1
|
Bai X, Wang L, Sun H, Sun L, An J, Fu S, Zhao M, Liu F, Ren X, Liu Z, He J, Liu Y. Yeast Culture Supplementation Improves Meat Quality by Enhancing Immune Response and Purine Metabolism of Small-Tail Han Sheep ( Ovis aries). Int J Mol Sci 2025; 26:4512. [PMID: 40429655 PMCID: PMC12111681 DOI: 10.3390/ijms26104512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/23/2025] [Accepted: 04/27/2025] [Indexed: 05/29/2025] Open
Abstract
Yeast culture is widely used in ruminants to improve gut health, immunity, and productivity; however, its impact on meat quality remains unclear. This study aimed to investigate the effects of yeast culture supplementation in the basic diet on meat quality of Small-tail Han sheep. A total of 40 Small-tail Han sheep (17.5 ± 1.2 kg) were randomly assigned to two treatment groups, with 20 sheep in each group. The sheep were fed either a basic diet (CON) or the basic diet supplemented with 1% yeast culture (YSD) for 90 days. At the end of the trial, the Longissimus dorsi muscle (LOD) of the sheep was collected for meat quality evaluation, as well as transcriptome and metabolome analyses. Meat quality data were analyzed using t-tests, while transcriptome and metabolome data were analyzed using bioinformatics tools. The results showed that YSD supplementation significantly reduced carcass fat content (p < 0.05) and increased the pH values (p < 0.05) of LOD compared to the CON group. Multi-omics analysis revealed significant changes in the levels of 349 transcripts and 149 metabolites (p < 0.05) in the YSD group relative to the CON group. These changes were primarily associated with immune response pathways and purine metabolism. Further integrated transcriptomics and metabolomics analysis identified significant alterations in the expression of adenylate kinase 4 (AK4) and ribonucleotide reductase M2 (RRM2), which influenced purine metabolites, such as ADP, GMP, 3'-AMP, 3'-GMP, dGDP, adenine, guanosine, and guanine. These metabolites were markedly upregulated in the LOD of the sheep supplemented with yeast culture. In conclusion, yeast culture supplementation improved the meat quality of Small-tail Han sheep, potentially through the enhancement of immune response and purine metabolism. These findings offer valuable insights into the molecular mechanisms underlying the effects of yeast culture on animal health and meat quality.
Collapse
Affiliation(s)
- Xiaobo Bai
- College of Life Sciences, Inner Mongolia University, Hohhot 010030, China; (X.B.); (L.W.)
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (H.S.); (J.A.); (S.F.); (M.Z.); (F.L.)
| | - Liwei Wang
- College of Life Sciences, Inner Mongolia University, Hohhot 010030, China; (X.B.); (L.W.)
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (H.S.); (J.A.); (S.F.); (M.Z.); (F.L.)
| | - Hua Sun
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (H.S.); (J.A.); (S.F.); (M.Z.); (F.L.)
| | - Lvhui Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Frontiers Science Center for Animal Breeding and Sustainable Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Jianghong An
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (H.S.); (J.A.); (S.F.); (M.Z.); (F.L.)
| | - Shaoyin Fu
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (H.S.); (J.A.); (S.F.); (M.Z.); (F.L.)
| | - Mengran Zhao
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (H.S.); (J.A.); (S.F.); (M.Z.); (F.L.)
| | - Fang Liu
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (H.S.); (J.A.); (S.F.); (M.Z.); (F.L.)
| | - Xiaoqi Ren
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (X.R.); (Z.L.)
| | - Zheng Liu
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China; (X.R.); (Z.L.)
| | - Jiangfeng He
- College of Life Sciences, Inner Mongolia University, Hohhot 010030, China; (X.B.); (L.W.)
- Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China; (H.S.); (J.A.); (S.F.); (M.Z.); (F.L.)
| | - Yongbin Liu
- College of Life Sciences, Inner Mongolia University, Hohhot 010030, China; (X.B.); (L.W.)
- College of Animal Science, Inner Mongolia Agriculture University, Hohhot 010018, China
| |
Collapse
|
2
|
Boyeau P, Bates S, Ergen C, Jordan MI, Yosef N. VI-VS: calibrated identification of feature dependencies in single-cell multiomics. Genome Biol 2024; 25:294. [PMID: 39548591 PMCID: PMC11566124 DOI: 10.1186/s13059-024-03419-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 10/08/2024] [Indexed: 11/18/2024] Open
Abstract
Unveiling functional relationships between various molecular cell phenotypes from data using machine learning models is a key promise of multiomics. Existing methods either use flexible but hard-to-interpret models or simpler, misspecified models. VI-VS (Variational Inference for Variable Selection) balances flexibility and interpretability to identify relevant feature relationships in multiomic data. It uses deep generative models to identify conditionally dependent features, with false discovery rate control. VI-VS is available as an open-source Python package, providing a robust solution to identify features more likely representing genuine causal relationships.
Collapse
Affiliation(s)
- Pierre Boyeau
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, USA
| | - Stephen Bates
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, USA
| | - Can Ergen
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, USA
- Center for Computational Biology, University of California, Berkeley, USA
| | - Michael I Jordan
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, USA
- Department of Statistics, University of California, Berkeley, USA
- Center for Computational Biology, University of California, Berkeley, USA
- Inria, Paris, France
| | - Nir Yosef
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, USA.
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
3
|
Deng Z, Liu Y, Zhou H. Distinct roles of CD244 expression in cancer diagnosis and prognosis: A pan-cancer analysis. Heliyon 2024; 10:e28928. [PMID: 38633624 PMCID: PMC11021915 DOI: 10.1016/j.heliyon.2024.e28928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
The abnormal expression of tumor associated genes in pan-cancer is closely related to the clinicopathological features of distinct cancer types. Thus, identifying the role of specific genes in pan-cancer is needed for developing effective anti-cancer strategies. However, the function of CD244 in pan-cancer has not been fully understood. In this study, we explored the CD244 expression profile across 33 tumor types based on The Cancer Genome Atlas project, the Gene Expression Omnibus database, and other bioinformatics tools. We found down-regulated expression levels in seven tumor types and up-regulated expression levels in two tumor types. We subsequently explored the relationship between survival rate and CD244 expression, and found the positive relationship in patients with adrenocortical carcinoma (ACC), head and neck squamous cell carcinoma (HNSC), skin cutaneous melanoma (SKCM), and uterine corpus endometrial carcinoma (UCEC). We further investigated the association between CD244 expression and tumor-infiltrating immune cells, and discovered their positive correlation in different tumors. We found that CD244 expression level was higher in normal samples than in UCEC samples, and was positively associated with CD8+ T cells infiltrating. The mutation status, promoter methylation, CD244-related molecules and signaling pathways were also employed to study the potential function of CD244 in tumor initiation and progression. Our study offers a comprehensive overview of CD244 in human tumors, revealing CD244 as a potential prognostic biomarker and immunotherapeutic target in cancers.
Collapse
Affiliation(s)
- Zhenzhen Deng
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Haiyan Zhou
- Department of Pathology, School of Basic Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Gaur P, Seaf M, Trabelsi N, Marcu O, Gafarov D, Schueler-Furman O, Mandelboim O, Ben-Zimra M, Levi-Schaffer F. 2B4: A potential target in Staphylococcus aureus associated allergic inflammation. Clin Exp Immunol 2024; 215:37-46. [PMID: 37583293 PMCID: PMC10776246 DOI: 10.1093/cei/uxad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/14/2023] [Accepted: 08/06/2023] [Indexed: 08/17/2023] Open
Abstract
Staphylococcus aureus (SA) and its exotoxins activate eosinophils (Eos) and mast cells (MCs) via CD48, a GPI-anchored receptor belonging to the signaling lymphocytes activation molecules (SLAM) family. 2B4 (CD244), an immuno-regulatory transmembrane receptor also belonging to the SLAM family, is the high-affinity ligand for CD48. 2B4 is expressed on several leukocytes including NK cells, T cells, basophils, monocytes, dendritic cells (DCs), and Eos. In the Eos and MCs crosstalk carried out by physical and soluble interactions (named the 'allergic effector unit', AEU), 2B4-CD48 binding plays a central role. As CD48 and 2B4 share some structural characteristics and SA colonization accompanies most of the allergic diseases, we hypothesized that SA exotoxins (e.g. Staphylococcus enterotoxin B, SEB) can also bind and activate 2B4 and thereby possibly further aggravate inflammation. To check our hypothesis, we used in vitro, in silico, and in vivo methods. By enzyme-linked immunosorbent assay (ELISA), flow cytometry (FC), fluorescence microscopy, and microscale thermophoresis, we have shown that SEB can bind specifically to 2B4. By Eos short- and long-term activation assays, we confirmed the functionality of the SEB-2B4 interaction. Using computational modeling, we identified possible SEB-binding sites on human and mouse 2B4. Finally, in vivo, in an SEB-induced peritonitis model, 2B4-KO mice showed a significant reduction of inflammatory features compared with WT mice. Altogether, the results of this study confirm that 2B4 is an important receptor in SEB-mediated inflammation, and therefore a role is suggested for 2B4 in SA associated inflammatory conditions.
Collapse
Affiliation(s)
- Pratibha Gaur
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Mansour Seaf
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Nirit Trabelsi
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Orly Marcu
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Daria Gafarov
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, The Hebrew University Hadassah Medical School, IMRIC, Jerusalem, Israel
| | - Micha Ben-Zimra
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
5
|
Wang Y, Jin S, Zhuang Q, Liu N, Chen R, Adam SA, Jin J, Sun J. Chimeric antigen receptor natural killer cells: a promising antitumor immunotherapy. MedComm (Beijing) 2023; 4:e422. [PMID: 38045827 PMCID: PMC10691297 DOI: 10.1002/mco2.422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 12/05/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cells have been successfully used in adoptive cell therapy for malignancies. However, some obstacles, including side effects such as graft-versus-host disease and cytokine release syndrome, therapy resistance, limited sources, as well as high cost, limited the application of CAR T cells. Recently, CAR natural killer (NK) cells have been pursued as the effector cells for adoptive immunotherapy for their attractive merits of strong intrinsic antitumor activity and relatively mild side effects. Additionally, CAR NK cells can be available from various sources and do not require strict human leukocyte antigen matching, which suggests them as promising "off-the-shelf" products for clinical application. Although the use of CAR NK cells is restrained by the limited proliferation and impaired efficiency within the immunosuppressive tumor microenvironment, further investigation in optimizing CAR structure and combination therapies will overcome these challenges. This review will summarize the advancement of CAR NK cells, CAR NK cell manufacture, the clinical outcomes of CAR NK therapy, the challenges in the field, and prospective solutions. Besides, we will discuss the emerging application of other immune cells for CAR engineering. Collectively, this comprehensive review will provide a valuable and informative summary of current progress and evaluate challenges and future opportunities of CAR NK cells in tumor treatment.
Collapse
Affiliation(s)
- Yan Wang
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
| | - Shengjie Jin
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
| | - Qiqi Zhuang
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
| | - Na Liu
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
- Department of OncologyAffiliated Hospital of Weifang Medical UniversitySchool of Clinical MedicineWeifang Medical UniversityWeifangShandongChina
| | - Ruyi Chen
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
| | - Sofia Abdulkadir Adam
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
| | - Jie Jin
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
- Zhejiang University Cancer CenterHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Hematological DisordersHangzhouZhejiangChina
| | - Jie Sun
- Department of HematologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Hematologic MalignanciesDiagnosis, and TreatmentHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Hematological DisordersHangzhouZhejiangChina
| |
Collapse
|
6
|
Nersesian S, Carter EB, Lee SN, Westhaver LP, Boudreau JE. Killer instincts: natural killer cells as multifactorial cancer immunotherapy. Front Immunol 2023; 14:1269614. [PMID: 38090565 PMCID: PMC10715270 DOI: 10.3389/fimmu.2023.1269614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Natural killer (NK) cells integrate heterogeneous signals for activation and inhibition using germline-encoded receptors. These receptors are stochastically co-expressed, and their concurrent engagement and signaling can adjust the sensitivity of individual cells to putative targets. Against cancers, which mutate and evolve under therapeutic and immunologic pressure, the diversity for recognition provided by NK cells may be key to comprehensive cancer control. NK cells are already being trialled as adoptive cell therapy and targets for immunotherapeutic agents. However, strategies to leverage their naturally occurring diversity and agility have not yet been developed. In this review, we discuss the receptors and signaling pathways through which signals for activation or inhibition are generated in NK cells, focusing on their roles in cancer and potential as targets for immunotherapies. Finally, we consider the impacts of receptor co-expression and the potential to engage multiple pathways of NK cell reactivity to maximize the scope and strength of antitumor activities.
Collapse
Affiliation(s)
- Sarah Nersesian
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Emily B. Carter
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Stacey N. Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | | | - Jeanette E. Boudreau
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
7
|
Kotzur R, Stein N, Kahlon S, Berhani O, Isaacson B, Mandelboim O. Eradication of CD48-positive tumors by selectively enhanced YTS cells harnessing the lncRNA NeST. iScience 2023; 26:107284. [PMID: 37609636 PMCID: PMC10440710 DOI: 10.1016/j.isci.2023.107284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/30/2023] [Accepted: 06/30/2023] [Indexed: 08/24/2023] Open
Abstract
Natural killer (NK) cells are currently used in clinical trials to treat tumors. However, such therapies still suffer from problems such as donor variability, reproducibility, and more, which prevent a wider use of NK cells therapeutics. Here we show a potential immunotherapy combining NK cell-mediated tumor eradiation and long non-coding (lnc) RNAs. We overexpressed the interferon (IFN) γ secretion-enhancing lncRNA nettoie Salmonella pas Theiler's (NeST) in the NK cell-like cell line YTS. YTS cells express the co-stimulatory receptor 2B4 whose main ligand is CD48. On YTS cells, 2B4 functions by direct activation. We showed that NeST overexpression in YTS cells resulted in increased IFNγ release upon interaction with CD48 (selectively enhanced (se)YTS cells). Following irradiation, the seYTS cells lost proliferation capacity but were still able to maintain their killing and IFNγ secretion capacities. Finally, we demonstrated that irradiated seYTS inhibit tumor growth in vivo. Thus, we propose seYTS cells as off-the-shelve therapy for CD48-expressing tumors.
Collapse
Affiliation(s)
- Rebecca Kotzur
- The Lautenberg Center for Immunology and Cancer Research, the Hebrew University, Medical School Hadassah Ein Karem, Israel, Jerusalem
| | - Natan Stein
- The Lautenberg Center for Immunology and Cancer Research, the Hebrew University, Medical School Hadassah Ein Karem, Israel, Jerusalem
| | - Shira Kahlon
- The Lautenberg Center for Immunology and Cancer Research, the Hebrew University, Medical School Hadassah Ein Karem, Israel, Jerusalem
| | - Orit Berhani
- The Lautenberg Center for Immunology and Cancer Research, the Hebrew University, Medical School Hadassah Ein Karem, Israel, Jerusalem
| | - Batya Isaacson
- The Lautenberg Center for Immunology and Cancer Research, the Hebrew University, Medical School Hadassah Ein Karem, Israel, Jerusalem
| | - Ofer Mandelboim
- The Lautenberg Center for Immunology and Cancer Research, the Hebrew University, Medical School Hadassah Ein Karem, Israel, Jerusalem
| |
Collapse
|
8
|
CD48-expressing non-small-cell lung cancer cells are susceptible to natural killer cell-mediated cytotoxicity. Arch Pharm Res 2021; 45:1-10. [PMID: 34905179 DOI: 10.1007/s12272-021-01365-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/07/2021] [Indexed: 01/21/2023]
Abstract
The susceptibility of cancer cells to natural killer (NK) cell-mediated cytotoxicity depends on the balance of activating and inhibitory ligands expressed on their surface. Although many types of cancer cells are killed by NK cells, non-small-cell lung cancer (NSCLC) cells are relatively resistant to NK cell-mediated cytotoxicity. In this study, we showed that several NSCLC cell lines have differential sensitivity to NK cell-mediated cytotoxicity: NCI-H522 cells were highly sensitive, but A549, NCI-H23, NCI-H1915, and NCI-H1299 were resistant. Among activating ligands such as CD48, HLA-A/B/G, ICAM-1, MICA/B, and ULBPs, only CD48 rendered NCI-H522 cells susceptible to NK cell-mediated cytotoxicity, which was proved by using CD48 siRNA and neutralizing antibody. CD48-positive NCI-H522 cells established a more stable contact with NK cells than did CD48-negative A549 and CD48 siRNA cell-transfected NCI-H522 cells. Taken together, these data demonstrate that CD48-positive NSCLC cells might be susceptible to NK cell-mediated cytotoxicity, which provide information on how to stratify NSCLC patients potentially responsive to NK-cell therapy.
Collapse
|
9
|
Zhou J, Zhang S, Guo C. Crosstalk between macrophages and natural killer cells in the tumor microenvironment. Int Immunopharmacol 2021; 101:108374. [PMID: 34824036 DOI: 10.1016/j.intimp.2021.108374] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022]
Abstract
The tumor microenvironment (TME) is jointly constructed by a variety of cell types, including tumor cells, immune cells, fibroblasts, and epithelial cells, among others. The cells within the TME interact with each other and with tumor cells to influence tumor development and progression. As the most abundant immune cells in the TME, macrophages regulate the immune network by not only secreting a large amount of versatile cytokines but also expressing a series of ligands or receptors on the surface to interact with other cells directly. Due to their strong plasticity, they exert both immunostimulatory and immunosuppressive effects in the complex TME. The major effector cells of the immune system that directly target cancer cells include but are not limited to natural killer cells (NKs), dendritic cells (DCs), macrophages, polymorphonuclear leukocytes, mast cells, and cytotoxic T lymphocytes (CTLs). Among them, NK cells are the predominant innate lymphocyte subsets that mediate antitumor and antiviral responses. The activation and inhibition of NK cells are regulated by cytokines and the balance between activating and inhibitory receptors. There is an inextricable regulatory relationship between macrophages and NK cells. Herein, we systematically elaborate on the regulatory network between macrophages and NK cells through soluble mediator crosstalk and cell-to-cell interactions. We believe that a better understanding of the crosstalk between macrophages and NKs in the TME will benefit the development of novel macrophage- or NK cell-focused therapeutic strategies with superior efficacies in cancer therapy.
Collapse
Affiliation(s)
- Jingping Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Shaolong Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Changying Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China.
| |
Collapse
|
10
|
Ziblat A, Iraolagoitia XLR, Nuñez SY, Torres NI, Secchiari F, Sierra JM, Spallanzani RG, Rovegno A, Secin FP, Fuertes MB, Domaica CI, Zwirner NW. Circulating and Tumor-Infiltrating NK Cells From Clear Cell Renal Cell Carcinoma Patients Exhibit a Predominantly Inhibitory Phenotype Characterized by Overexpression of CD85j, CD45, CD48 and PD-1. Front Immunol 2021; 12:681615. [PMID: 34149719 PMCID: PMC8212993 DOI: 10.3389/fimmu.2021.681615] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/18/2021] [Indexed: 01/09/2023] Open
Abstract
Although natural killer (NK) cells infiltrate clear cell renal cell carcinomas (ccRCC), the most frequent malignancy of the kidney, tumor progression suggests that they become dysfunctional. As ccRCC-driven subversion of NK cell effector functions is usually accompanied by phenotypic changes, analysis of such alterations might lead to the identification of novel biomarkers and/or targets in immuno-oncology. Consequently, we performed a phenotypic analysis of peripheral blood NK cells (PBNK) and tumor-infiltrating NK cells (TINK) from ccRCC patients. Compared to HD, PBNK from ccRCC patients exhibited features of activated cells as shown by CD25, CD69 and CD62L expression. They also displayed increased expression of DNAM-1, CD48, CD45, MHC-I, reduced expression of NKG2D, and higher frequencies of CD85j+ and PD-1+ cells. In addition, compared to PBNK from ccRCC patients, TINK exhibited higher expression of activation markers, tissue residency features and decreased expression of the activating receptors DNAM-1, NKp30, NKp46, NKp80 and CD16, suggesting a more inhibitory phenotype. Analysis of The Cancer Genome Atlas (TCGA) revealed that CD48, CD45, CD85j and PD-1 are significantly overexpressed in ccRCC and that their expression is associated with an NK cell infiltration signature. Calculation of z-scores revealed that their expression on PBNK, alone or combined, distinguished ccRCC patients from HD. Therefore, these molecules emerge as novel potential biomarkers and our results suggest that they might constitute possible targets for immunotherapy in ccRCC patients.
Collapse
Affiliation(s)
- Andrea Ziblat
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Ximena Lucía Raffo Iraolagoitia
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Sol Yanel Nuñez
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Nicolás Ignacio Torres
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Florencia Secchiari
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Jessica Mariel Sierra
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Raúl Germán Spallanzani
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Agustín Rovegno
- Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC), Servicio de Urología, Buenos Aires, Argentina
| | - Fernando Pablo Secin
- Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC), Servicio de Urología, Buenos Aires, Argentina
| | - Mercedes Beatriz Fuertes
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Carolina Inés Domaica
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Norberto Walter Zwirner
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
11
|
Obajdin J, Davies DM, Maher J. Engineering of chimeric natural killer cell receptors to develop precision adoptive immunotherapies for cancer. Clin Exp Immunol 2020; 202:11-27. [PMID: 32544282 PMCID: PMC7488126 DOI: 10.1111/cei.13478] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2020] [Accepted: 06/07/2020] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells are innate immune effectors which play a crucial role in recognizing and eliminating virally infected and cancerous cells. They effectively distinguish between healthy and distressed self through the integration of signals delivered by germline‐encoded activating and inhibitory cell surface receptors. The frequent up‐regulation of stress markers on genetically unstable cancer cells has prompted the development of novel immunotherapies that exploit such innate receptors. One prominent example entails the development of chimeric antigen receptors (CAR) that detect cell surface ligands bound by NK receptors, coupling this engagement to the delivery of tailored immune activating signals. Here, we review strategies to engineer CARs in which specificity is conferred by natural killer group 2D (NKG2D) or other NK receptor types. Multiple preclinical studies have demonstrated the remarkable ability of chimeric NK receptor‐targeted T cells and NK cells to effectively and specifically eliminate cancer cells and to reject established tumour burdens. Importantly, such systems act not only acutely but, in some cases, they also incite immunological memory. Moreover, CARs targeted with the NKG2D ligand binding domain have also been shown to disrupt the tumour microenvironment, through the targeting of suppressive T regulatory cells, myeloid‐derived suppressor cells and tumour vasculature. Collectively, these findings have led to the initiation of early‐phase clinical trials evaluating both autologous and allogeneic NKG2D‐targeted CAR T cells in the haematological and solid tumour settings.
Collapse
Affiliation(s)
- J Obajdin
- School of Cancer and Pharmaceutical Sciences, CAR Mechanics Laboratory, Guy's Cancer Centre, King's College London, London, UK
| | - D M Davies
- School of Cancer and Pharmaceutical Sciences, CAR Mechanics Laboratory, Guy's Cancer Centre, King's College London, London, UK
| | - J Maher
- School of Cancer and Pharmaceutical Sciences, CAR Mechanics Laboratory, Guy's Cancer Centre, King's College London, London, UK.,Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, London, UK.,Department of Immunology, Eastbourne Hospital, Eastbourne, UK.,Leucid Bio Ltd, Guy's Hospital, London, UK
| |
Collapse
|
12
|
Meza Guzman LG, Keating N, Nicholson SE. Natural Killer Cells: Tumor Surveillance and Signaling. Cancers (Basel) 2020; 12:cancers12040952. [PMID: 32290478 PMCID: PMC7226588 DOI: 10.3390/cancers12040952] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/03/2020] [Accepted: 04/09/2020] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells play a pivotal role in cancer immunotherapy due to their innate ability to detect and kill tumorigenic cells. The decision to kill is determined by the expression of a myriad of activating and inhibitory receptors on the NK cell surface. Cell-to-cell engagement results in either self-tolerance or a cytotoxic response, governed by a fine balance between the signaling cascades downstream of the activating and inhibitory receptors. To evade a cytotoxic immune response, tumor cells can modulate the surface expression of receptor ligands and additionally, alter the conditions in the tumor microenvironment (TME), tilting the scales toward a suppressed cytotoxic NK response. To fully harness the killing power of NK cells for clinical benefit, we need to understand what defines the threshold for activation and what is required to break tolerance. This review will focus on the intracellular signaling pathways activated or suppressed in NK cells and the roles signaling intermediates play during an NK cytotoxic response.
Collapse
Affiliation(s)
- Lizeth G. Meza Guzman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (L.G.M.G.); (S.E.N.); Tel.: +61-9345-2555 (S.E.N.)
| | - Narelle Keating
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sandra E. Nicholson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (L.G.M.G.); (S.E.N.); Tel.: +61-9345-2555 (S.E.N.)
| |
Collapse
|
13
|
Zamai L, Del Zotto G, Buccella F, Gabrielli S, Canonico B, Artico M, Ortolani C, Papa S. Understanding the Synergy of NKp46 and Co-Activating Signals in Various NK Cell Subpopulations: Paving the Way for More Successful NK-Cell-Based Immunotherapy. Cells 2020; 9:cells9030753. [PMID: 32204481 PMCID: PMC7140651 DOI: 10.3390/cells9030753] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 12/31/2022] Open
Abstract
The NK cell population is characterized by distinct NK cell subsets that respond differently to the various activating stimuli. For this reason, the determination of the optimal cytotoxic activation of the different NK cell subsets can be a crucial aspect to be exploited to counter cancer cells in oncologic patients. To evaluate how the triggering of different combination of activating receptors can affect the cytotoxic responses of different NK cell subsets, we developed a microbead-based degranulation assay. By using this new assay, we were able to detect CD107a+ degranulating NK cells even within the less cytotoxic subsets (i.e., resting CD56bright and unlicensed CD56dim NK cells), thus demonstrating its high sensitivity. Interestingly, signals delivered by the co-engagement of NKp46 with 2B4, but not with CD2 or DNAM-1, strongly cooperate to enhance degranulation on both licensed and unlicensed CD56dim NK cells. Of note, 2B4 is known to bind CD48 hematopoietic antigen, therefore this observation may provide the rationale why CD56dim subset expansion correlates with successful hematopoietic stem cell transplantation mediated by alloreactive NK cells against host T, DC and leukemic cells, while sparing host non-hematopoietic tissues and graft versus host disease. The assay further confirms that activation of LFA-1 on NK cells leads to their granule polarization, even if, in some cases, this also takes to an inhibition of NK cell degranulation, suggesting that LFA-1 engagement by ICAMs on target cells may differently affect NK cell response. Finally, we observed that NK cells undergo a time-dependent spontaneous (cytokine-independent) activation after blood withdrawal, an aspect that may strongly bias the evaluation of the resting NK cell response. Altogether our data may pave the way to develop new NK cell activation and expansion strategies that target the highly cytotoxic CD56dim NK cells and can be feasible and useful for cancer and viral infection treatment.
Collapse
Affiliation(s)
- Loris Zamai
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61032 Urbino, Italy
- INFN-Gran Sasso National Laboratory, Assergi, 67100 L’Aquila, Italy
- Correspondence: ; Tel.: +39-0722-304319; Fax: +39-0722-304319
| | - Genny Del Zotto
- Area Aggregazione Servizi e Laboratori Diagnostici, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Flavia Buccella
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61032 Urbino, Italy
| | - Sara Gabrielli
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61032 Urbino, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61032 Urbino, Italy
| | - Marco Artico
- Department of Sensory Organs, Sapienza University of Rome, 00161 Rome, Italy
| | - Claudio Ortolani
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61032 Urbino, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61032 Urbino, Italy
| |
Collapse
|
14
|
Zamai L, Del Zotto G, Buccella F, Gabrielli S, Canonico B, Artico M, Ortolani C, Papa S. Understanding the Synergy of NKp46 and Co-Activating Signals in Various NK Cell Subpopulations: Paving the Way for More Successful NK-Cell-Based Immunotherapy. Cells 2020. [PMID: 32204481 DOI: 10.3390/cells9030753.pmid:32204481;pmcid:pmc7140651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
The NK cell population is characterized by distinct NK cell subsets that respond differently to the various activating stimuli. For this reason, the determination of the optimal cytotoxic activation of the different NK cell subsets can be a crucial aspect to be exploited to counter cancer cells in oncologic patients. To evaluate how the triggering of different combination of activating receptors can affect the cytotoxic responses of different NK cell subsets, we developed a microbead-based degranulation assay. By using this new assay, we were able to detect CD107a+ degranulating NK cells even within the less cytotoxic subsets (i.e., resting CD56bright and unlicensed CD56dim NK cells), thus demonstrating its high sensitivity. Interestingly, signals delivered by the co-engagement of NKp46 with 2B4, but not with CD2 or DNAM-1, strongly cooperate to enhance degranulation on both licensed and unlicensed CD56dim NK cells. Of note, 2B4 is known to bind CD48 hematopoietic antigen, therefore this observation may provide the rationale why CD56dim subset expansion correlates with successful hematopoietic stem cell transplantation mediated by alloreactive NK cells against host T, DC and leukemic cells, while sparing host non-hematopoietic tissues and graft versus host disease. The assay further confirms that activation of LFA-1 on NK cells leads to their granule polarization, even if, in some cases, this also takes to an inhibition of NK cell degranulation, suggesting that LFA-1 engagement by ICAMs on target cells may differently affect NK cell response. Finally, we observed that NK cells undergo a time-dependent spontaneous (cytokine-independent) activation after blood withdrawal, an aspect that may strongly bias the evaluation of the resting NK cell response. Altogether our data may pave the way to develop new NK cell activation and expansion strategies that target the highly cytotoxic CD56dim NK cells and can be feasible and useful for cancer and viral infection treatment.
Collapse
Affiliation(s)
- Loris Zamai
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61032 Urbino, Italy
- INFN-Gran Sasso National Laboratory, Assergi, 67100 L'Aquila, Italy
| | - Genny Del Zotto
- Area Aggregazione Servizi e Laboratori Diagnostici, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Flavia Buccella
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61032 Urbino, Italy
| | - Sara Gabrielli
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61032 Urbino, Italy
| | - Barbara Canonico
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61032 Urbino, Italy
| | - Marco Artico
- Department of Sensory Organs, Sapienza University of Rome, 00161 Rome, Italy
| | - Claudio Ortolani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61032 Urbino, Italy
| | - Stefano Papa
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61032 Urbino, Italy
| |
Collapse
|
15
|
Pahima H, Puzzovio PG, Levi-Schaffer F. 2B4 and CD48: A powerful couple of the immune system. Clin Immunol 2019; 204:64-68. [DOI: 10.1016/j.clim.2018.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 01/10/2023]
|
16
|
SLAM family receptors in natural killer cells - Mediators of adhesion, activation and inhibition via cis and trans interactions. Clin Immunol 2018; 204:37-42. [PMID: 30359773 DOI: 10.1016/j.clim.2018.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 02/06/2023]
Abstract
SLAM family receptors are important for the fine-tuning of immune reactions. Their expression is restricted to cells of hematopoietic origin and most SLAM family receptors are their own ligand. Here we review how these receptors are involved in regulating the functions of Natural Killer (NK) cells. We discuss that promoting cellular adhesion may be a main function of SLAM family receptors in NK cells. The homophilic interactions of SLAM family receptors can not only occur in trans between different cells, but also in cis on the surface of the same cell. This cis interaction additionally modulates the function of the receptors and subsequently affects the activities of NK cells. Finally, SLAM-family receptors can also mediate inhibitory signals under certain conditions. These inhibitory signals can contribute to the functional maturation of NK cells during NK cell education. Therefore, SLAM family receptors are critically involved in many aspects of NK cell functionality.
Collapse
|
17
|
Netter P, Anft M, Watzl C. Termination of the Activating NK Cell Immunological Synapse Is an Active and Regulated Process. THE JOURNAL OF IMMUNOLOGY 2017; 199:2528-2535. [DOI: 10.4049/jimmunol.1700394] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/01/2017] [Indexed: 12/18/2022]
|
18
|
Meazza R, Falco M, Marcenaro S, Loiacono F, Canevali P, Bellora F, Tuberosa C, Locatelli F, Micalizzi C, Moretta A, Mingari MC, Moretta L, Aricò M, Bottino C, Pende D. Inhibitory 2B4 contributes to NK cell education and immunological derangements in XLP1 patients. Eur J Immunol 2017; 47:1051-1061. [PMID: 28386908 DOI: 10.1002/eji.201646885] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/20/2017] [Accepted: 03/28/2017] [Indexed: 11/09/2022]
Abstract
X-linked lymphoproliferative disease 1 (XLP1) is an inherited immunodeficiency, caused by mutations in SH2D1A encoding Signaling Lymphocyte Activation Molecule (SLAM)-associated protein (SAP). In XLP1, 2B4, upon engagement with CD48, has inhibitory instead of activating function. This causes a selective inability of cytotoxic effectors to kill EBV-infected cells, with dramatic clinical sequelae. Here, we investigated the NK cell education in XLP1, upon characterization of killer Ig-like receptor (KIR)/KIR-L genotype and phenotypic repertoire of self-HLA class I specific inhibitory NK receptors (self-iNKRs). We also analyzed NK-cell cytotoxicity against CD48+ or CD48- KIR-ligand matched or autologous hematopoietic cells in XLP1 patients and healthy controls. XLP1 NK cells may show a defective phenotypic repertoire with substantial proportion of cells lacking self-iNKR. These NK cells are cytotoxic and the inhibitory 2B4/CD48 pathway plays a major role to prevent killing of CD48+ EBV-transformed B cells and M1 macrophages. Importantly, self-iNKR defective NK cells kill CD48- targets, such as mature DCs. Self-iNKR- NK cells in XLP1 patients are functional even in resting conditions, suggesting a role of the inhibitory 2B4/CD48 pathway in the education process during NK-cell maturation. Killing of autologous mature DC by self-iNKR defective XLP1 NK cells may impair adaptive responses, further exacerbating the patients' immune defect.
Collapse
Affiliation(s)
- Raffaella Meazza
- Dipartimento delle Terapie Oncologiche Integrate, IRCCS AOU San Martino-IST, Genoa, Italy
| | - Michela Falco
- Dipartimento di Ricerca e Diagnostica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Stefania Marcenaro
- Dipartimento di Ricerca e Diagnostica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Fabrizio Loiacono
- Dipartimento delle Terapie Oncologiche Integrate, IRCCS AOU San Martino-IST, Genoa, Italy.,Dipartimento di Ricerca e Diagnostica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Paolo Canevali
- Dipartimento di Ricerca e Diagnostica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesca Bellora
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genoa, Italy
| | - Claudia Tuberosa
- Dipartimento delle Terapie Oncologiche Integrate, IRCCS AOU San Martino-IST, Genoa, Italy.,Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genoa, Italy
| | - Franco Locatelli
- Dipartimento di Oncoematologia Pediatrica, IRCCS Ospedale Bambino Gesù, Rome, Italy.,Università di Pavia, Pavia, Italy
| | - Concetta Micalizzi
- Dipartimento di Oncoematologia Pediatrica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alessandro Moretta
- Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genoa, Italy
| | - Maria C Mingari
- Dipartimento delle Terapie Oncologiche Integrate, IRCCS AOU San Martino-IST, Genoa, Italy.,Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genoa, Italy
| | - Lorenzo Moretta
- Dipartimento dei Laboratori, Area di Ricerca di Immunologia, IRCCS Ospedale Bambino Gesù, Rome, Italy
| | | | - Cristina Bottino
- Dipartimento di Ricerca e Diagnostica, IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Dipartimento di Medicina Sperimentale, Università degli Studi di Genova, Genoa, Italy
| | - Daniela Pende
- Dipartimento delle Terapie Oncologiche Integrate, IRCCS AOU San Martino-IST, Genoa, Italy
| |
Collapse
|