the tumor suppressor ARF gene and loss-of-function mutation in oncogene ERAS. Notably, it was also found that NMR somatic cells undergo senescence when ARF is suppressed during reprogramming, which would contribute to the resistance to both reprogramming and cancer in NMR somatic cells. Further studies on reprogramming resistance in NMR somatic cells and their concomitant tumor resistance in NMR-iPS cells would contribute to a better understanding of both cancer resistance and delayed aging in NMRs. In addition, NMR-iPS cells can be used as a new and important cell source for advancing research concerning several extraordinary physiological characteristics of NMR. Furthermore, study of NMR-iPS cells could lead to the development of safer regenerative therapies in the future.
Collapse
Affiliation(s)
- Kyoko Miura
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan. .,Biomedical Animal Research Laboratory, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan.
| | - Yuki Oiwa
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,Biomedical Animal Research Laboratory, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshimi Kawamura
- Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.,Biomedical Animal Research Laboratory, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
Miao S, Zhao D, Wang X, Ni X, Fang X, Yu M, Ye L, Yang J, Wu H, Han X, Qu L, Li L, Lan F, Shen Z, Lei W, Zhao ZA, Hu S. Retinoic acid promotes metabolic maturation of human Embryonic Stem Cell-derived Cardiomyocytes. Theranostics 2020; 10:9686-9701. [PMID: 32863954 PMCID: PMC7449904 DOI: 10.7150/thno.44146] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022] Open
Abstract
Cardiomyocytes differentiated from human embryonic stem cells (hESCs) represent a promising cell source for heart repair, disease modeling and drug testing. However, improving the differentiation efficiency and maturation of hESC-derived cardiomyocytes (hESC-CMs) is still a major concern. Retinoic acid (RA) signaling plays multiple roles in heart development. However, the effects of RA on cardiomyocyte differentiation efficiency and maturation are still unknown. Methods: RA was added at different time intervals to identify the best treatment windows for cardiomyocyte differentiation and maturation. The efficiency of cardiomyocyte differentiation was detected by quantitative real-time PCR and flow cytometry. Cardiomyocytes maturation was detected by immunofluorescence staining, metabolic assays and patch clamp to verify structural, metabolic and electrophysiological maturation, respectively. RNA sequencing was used for splicing analysis. Results: We found that RA treatment at the lateral mesoderm stage (days 2-4) significantly improved cardiomyocyte differentiation, as evidenced by the upregulation of TNNT2, NKX2.5 and MYH6 on day 10 of differentiation. In addition, flow cytometry showed that the proportion of differentiated cardiomyocytes in the RA-treated group was significantly higher than that in control group. RA treatment on days 15-20 increased cardiomyocyte area, sarcomere length, multinucleation and mitochondrial copy number. RNA sequencing revealed RA promoted RNA isoform switch to the maturation-related form. Meanwhile, RA promoted electrophysiological maturation and calcium handling of hESC-CMs. Importantly, RA-treated cardiomyocytes showed decreased glycolysis and enhanced mitochondrial oxidative phosphorylation, with the increased utilization of fatty acid and exogenous pyruvate but not glutamine. Conclusion: Our data indicated that RA treatment at an early time window (days 2-4) promotes the efficiency of cardiomyocyte differentiation and that RA treatment post beating (days 15-20) promotes cardiomyocyte maturation. The biphasic effects of RA provide new insights for improving cardiomyocyte differentiation and quality.
Collapse
|
9
|
Zhao ZA, Han X, Lei W, Li J, Yang Z, Wu J, Yao M, Lu XA, He L, Chen Y, Zhou B, Hu S. Lack of Cardiac Improvement After Cardiosphere-Derived Cell Transplantation in Aging Mouse Hearts. Circ Res 2019; 123:e21-e31. [PMID: 30359191 DOI: 10.1161/circresaha.118.313005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RATIONALE Aging is one of the most significant risk factors for cardiovascular diseases, and the incidence of myocardial ischemia increases dramatically with age. Some studies have reported that cardiosphere-derived cells (CDCs) could benefit the injured heart. Nevertheless, the convincing evidence on CDC-induced improvement of aging heart is still limited. OBJECTIVE In this study, we tested whether the CDCs isolated from neonatal mice could benefit cardiac function in aging mice. METHODS AND RESULTS We evaluated cardiac function of PBS- (n=15) and CDC-injected (n=19) aging mice. Echocardiography indicated that left ventricular (LV) ejection fraction (57.46%±3.57% versus 57.86%±2.44%) and LV fraction shortening (30.67%±2.41% versus 30.51%±1.78%) showed similar values in PBS- and CDC-injected mice. The diastolic wall thickness of LV was significantly increased after CDC injection, resulting in reduced diastolic LV volume. The pulse-wave Doppler and tissue Doppler imaging indicated that aging mice receiving PBS or CDC injection presented similar values of the peak early transmitral flow velocity, the peak late transmitral flow velocity, the ratio of the peak early transmitral flow velocity to the peak late transmitral flow velocity, and the ratio of the peak early transmitral flow velocity to the peak early diastolic mitral annular velocity, respectively. Pressure-volume loop experiment indicated that the LV end-diastolic pressure-volume relationship and end-systolic pressure-volume relationship were comparable in both PBS- and CDC-injected mice. Postmortem analysis of aging mouse hearts showed similar fibrotic degree in the 2 groups. In addition, the aging markers showed comparable expression levels in both PBS- and CDC-injected mice. The systemic aging performance measures, including exercise capacity, hair regrowth capacity, and inflammation, showed no significant improvement in CDC-injected mice. Finally, the telomere length was comparable between PBS- and CDC-injected mice. CONCLUSIONS Together, these results indicate that CDCs do not improve heart function and systemic performances in aging mice.
Collapse
Affiliation(s)
- Zhen-Ao Zhao
- From the Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College (Z.-A.Z., X.H., W.L., J.L., Z.Y., J.W., X.-A.L., Y.C., S.H.), Soochow University, Suzhou, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Medical College (Z.-A.Z., X.H., W.L., J.L., Y.C., S.H.), Soochow University, Suzhou, China
| | - Xinglong Han
- From the Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College (Z.-A.Z., X.H., W.L., J.L., Z.Y., J.W., X.-A.L., Y.C., S.H.), Soochow University, Suzhou, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Medical College (Z.-A.Z., X.H., W.L., J.L., Y.C., S.H.), Soochow University, Suzhou, China
| | - Wei Lei
- From the Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College (Z.-A.Z., X.H., W.L., J.L., Z.Y., J.W., X.-A.L., Y.C., S.H.), Soochow University, Suzhou, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Medical College (Z.-A.Z., X.H., W.L., J.L., Y.C., S.H.), Soochow University, Suzhou, China
| | - Jingjing Li
- From the Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College (Z.-A.Z., X.H., W.L., J.L., Z.Y., J.W., X.-A.L., Y.C., S.H.), Soochow University, Suzhou, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Medical College (Z.-A.Z., X.H., W.L., J.L., Y.C., S.H.), Soochow University, Suzhou, China
| | - Zhuangzhuang Yang
- From the Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College (Z.-A.Z., X.H., W.L., J.L., Z.Y., J.W., X.-A.L., Y.C., S.H.), Soochow University, Suzhou, China
| | - Jie Wu
- From the Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College (Z.-A.Z., X.H., W.L., J.L., Z.Y., J.W., X.-A.L., Y.C., S.H.), Soochow University, Suzhou, China
| | - Mengchao Yao
- School of Life Science, Shanghai University, China (M.Y.)
| | - Xing-Ai Lu
- From the Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College (Z.-A.Z., X.H., W.L., J.L., Z.Y., J.W., X.-A.L., Y.C., S.H.), Soochow University, Suzhou, China
| | - Lingjuan He
- the State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences (L.H., B.Z.)
| | - Yihuan Chen
- From the Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College (Z.-A.Z., X.H., W.L., J.L., Z.Y., J.W., X.-A.L., Y.C., S.H.), Soochow University, Suzhou, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Medical College (Z.-A.Z., X.H., W.L., J.L., Y.C., S.H.), Soochow University, Suzhou, China
| | - Bin Zhou
- the State Key Laboratory of Cell Biology, CAS Center for Excellence on Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences (L.H., B.Z.)
| | - Shijun Hu
- From the Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College (Z.-A.Z., X.H., W.L., J.L., Z.Y., J.W., X.-A.L., Y.C., S.H.), Soochow University, Suzhou, China.,Key Laboratory of Stem Cells and Biomedical Materials of Jiangsu Province and Chinese Ministry of Science and Technology, Medical College (Z.-A.Z., X.H., W.L., J.L., Y.C., S.H.), Soochow University, Suzhou, China
| |
Collapse
|
10
|
Li F, Ding J. Sialylation is involved in cell fate decision during development, reprogramming and cancer progression. Protein Cell 2019; 10:550-565. [PMID: 30478534 PMCID: PMC6626595 DOI: 10.1007/s13238-018-0597-5] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 10/31/2018] [Indexed: 01/01/2023] Open
Abstract
Sialylation, or the covalent addition of sialic acid to the terminal end of glycoproteins, is a biologically important modification that is involved in embryonic development, neurodevelopment, reprogramming, oncogenesis and immune responses. In this review, we have given a comprehensive overview of the current literature on the involvement of sialylation in cell fate decision during development, reprogramming and cancer progression. Sialylation is essential for early embryonic development and the deletion of UDP-GlcNAc 2-epimerase, a rate-limiting enzyme in sialic acid biosynthesis, is embryonically lethal. Furthermore, the sialyltransferase ST6GAL1 is required for somatic cell reprogramming, and its downregulation is associated with decreased reprogramming efficiency. In addition, sialylation levels and patterns are altered during cancer progression, indicating the potential of sialylated molecules as cancer biomarkers. Taken together, the current evidences demonstrate that sialylation is involved in crucial cell fate decision.
Collapse
Affiliation(s)
- Fenjie Li
- Program in Stem Cell and Regenerative Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Junjun Ding
- Program in Stem Cell and Regenerative Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
11
|
Zhang J, Chen Y, Gao M, Wang Z, Liu R, Xia T, Liu S. Silver Nanoparticles Compromise Female Embryonic Stem Cell Differentiation through Disturbing X Chromosome Inactivation. ACS NANO 2019; 13:2050-2061. [PMID: 30650303 DOI: 10.1021/acsnano.8b08604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The widespread use of silver nanoparticles (AgNPs) has raised substantial health risks to human beings. Despite a wealth of progress on toxicity studies, the understanding of the adverse effects on fetuses, embryos, and early stage cells is still rather limited, particularly under low-dose exposure settings. Moreover, nearly all previous studies ascribed AgNP-induced toxic effects to oxidative stress. Differently, we here unearthed a mechanism, namely, interruption of X chromosome inactivation (XCI) in female mouse embryonic stem cells (mESCs). Albeit with no observable cytotoxicity, significant differentiation retardation was found in female mESCs upon low-dose AgNP exposure. Mechanistic investigations uncovered expedited inactivation for the inactive X chromosome (Xi) and attenuated maintenance of the active X chromosome (Xa) state during mESC differentiation upon the challenge of low-dose AgNPs, indicative of disordered XCI. Thereby, a few X-linked genes (which are closely involved in orchestrating ESC differentiation) were found to be repressed, partially attributable to reinforced enrichment of histone modification ( e. g., histone 3 lysine 27 trimethylation, H3K27me3) on their promoter regions, as the result of disordered XCI. In stark contrast to female mESCs, no impairment of differentiation was observed in male mESCs under low-dose AgNP exposure. All considered, our data unearthed that AgNPs at low concentrations compromised the differentiation program of female mESCs through disturbing XCI. Thus, this work would provide a model for the type of studies necessary to advance the understandings on AgNP-induced developmental toxicity.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yongjiu Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhe Wang
- School of Public Health , Xinxiang Medical University , Xinxiang , Henan Province 453003 , China
| | - Rui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Tian Xia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
- Division of NanoMedicine, Department of Medicine , University of California Los Angeles , Los Angeles , California 90095 , United States
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology , Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
12
|
The Ras-related gene ERAS is involved in human and murine breast cancer. Sci Rep 2018; 8:13038. [PMID: 30158566 PMCID: PMC6115423 DOI: 10.1038/s41598-018-31326-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/02/2018] [Indexed: 01/06/2023] Open
Abstract
Although Ras genes are frequently mutated in human tumors, these mutations are uncommon in breast cancer. However, many breast tumors show evidences of Ras pathway activation. In this manuscript, we have analyzed and characterized mouse mammary tumors generated by random Sleeping Beauty transposon mutagenesis and identify ERAS -a member of the RAS family silenced in adult tissues- as a new gene involved in progression and malignancy of breast cancer. Forced expression of ERAS in human non-transformed mammary gland cells induces a process of epithelial-to-mesenchymal transition and an increase in stem cells markers; these changes are mediated by miR-200c downregulation. ERAS expression in human tumorigenic mammary cells leads to the generation of larger and less differentiated tumors in xenotransplant experiments. Immunohistochemical, RT-qPCR and bioinformatics analysis of human samples show that ERAS is aberrantly expressed in 8–10% of breast tumors and this expression is associated with distant metastasis and reduced metastasis-free survival. In summary, our results reveal that inappropriate activation of ERAS may be important in the development of a subset of breast tumors. These findings open the possibility of new specific treatments for this subset of ERAS-expressing tumors.
Collapse
|
13
|
Morgani SM, Saiz N, Garg V, Raina D, Simon CS, Kang M, Arias AM, Nichols J, Schröter C, Hadjantonakis AK. A Sprouty4 reporter to monitor FGF/ERK signaling activity in ESCs and mice. Dev Biol 2018; 441:104-126. [PMID: 29964027 DOI: 10.1016/j.ydbio.2018.06.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 12/31/2022]
Abstract
The FGF/ERK signaling pathway is highly conserved throughout evolution and plays fundamental roles during embryonic development and in adult organisms. While a plethora of expression data exists for ligands, receptors and pathway regulators, we know little about the spatial organization or dynamics of signaling in individual cells within populations. To this end we developed a transcriptional readout of FGF/ERK activity by targeting a histone H2B-linked Venus fluorophore to the endogenous locus of Spry4, an early pathway target, and generated Spry4H2B-Venus embryonic stem cells (ESCs) and a derivative mouse line. The Spry4H2B-Venus reporter was heterogeneously expressed within ESC cultures and responded to FGF/ERK signaling manipulation. In vivo, the Spry4H2B-Venus reporter recapitulated the expression pattern of Spry4 and localized to sites of known FGF/ERK activity including the inner cell mass of the pre-implantation embryo and the limb buds, somites and isthmus of the post-implantation embryo. Additionally, we observed highly localized reporter expression within adult organs. Genetic and chemical disruption of FGF/ERK signaling, in vivo in pre- and post-implantation embryos, abrogated Venus expression establishing the reporter as an accurate signaling readout. This tool will provide new insights into the dynamics of the FGF/ERK signaling pathway during mammalian development.
Collapse
Affiliation(s)
- Sophie M Morgani
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Wellcome Trust-Medical Research Council Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Nestor Saiz
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vidur Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Dhruv Raina
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Claire S Simon
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Minjung Kang
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | | | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Christian Schröter
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA.
| |
Collapse
|
14
|
Schulz EG. X-chromosome dosage as a modulator of pluripotency, signalling and differentiation? Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0366. [PMID: 28947662 DOI: 10.1098/rstb.2016.0366] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2017] [Indexed: 01/12/2023] Open
Abstract
Already during early embryogenesis, before sex-specific hormone production is initiated, sex differences in embryonic development have been observed in several mammalian species. Typically, female embryos develop more slowly than their male siblings. A similar phenotype has recently been described in differentiating murine embryonic stem cells, where a double dose of the X-chromosome halts differentiation until dosage-compensation has been achieved through X-chromosome inactivation. On the molecular level, several processes associated with early differentiation of embryonic stem cells have been found to be affected by X-chromosome dosage, such as the transcriptional state of the pluripotency network, the activity pattern of several signal transduction pathways and global levels of DNA-methylation. This review provides an overview of the sex differences described in embryonic stem cells from mice and discusses a series of X-linked genes that are associated with pluripotency, signalling and differentiation and their potential involvement in mediating the observed X-dosage-dependent effects.This article is part of the themed issue 'X-chromosome inactivation: a tribute to Mary Lyon'.
Collapse
Affiliation(s)
- Edda G Schulz
- Otto-Warburg-Laboratorium, Max-Planck-Institut for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany
| |
Collapse
|
15
|
Spatiotemporal patterning of EpCAM is important for murine embryonic endo- and mesodermal differentiation. Sci Rep 2018; 8:1801. [PMID: 29379062 PMCID: PMC5789065 DOI: 10.1038/s41598-018-20131-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/15/2018] [Indexed: 01/07/2023] Open
Abstract
Epithelial cell adhesion molecule EpCAM is expressed in pluripotent embryonic stem cells (ESC) in vitro, but is repressed in differentiated cells, except epithelia and carcinomas. Molecular functions of EpCAM, possibly imposing such repression, were primarily studied in malignant cells and might not apply to non-pathologic differentiation. Here, we comprehensively describe timing and rationale for EpCAM regulation in early murine gastrulation and ESC differentiation using single cell RNA-sequencing datasets, in vivo and in vitro models including CRISPR-Cas9-engineered ESC-mutants. We demonstrate expression of EpCAM in inner cell mass, epiblast, primitive/visceral endoderm, and strict repression in the most primitive, nascent Flk1+ mesoderm progenitors at E7.0. Selective expression of EpCAM was confirmed at mid-gestation and perinatal stages. The rationale for strict patterning was studied in ESC differentiation. Gain/loss-of-function demonstrated supportive functions of EpCAM in achieving full pluripotency and guided endodermal differentiation, but repressive functions in mesodermal differentiation as exemplified with cardiomyocyte formation. We further identified embryonic Ras (ERas) as novel EpCAM interactor of EpCAM and an EpCAM/ERas/AKT axis that is instrumental in differentiation regulation. Hence, spatiotemporal patterning of EpCAM at the onset of gastrulation, resulting in early segregation of interdependent EpCAM+ endodermal and EpCAM-/vimentin+ mesodermal clusters represents a novel regulatory feature during ESC differentiation.
Collapse
|
16
|
Insertional mutagenesis in a HER2-positive breast cancer model reveals ERAS as a driver of cancer and therapy resistance. Oncogene 2018; 37:1594-1609. [PMID: 29326437 PMCID: PMC6168451 DOI: 10.1038/s41388-017-0031-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022]
Abstract
Personalized medicine for cancer patients requires a deep understanding of the underlying genetics that drive cancer and the subsequent identification of predictive biomarkers. To discover new genes and pathways contributing to oncogenesis and therapy resistance in HER2+ breast cancer, we performed Mouse Mammary Tumor Virus (MMTV)-induced insertional mutagenesis screens in ErbB2/cNeu-transgenic mouse models. The screens revealed 34 common integration sites (CIS) in mammary tumors of MMTV-infected mice, highlighting loci with multiple independent MMTV integrations in which potential oncogenes are activated, most of which had never been reported as MMTV CIS. The CIS most strongly associated with the ErbB2-transgenic genotype was the locus containing Eras (ES cell-expressed Ras), a constitutively active RAS-family GTPase. We show that upon expression, Eras acts as a potent oncogenic driver through hyperactivation of the PI3K/AKT pathway, in contrast to other RAS proteins that signal primarily via the MAPK/ERK pathway and require upstream activation or activating mutations to induce signaling. We additionally show that ERAS synergistically enhances HER2-induced tumorigenesis and, in this role, can functionally replace ERBB3/HER3 by acting as a more powerful activator of PI3K/AKT signaling. Although previously reported as pseudogene in humans, we observed ERAS RNA and protein expression in a substantial subset of human primary breast carcinomas. Importantly, we show that ERAS induces primary resistance to the widely used HER2-targeting drugs Trastuzumab (Herceptin) and Lapatinib (Tykerb/Tyverb) in vivo, and is involved in acquired resistance via selective upregulation during treatment in vitro, indicating that ERAS may serve as a novel clinical biomarker for PI3K/AKT pathway hyperactivation and HER2-targeted therapy resistance.
Collapse
|
17
|
Yu Y, Wang X, Zhang X, Zhai Y, Lu X, Ma H, Zhu K, Zhao T, Jiao J, Zhao ZA, Li L. ERK inhibition promotes neuroectodermal precursor commitment by blocking self-renewal and primitive streak formation of the epiblast. Stem Cell Res Ther 2018; 9:2. [PMID: 29304842 PMCID: PMC5756365 DOI: 10.1186/s13287-017-0750-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 12/27/2022] Open
Abstract
Background Pluripotent stem cells hold great promise for regenerative medicine. However, before clinical application, reproducible protocols for pluripotent stem cell differentiation should be established. Extracellular signal-regulated protein kinase (ERK) signaling plays a central role for the self-renewal of epiblast stem cells (EpiSCs), but its role for subsequent germ layer differentiation is still ambiguous. We proposed that ERK could modulate differentiation of the epiblast. Methods PD0325901 was used to inhibit ERK activation during the differentiation of embryonic stem cells and EpiSCs. Immunofluorescence, western blot analysis, real-time PCR and flow cytometry were used to detect germ layer markers and pathway activation. Results We demonstrate that the ERK phosphorylation level is lower in neuroectoderm of mouse E7.5 embryos than that in the primitive streak. ERK inhibition results in neural lineage commitment of epiblast. Mechanistically, PD0325901 abrogates the expression of primitive streak markers by β-catenin retention in the cytoplasm, and inhibits the expression of OCT4 and NANOG during EpiSC differentiation. Thus, EpiSCs differentiate into neuroectodermal lineage efficiently under PD0325901 treatment. These results suggest that neuroectoderm differentiation does not require extrinsic signals, supporting the default differentiation of neural lineage. Conclusions We report that a single ERK inhibitor, PD0325901, can specify epiblasts and EpiSCs into neural-like cells, providing an efficient strategy for neural differentiation. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0750-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxiao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Yanhua Zhai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Xukun Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haixia Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Zhen-Ao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China. .,Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, 708 Renmin Rd, Suzhou, Jiangsu, 215007, China.
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
18
|
Roperto S, Russo V, Urraro C, Restucci B, Corrado F, De Falco F, Roperto F. ERas is constitutively expressed in full term placenta of pregnant cows. Theriogenology 2017; 103:162-168. [PMID: 28787666 DOI: 10.1016/j.theriogenology.2017.07.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/11/2017] [Accepted: 07/28/2017] [Indexed: 02/01/2023]
Abstract
ERas is a new gene recently found in mouse embryonic stem (ES) cells and localized on the X chromosome. It plays a role in mouse ES cell survival and is constitutively active without any mutations. It was also found to be responsible for the maintenance of quiescence of the hepatic stellate cells (HSCs), liver-resident mesenchymal stem cells, the activation of which results in liver fibrosis. This gene was not present in human ES cells. ERas was found to be activated in a significant population of human gastric cancer, where ERAS may play a crucial role in gastric cancer cell survival and metastases to liver via down-regulation of E-cadherin. ERas gene has been found to be expressed both in ES cells and adult tissues of cynomolgus monkey. Cynomolgus ERAS did not promote cell proliferation or induce tumor formation. ERAS was also detected in normal and neoplastic urothelium of the urinary bladder in cattle, where bovine ERAS formed a constitutive complex with platelet derived growth factor β receptor (PDGFβR) resulting in the activation of AKT signaling. Here, molecular and morphological findings of ERAS in the full term placenta of pregnant cows have been investigated for the first time. ERAS was studied by reverse transcriptase PCR (RT-PCR). Alignment of the sequence detects a 100% identity with all transcript variant bovine ERas mRNAs, present in the GenBank database (http://www.ncbi.nlm.nih.gov). Furthermore, ERAS was detected by Western blot and investigated by real time PCR that revealed an amount of ERAS more than ERAS found in normal bovine urothelium but less than ERAS present in the liver. Immunohistochemical examination revealed the presence of ERAS protein both at the level of plasma membrane and in cytoplasm of epithelial cells lining caruncular crypts and in trophoblasts of villi. An evident ERAS immunoreactivity was also seen throughout the chorionic and uterine gland epithelium. Although this is not a functional study and further investigations will be warranted, it is conceivable that ERAS may have pleiotropic effects in the placenta, some of which, like normal urothelial cells, might lead to activation of AKT pathway. We speculate that ERAS may play a key role in cellular processes such as cell differentiation and movement. Accordingly, we believe it may be an important factor involved in trophoblast invasiveness via AKT signaling pathway. Therefore, ERas gene is a functional gene which contributes to homeostasis of bovine placenta.
Collapse
Affiliation(s)
- Sante Roperto
- Dipartimento di Medicina Veterinaria e delle Produzioni Animali, Università di Napoli Federico II, Napoli, Italy.
| | - Valeria Russo
- Dipartimento di Medicina Veterinaria e delle Produzioni Animali, Università di Napoli Federico II, Napoli, Italy
| | - Chiara Urraro
- Dipartimento di Medicina Veterinaria e delle Produzioni Animali, Università di Napoli Federico II, Napoli, Italy
| | - Brunella Restucci
- Dipartimento di Medicina Veterinaria e delle Produzioni Animali, Università di Napoli Federico II, Napoli, Italy
| | - Federica Corrado
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici (NA), Italy
| | - Francesca De Falco
- Dipartimento di Medicina Veterinaria e delle Produzioni Animali, Università di Napoli Federico II, Napoli, Italy
| | - Franco Roperto
- Dipartimento di Biologia, Università di Napoli Federico II, Napoli, Italy
| |
Collapse
|
19
|
Quantification of spatiotemporal patterns of Ras isoform expression during development. Sci Rep 2017; 7:41297. [PMID: 28117393 PMCID: PMC5259795 DOI: 10.1038/srep41297] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/19/2016] [Indexed: 01/05/2023] Open
Abstract
Ras proteins are important signalling hubs frequently dysregulated in cancer and in a group of developmental disorders called Rasopathies. Three Ras genes encode four proteins that differentially contribute to these phenotypes. Using quantitative real-time PCR (qRT-PCR) we have measured the gene expression profiles of each of the Ras isoforms in a panel of mouse tissues derived from a full developmental time course spanning embryogenesis through to adulthood. In most tissues and developmental stages we observe a relative contribution of KRas4B > > NRas ≥ KRas4A > HRas to total Ras expression with KRas4B typically representing 60–99% of all Ras transcripts. KRas4A is the most dynamically regulated Ras isoform with significant up-regulation of expression observed pre-term in stomach, intestine, kidney and heart. The expression patterns assist interpretation of the essential role of KRas in development and the preponderance of KRas mutations in cancer.
Collapse
|
20
|
Xiao Y, Ma H, Wan P, Qin D, Wang X, Zhang X, Xiang Y, Liu W, Chen J, Yi Z, Li L. Trp-Asp (WD) Repeat Domain 1 Is Essential for Mouse Peri-implantation Development and Regulates Cofilin Phosphorylation. J Biol Chem 2016; 292:1438-1448. [PMID: 27994054 DOI: 10.1074/jbc.m116.759886] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/16/2016] [Indexed: 01/18/2023] Open
Abstract
Trp-Asp (WD) repeat domain 1 (WDR1) is a highly conserved actin-binding protein across all eukaryotes and is involved in numerous actin-based processes by accelerating Cofilin severing actin filament. However, the function and the mechanism of WDR1 in mammalian early development are still largely unclear. We now report that WDR1 is essential for mouse peri-implantation development and regulates Cofilin phosphorylation in mouse cells. The disruption of maternal WDR1 does not obviously affect ovulation and female fertility. However, depletion of zygotic WDR1 results in embryonic lethality at the peri-implantation stage. In WDR1 knock-out cells, we found that WDR1 regulates Cofilin phosphorylation. Interestingly, WDR1 is overdosed to regulate Cofilin phosphorylation in mouse cells. Furthermore, we showed that WDR1 interacts with Lim domain kinase 1 (LIMK1), a well known phosphorylation kinase of Cofilin. Altogether, our results provide new insights into the role and mechanism of WDR1 in physiological conditions.
Collapse
Affiliation(s)
- Yi Xiao
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing.,the Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049
| | - Haixia Ma
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing.,the Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049
| | - Ping Wan
- the State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, and
| | - Dandan Qin
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing.,the Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049
| | - Xiaoxiao Wang
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing.,the Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049
| | - Xiaoxin Zhang
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing
| | - Yunlong Xiang
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing
| | - Wenbo Liu
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing
| | - Jiong Chen
- the State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, and
| | - Zhaohong Yi
- the Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, College of Biological Science and Engineering, Beijing University of Agriculture, Beijing 102206, China
| | - Lei Li
- From the State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, .,the Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049
| |
Collapse
|
21
|
Ma H, Lin Y, Zhao ZA, Lu X, Yu Y, Zhang X, Wang Q, Li L. MicroRNA-127 Promotes Mesendoderm Differentiation of Mouse Embryonic Stem Cells by Targeting Left-Right Determination Factor 2. J Biol Chem 2016; 291:12126-35. [PMID: 27072135 DOI: 10.1074/jbc.m116.723247] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Indexed: 12/19/2022] Open
Abstract
Specification of the three germ layers is a fundamental process and is essential for the establishment of organ rudiments. Multiple genetic and epigenetic factors regulate this dynamic process; however, the function of specific microRNAs in germ layer differentiation remains unknown. In this study, we established that microRNA-127 (miR-127) is related to germ layer specification via microRNA array analysis of isolated three germ layers of E7.5 mouse embryos and was verified through differentiation of mouse embryonic stem cells. miR-127 is highly expressed in endoderm and primitive streak. Overexpression of miR-127 increases and inhibition of miR-127 decreases the expression of mesendoderm markers. We further show that miR-127 promotes mesendoderm differentiation through the nodal pathway, a determinative signaling pathway in early embryogenesis. Using luciferase reporter assay, left-right determination factor 2 (Lefty2), an antagonist of nodal, is identified to be a novel target of miR-127. Furthermore, the role of miR-127 in mesendoderm differentiation is attenuated by Lefty2 overexpression. Altogether, our results indicate that miR-127 accelerates mesendoderm differentiation of mouse embryonic stem cells through nodal signaling by targeting Lefty2.
Collapse
Affiliation(s)
- Haixia Ma
- From the State Key Laboratory of Stem Cell and Reproductive Biology and the Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Lin
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing and
| | - Zhen-Ao Zhao
- From the State Key Laboratory of Stem Cell and Reproductive Biology and
| | - Xukun Lu
- From the State Key Laboratory of Stem Cell and Reproductive Biology and
| | - Yang Yu
- From the State Key Laboratory of Stem Cell and Reproductive Biology and
| | - Xiaoxin Zhang
- From the State Key Laboratory of Stem Cell and Reproductive Biology and
| | - Qiang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing and
| | - Lei Li
- From the State Key Laboratory of Stem Cell and Reproductive Biology and the Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|