1
|
Jin Y, Wang Y, Wang C, Zhang L, Gao D, Liu H, Cao Q, Tian C, Bian Y, Wang Y. Salidroside inhibits osteoclast differentiation based on osteoblast-osteoclast interaction via HIF-1a pathway. Chin J Nat Med 2025; 23:572-584. [PMID: 40383613 DOI: 10.1016/s1875-5364(25)60864-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/25/2024] [Accepted: 01/02/2025] [Indexed: 05/20/2025]
Abstract
This study investigated the regulatory potential of salidroside (SAL), a primary active compound in Rhodiola rosea L., on osteoclast differentiation by modulating the hypoxia-inducible factor 1-alpha (HIF-1a) pathway in osteoblasts. Luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay were employed to validate whether the receptor activator of nuclear factor-?B ligand (RANKL) is the downstream target gene of HIF-1a in osteoblasts. The study also utilized lipopolysaccharide (LPS)-induced mouse osteolysis to examine the impact of SAL on osteolysis in vivo. Furthermore, conditioned medium (CM) from SAL-pretreated osteoblasts was used to investigate the paracrine effects on osteoclastogenesis through the HIF-1a pathway. Hypoxic condition-induced overexpression of HIF-1a upregulated RANKL levels by binding to the RANKL promoter and enhancing transcription in osteoblastic cells. In vivo, SAL significantly alleviated bone tissue hypoxia and decreased the expression of HIF-1a by downregulating the expression of RANKL, vascular endothelial growth factor (VEGF), interleukin 6 (IL-6), and angiopoietin-like 4 (ANGPTL4). In the paracrine experiment, conditioned media from SAL-pretreated osteoblasts inhibited differentiation through the HIF-1a/RANKL, VEGF, IL-6, and ANGPTL4 pathways. RANKL emerges as the downstream target gene regulated by HIF-1a in osteoblasts. SAL significantly alleviates bone tissue hypoxia and bone loss in LPS-induced osteolysis through the HIF-1a/RANKL, VEGF, IL-6, and ANGPTL4 pathways. SAL inhibits osteoclast differentiation by regulating osteoblast paracrine secretion.
Collapse
Affiliation(s)
- Yutong Jin
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yao Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chuan Wang
- Department of Stomatology, NHC Key Laboratory of Hormones and Development, Chu Hsien- I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Department of Stomatology, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China
| | - Lingling Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dandan Gao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haizhao Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qingwen Cao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chenchen Tian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Yue Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
2
|
Chen Y, Xiao H, Liu Z, Teng F, Yang A, Geng B, Sheng X, Xia Y. Sirt1: An Increasingly Interesting Molecule with a Potential Role in Bone Metabolism and Osteoporosis. Biomolecules 2024; 14:970. [PMID: 39199358 PMCID: PMC11352324 DOI: 10.3390/biom14080970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Osteoporosis (OP) is a common metabolic bone disease characterized by low bone mass, decreased bone mineral density, and degradation of bone tissue microarchitecture. However, our understanding of the mechanisms of bone remodeling and factors affecting bone mass remains incomplete. Sirtuin1 (SIRT1) is a nicotinamide adenine dinucleotide-dependent deacetylase that regulates a variety of cellular metabolisms, including inflammation, tumorigenesis, and bone metabolism. Recent studies have emphasized the important role of SIRT1 in bone homeostasis. This article reviews the role of SIRT1 in bone metabolism and OP and also discusses therapeutic strategies and future research directions for targeting SIRT1.
Collapse
Affiliation(s)
- Yi Chen
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Hefang Xiao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Zirui Liu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Fei Teng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Ao Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Bin Geng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Xiaoyun Sheng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| | - Yayi Xia
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, China; (Y.C.); (H.X.); (Z.L.); (F.T.); (A.Y.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- The Second School of Clinical Medical, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
3
|
Ghassib I, Zhang H, Qi S, Moshen R, Mishina Y, Bellido T, Liu F. Off-target activity of the 8 kb Dmp1-Cre results in the deletion of Tsc1 gene in mouse intestinal mesenchyme. Transgenic Res 2023; 32:135-141. [PMID: 36547785 DOI: 10.1007/s11248-022-00332-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
The Dmp1-Cre mouse, expressing Cre from an 8-kb DNA fragment of the mouse Dmp1 gene, is a common tool to study gene functions in osteocytes. Here we report that the deletion of Tsc1 (TSC complex subunit 1) by 8 kb Dmp1-Cre causes rectal prolapse in mice. Histological examination shows the presence of colon polyps in Tsc1-deficient mice in association with significantly larger colon and narrower lumen, which recapitulates the common polyps pathology in Tuberous Sclerosis, an autosomal dominant disorder caused by mutations in either TSC1 or TSC2. The intestine in Tsc1-deficient mice is also enlarged with the presence of taller villi. Using the Ai14 reporter mice that express a red fluorescence protein upon Cre recombination, we show that 8 kb Dmp1-Cre activity is evident in portion of the mesenchyme of the colon and small intestine. Lastly, our data show that Tsc1 deletion by Dmp1-Cre leads to an increased proliferation in the mesenchyme of colon, which at least partly contributes to the polyps pathology seen in this mouse model and is likely a contributing factor of the polyps in Tuberous Sclerosis.
Collapse
Affiliation(s)
- Iya Ghassib
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, 1011 N University Ave, Ann Arbor, MI, 48109, USA
| | - Honghao Zhang
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, 1011 N University Ave, Ann Arbor, MI, 48109, USA
| | - Shuqun Qi
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, 1011 N University Ave, Ann Arbor, MI, 48109, USA
| | - Rawan Moshen
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, 1011 N University Ave, Ann Arbor, MI, 48109, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, 1011 N University Ave, Ann Arbor, MI, 48109, USA
| | - Teresita Bellido
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Fei Liu
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, 1011 N University Ave, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
4
|
Martiniakova M, Mondockova V, Biro R, Kovacova V, Babikova M, Zemanova N, Ciernikova S, Omelka R. The link between bone-derived factors osteocalcin, fibroblast growth factor 23, sclerostin, lipocalin 2 and tumor bone metastasis. Front Endocrinol (Lausanne) 2023; 14:1113547. [PMID: 36926025 PMCID: PMC10012867 DOI: 10.3389/fendo.2023.1113547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/13/2023] [Indexed: 03/04/2023] Open
Abstract
The skeleton is the third most common site of metastatic disease, which causes serious bone complications and short-term prognosis in cancer patients. Prostate and breast cancers are responsible for the majority of bone metastasis, resulting in osteolytic or osteoblastic lesions. The crosstalk between bone cells and their interactions with tumor cells are important in the development of lesions. Recently, both preclinical and clinical studies documented the clinical relevance of bone-derived factors, including osteocalcin (OC) and its undercarboxylated form (ucOC), fibroblast growth factor 23 (FGF23), sclerostin (SCL), and lipocalin 2 (LCN2) as prognostic tumor biomarkers and potential therapeutic targets in bone metastasis. Both OC and ucOC could be useful targets for the prevention of bone metastasis in breast cancer. Moreover, elevated OC level may be a metastatic marker of prostate cancer. FGF23 is particularly important for those forms of cancer that primarily affect bone and/or are characterized by bone metastasis. In other tumor entities, increased FGF23 level is enigmatic. SCL plays a significant role in the pathogenesis of both osteolytic and osteoblastic lesions, as its levels are high in metastatic breast and prostate cancers. Elevated expression levels of LCN2 have been found in aggressive subtypes of cancer. However, its role in anti-metastasis varies significantly between different cancer types. Anyway, all aforementioned bone-derived factors can be used as promising tumor biomarkers. As metastatic bone disease is generally not curable, targeting bone factors represents a new trend in the prevention of bone metastasis and patient care.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
- *Correspondence: Monika Martiniakova, ; Radoslav Omelka,
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Roman Biro
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Martina Babikova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Nina Zemanova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
| | - Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Nitra, Slovakia
- *Correspondence: Monika Martiniakova, ; Radoslav Omelka,
| |
Collapse
|
5
|
Yang J, Zhang W, Lai E, Liu W, Lai P, Zou Z, Wang W, Bai X. Deletion of Rheb1 in Osteocytes Leads to Osteopenia Characterized by Reduced Bone Formation and Enhanced Bone Resorption. DNA Cell Biol 2022; 41:683-690. [PMID: 35687365 DOI: 10.1089/dna.2021.0874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ras homologue enriched in brain 1 (Rheb1), an upstream activator of the mechanistic target of rapamycin complex 1 (mTORC1), is known to modulate various cellular processes. However, its impact on bone metabolism in vivo remains unknown. The study aimed at understanding the role of Rheb1 on bone homeostasis. We measured the serum parameters and performed histomorphometry, quantitative real-time polymerase chain reaction, and Western blotting, along with the generation of mouse gene knockout (KO) model, and conducted a microcomputed tomography analysis and tartrate-resistant acid phosphatase staining, to delineate the impacts of Rheb1 on bone homeostasis. In the Rheb1 KO mice, the results showed that Rheb1 KO caused significant damage to the bone microarchitecture, indicating that mTORC1 activity was essential for the regulation of bone homeostasis. Specifically, suppressed mineralization activity in primary osteoblasts and a decreased osteoblast number were observed in the Rheb1 KO mice, demonstrating that loss of Rheb1 led to impaired osteoblastic differentiation. Furthermore, the higher apoptotic ratio in Rheb1-null osteocytes could promote Tnfsf11 expression and lead to an increase in osteoclasts, indicating increased bone resorption activity in the KO mice. The findings confirmed that Rheb1 deletion in osteoblasts/osteocytes led to osteopenia due to impaired bone formation and enhanced bone resorption.
Collapse
Affiliation(s)
- Jun Yang
- Department of Hepatobiliary and Pancreatic Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wuju Zhang
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Eryong Lai
- Oncology Department of the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Wen Liu
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Pinglin Lai
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zhipeng Zou
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weidong Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Xiaochun Bai
- Department of Hepatobiliary and Pancreatic Surgery, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Xu Y, Huang M, He W, He C, Chen K, Hou J, Huang M, Jiao Y, Liu R, Zou N, Liu L, Li C. Heterotopic Ossification: Clinical Features, Basic Researches, and Mechanical Stimulations. Front Cell Dev Biol 2022; 10:770931. [PMID: 35145964 PMCID: PMC8824234 DOI: 10.3389/fcell.2022.770931] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022] Open
Abstract
Heterotopic ossification (HO) is defined as the occurrence of extraskeletal bone in soft tissue. Although this pathological osteogenesis process involves the participation of osteoblasts and osteoclasts during the formation of bone structures, it differs from normal physiological osteogenesis in many features. In this article, the primary characteristics of heterotopic ossification are reviewed from both clinical and basic research perspectives, with a special highlight on the influence of mechanics on heterotopic ossification, which serves an important role in the prophylaxis and treatment of HO.
Collapse
Affiliation(s)
- Yili Xu
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Mei Huang
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Wenzhen He
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Chen He
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Kaixuan Chen
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Jing Hou
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Min Huang
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Yurui Jiao
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Ran Liu
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Nanyu Zou
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Ling Liu
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
7
|
Zhang Y, Chen C, Liu Y, Rao S, Tan Y, Qian Y, Xia K, Huang J, Liu X, Hong C, Yin H, Cao J, Feng S, He Z, Li Y, Luo Z, Wu B, Yan Z, Chen T, Chen M, Wang Y, Wang Z, Liu Z, Luo M, Hu X, Jin L, Wan T, Yue T, Tang S, Xie H. Neuronal Induction of Bone-Fat Imbalance through Osteocyte Neuropeptide Y. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100808. [PMID: 34719888 PMCID: PMC8693044 DOI: 10.1002/advs.202100808] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 08/24/2021] [Indexed: 05/08/2023]
Abstract
A differentiation switch of bone marrow mesenchymal stem/stromal cells (BMSCs) from osteoblasts to adipocytes contributes to age- and menopause-associated bone loss and marrow adiposity. Here it is found that osteocytes, the most abundant bone cells, promote adipogenesis and inhibit osteogenesis of BMSCs by secreting neuropeptide Y (NPY), whose expression increases with aging and osteoporosis. Deletion of NPY in osteocytes generates a high bone mass phenotype, and attenuates aging- and ovariectomy (OVX)-induced bone-fat imbalance in mice. Osteocyte NPY production is under the control of autonomic nervous system (ANS) and osteocyte NPY deletion blocks the ANS-induced regulation of BMSC fate and bone-fat balance. γ-Oryzanol, a clinically used ANS regulator, significantly increases bone formation and reverses aging- and OVX-induced osteocyte NPY overproduction and marrow adiposity in control mice, but not in mice lacking osteocyte NPY. The study suggests a new mode of neuronal control of bone metabolism through the ANS-induced regulation of osteocyte NPY.
Collapse
|
8
|
Marini F, Giusti F, Iantomasi T, Brandi ML. Genetic Determinants of Inherited Endocrine Tumors: Do They Have a Direct Role in Bone Metabolism Regulation and Osteoporosis? Genes (Basel) 2021; 12:genes12081286. [PMID: 34440460 PMCID: PMC8393565 DOI: 10.3390/genes12081286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Endocrine tumors are neoplasms originating from specialized hormone-secreting cells. They can develop as sporadic tumors, caused by somatic mutations, or in the context of familial Mendelian inherited diseases. Congenital forms, manifesting as syndromic or non-syndromic diseases, are caused by germinal heterozygote autosomal dominant mutations in oncogenes or tumor suppressor genes. The genetic defect leads to a loss of cell growth control in target endocrine tissues and to tumor development. In addition to the classical cancer manifestations, some affected patients can manifest alterations of bone and mineral metabolism, presenting both as pathognomonic and/or non-specific skeletal clinical features, which can be either secondary complications of endocrine functioning primary tumors and/or a direct consequence of the gene mutation. Here, we specifically review the current knowledge on possible direct roles of the genes that cause inherited endocrine tumors in the regulation of bone modeling and remodeling by exploring functional in vitro and in vivo studies highlighting how some of these genes participate in the regulation of molecular pathways involved in bone and mineral metabolism homeostasis, and by describing the potential direct effects of gene mutations on the development of skeletal and mineral metabolism clinical features in patients.
Collapse
Affiliation(s)
- Francesca Marini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (F.M.); (F.G.); (T.I.)
- Fondazione Italiana Ricerca sulle Malattie dell’Osso, Italian Foundation for the Research on Bone Diseases, 50141 Florence, Italy
| | - Francesca Giusti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (F.M.); (F.G.); (T.I.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (F.M.); (F.G.); (T.I.)
| | - Maria Luisa Brandi
- Fondazione Italiana Ricerca sulle Malattie dell’Osso, Italian Foundation for the Research on Bone Diseases, 50141 Florence, Italy
- Correspondence: ; Tel.: +39-055-2336663
| |
Collapse
|
9
|
Luo X, Yin J, Miao S, Feng W, Ning T, Xu S, Huang S, Zhang S, Liao Y, Hao C, Wu B, Ma D. mTORC1 promotes mineralization via p53 pathway. FASEB J 2021; 35:e21325. [PMID: 33508145 DOI: 10.1096/fj.202002016r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 12/30/2022]
Abstract
The objectives of our study were to investigate the roles of mTORC1 in odontoblast proliferation and mineralization and to determine the mechanism by which mTORC1 regulates odontoblast mineralization. In vitro, MDPC23 cells were treated with rapamycin (10 nmol/L) and transfected with a lentivirus for short hairpin (shRNA)-mediated silencing of the tuberous sclerosis complex (shTSC1) to inhibit and activate mTORC1, respectively. CCK8 assays, flow cytometry, Alizarin red S staining, ALP staining, qRT-PCR, and western blot analysis were performed. TSC1-conditional knockout (DMP1-Cre+ ; TSC1f/f , hereafter CKO) mice and littermate control (DMP1-Cre- ; TSC1f/f , hereafter WT) mice were generated. H&E staining, immunofluorescence, and micro-CT analysis were performed. Transcriptome sequencing analysis was used to screen the mechanism of this process. mTORC1 inactivation decreased the cell proliferation. The qRT-PCR and western blot results showed that mineralization-related genes and proteins were downregulated in mTORC1-inactivated cells. Moreover, mTORC1 overactivation promoted cell proliferation and mineralization-related gene and protein expression. In vivo, the micro-CT results showed that DV/TV and dentin thickness were higher in CKO mice than in controls and H&E staining showed the same results. Mineralization-related proteins expression was upregulated. Transcriptome sequencing analysis revealed that p53 pathway-associated genes were differentially expressed in TSC1-deficient cells. By inhibiting p53 alone or both mTORC1 and p53 with rapamycin and a p53 inhibitor, we elucidated that p53 acts downstream of mTORC1 and that mTORC1 thereby promotes odontoblast mineralization. Taken together, our findings demonstrate that the role of mTORC1 in odontoblast proliferation and mineralization, and confirm that mTORC1 upregulates odontoblast mineralization via the p53 pathway.
Collapse
Affiliation(s)
- Xinghong Luo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,College of Stomatology, Southern Medical University, Guangzhou, China
| | - Jingyao Yin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,College of Stomatology, Southern Medical University, Guangzhou, China
| | - Shenghong Miao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,College of Stomatology, Southern Medical University, Guangzhou, China
| | - Weiqing Feng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,College of Stomatology, Southern Medical University, Guangzhou, China
| | - Tingting Ning
- College of Stomatology, Southern Medical University, Guangzhou, China.,Department of Endodontics, Stomatology Hospital, Southern Medical University, Guangzhou, China
| | - Shuaimei Xu
- College of Stomatology, Southern Medical University, Guangzhou, China.,Department of Endodontics, Stomatology Hospital, Southern Medical University, Guangzhou, China
| | - Shijiang Huang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Sheng Zhang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunbo Hao
- Department of Stomatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,College of Stomatology, Southern Medical University, Guangzhou, China
| | - Dandan Ma
- Department of Endodontics, Stomatology Hospital, Southern Medical University, Guangzhou, China.,Department of Advanced Oral Sciences & Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, USA
| |
Collapse
|
10
|
Endocrine role of bone in the regulation of energy metabolism. Bone Res 2021; 9:25. [PMID: 34016950 PMCID: PMC8137703 DOI: 10.1038/s41413-021-00142-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 12/20/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023] Open
Abstract
Bone mainly functions as a supportive framework for the whole body and is the major regulator of calcium homeostasis and hematopoietic function. Recently, an increasing number of studies have characterized the significance of bone as an endocrine organ, suggesting that bone-derived factors regulate local bone metabolism and metabolic functions. In addition, these factors can regulate global energy homeostasis by altering insulin sensitivity, feeding behavior, and adipocyte commitment. These findings may provide a new pathological mechanism for related metabolic diseases or be used in the diagnosis, treatment, and prevention of metabolic diseases such as osteoporosis, obesity, and diabetes mellitus. In this review, we summarize the regulatory effect of bone and bone-derived factors on energy metabolism and discuss directions for future research.
Collapse
|
11
|
Abstract
Periodontitis is one of the most prevalent epidemics affecting human health and life recently, and exploration of the pathogenesis and treatment of periodontitis has been valued by scholars. In recent years, sclerostin, a new factor on bone resorption and reconstruction caused by inflammation and mechanical stimulation, has been a research hotspot. This article summarizes the researches on sclerostin in periodontitis development in recent years. Among them, sclerostin has been shown to be a critical negative regulator of bone formation, thereby inhibiting bone remodeling in periodontitis development, and is closely associated with tooth movement. Besides, evidence indicates that the removal of sclerostin seems to reasonably protect the alveolar bone from resorption. Regulation of sclerostin expression is a novel, promising treatment for periodontitis and addresses several complications seen with traditional therapies; accordingly, many drugs with similar mechanisms have emerged. Moreover, the application prospect of sclerostin in periodontal therapy combined with orthodontic treatment is another promising approach. There are also a lot of drugs that regulate sclerostin. Anti-sclerostin antibody (Scl-Ab) is the most direct one that inhibits bone resorption caused by sclerostin. At present, drugs that inhibit the expression of sclerostin have been applied to the treatment of diseases such as multiple myeloma and osteoporosis. Therefore, the application of sclerostin in the oral field is just around the corner, which provides a new therapeutic bone regulation strategy in oral and general health.
Collapse
|
12
|
Jiang C, Zhou Z, Lin Y, Shan H, Xia W, Yin F, Wang N, Zhou L, Gao Y, Yu X. Astragaloside IV ameliorates steroid-induced osteonecrosis of the femoral head by repolarizing the phenotype of pro-inflammatory macrophages. Int Immunopharmacol 2021; 93:107345. [PMID: 33563553 DOI: 10.1016/j.intimp.2020.107345] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022]
Abstract
Osteonecrosis of the femoral head (ON-FH) is a common complication of steroid use. Pro-inflammatory macrophages play a crucial role in the apoptosis of osteocytes. The objective of the study was to evaluate a plant extract astragaloside IV (AS-IV) in treating ON-FN. Bone-marrow-derived macrophages (BMDMs) were treated with lipopolysaccharides (LPS), IFN-γ or IL-4 to induce M1 and M2-like phenotypes. Quantitative real-time PCR and Western blot were used to examine M1 and M2 phenotypic markers. Flow cytometry was used to analyze MHC II, CD206, F4/80, and CD11b levels and cell apoptosis. Glucocorticoid was used to induce ON-FN in mice. TNF-α and IL-1β levels in femoral head were determined using enzyme-linked immunosorbent assay. AS-IV repolarized macrophages from M1 to M2 phenotypes. Culture medium from AS-IV treated M1 macrophages induced less cell apoptosis osteocytes compared to that from untreated M1 macrophages. In ON-FH mice, the ratio of M1 macrophages was decreased in the femoral head by AS-IV, concomitant with a decrease in TNF-α and IL-1β levels. AS-IV is effective in alleviating ON-FH through its effects in repolarizing macrophages from M1-like phenotype to M2-like phenotype, promoting survival of osteocytes, reducing arthritic symptoms, and decreasing inflammatory cytokines.
Collapse
Affiliation(s)
- Chaolai Jiang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zubin Zhou
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yiwei Lin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Haojie Shan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Wenyang Xia
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Fuli Yin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Nan Wang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Lihui Zhou
- Department of Orthopaedic Surgery, Xiangshan First People's Hospital, Ningbo 315700, Zhejiang, China
| | - Youshui Gao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xiaowei Yu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
13
|
Mallela K, Kumar A. Role of TSC1 in physiology and diseases. Mol Cell Biochem 2021; 476:2269-2282. [PMID: 33575875 DOI: 10.1007/s11010-021-04088-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
Since its initial discovery as the gene altered in Tuberous Sclerosis Complex (TSC), an autosomal dominant disorder, the interest in TSC1 (Tuberous Sclerosis Complex 1) has steadily risen. TSC1, an essential component of the pro-survival PI3K/AKT/MTOR signaling pathway, plays an important role in processes like development, cell growth and proliferation, survival, autophagy and cilia development by co-operating with a variety of regulatory molecules. Recent studies have emphasized the tumor suppressive role of TSC1 in several human cancers including liver, lung, bladder, breast, ovarian, and pancreatic cancers. TSC1 perceives inputs from various signaling pathways, including TNF-α/IKK-β, TGF-β-Smad2/3, AKT/Foxo/Bim, Wnt/β-catenin/Notch, and MTOR/Mdm2/p53 axis, thereby regulating cancer cell proliferation, metabolism, migration, invasion, and immune regulation. This review provides a first comprehensive evaluation of TSC1 and illuminates its diverse functions apart from its involvement in TSC genetic disorder. Further, we have summarized the physiological functions of TSC1 in various cellular events and conditions whose dysregulation may lead to several pathological manifestations including cancer.
Collapse
Affiliation(s)
- Karthik Mallela
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Arun Kumar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
14
|
The mTORC1 complex in pre-osteoblasts regulates whole-body energy metabolism independently of osteocalcin. Bone Res 2021; 9:10. [PMID: 33551450 PMCID: PMC7868369 DOI: 10.1038/s41413-020-00123-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 09/23/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Overnutrition causes hyperactivation of mTORC1-dependent negative feedback loops leading to the downregulation of insulin signaling and development of insulin resistance. In osteoblasts (OBs), insulin signaling plays a crucial role in the control of systemic glucose homeostasis. We utilized mice with conditional deletion of Rptor to investigate how the loss of mTORC1 function in OB affects glucose metabolism under normal and overnutrition dietary states. Compared to the controls, chow-fed Rptorob−/− mice had substantially less fat mass and exhibited adipocyte hyperplasia. Remarkably, upon feeding with high-fat diet, mice with pre- and post-natal deletion of Rptor in OBs were protected from diet-induced obesity and exhibited improved glucose metabolism with lower fasting glucose and insulin levels, increased glucose tolerance and insulin sensitivity. This leanness and resistance to weight gain was not attributable to changes in food intake, physical activity or lipid absorption but instead was due to increased energy expenditure and greater whole-body substrate flexibility. RNA-seq revealed an increase in glycolysis and skeletal insulin signaling pathways, which correlated with the potentiation of insulin signaling and increased insulin-dependent glucose uptake in Rptor-knockout osteoblasts. Collectively, these findings point to a critical role for the mTORC1 complex in the skeletal regulation of whole-body glucose metabolism and the skeletal development of insulin resistance.
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Skeletal adaptation to mechanical loading plays a critical role in bone growth and the maintenance of bone homeostasis. Osteocytes are postulated to serve as a hub orchestrating bone remodeling. The recent findings on the molecular mechanisms by which osteocytes sense mechanical loads and the downstream bone-forming factors are reviewed. RECENT FINDINGS Calcium channels have been implicated in mechanotransduction in bone cells for a long time. Efforts have been made to identify a specific calcium channel mediating the skeletal response to mechanical loads. Recent studies have revealed that Piezo1, a mechanosensitive ion channel, is critical for normal bone growth and is essential for the skeletal response to mechanical loading. Identification of mechanosensors and their downstream effectors in mechanosensing bone cells is essential for new strategies to modulate regenerative responses and develop therapies to treat the bone loss related to disuse or advanced age.
Collapse
Affiliation(s)
- Xuehua Li
- Department of Orthopaedic Surgery, Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jacob Kordsmeier
- Department of Orthopaedic Surgery, Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jinhu Xiong
- Department of Orthopaedic Surgery, Center for Musculoskeletal Disease Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
16
|
Sasaki F, Hayashi M, Ono T, Nakashima T. The regulation of RANKL by mechanical force. J Bone Miner Metab 2021; 39:34-44. [PMID: 32889574 DOI: 10.1007/s00774-020-01145-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022]
Abstract
Receptor activator of nuclear factor-κB ligand (RANKL) is a key mediator of osteoclast differentiation and bone resorption. Osteoblast-lineage cells including osteoblasts and osteocytes express RANKL, which is regulated by several different factors, including hormones, cytokines, and mechanical forces. In vivo and in vitro analyses have demonstrated that various types of mechanosensing proteins on the cell membrane (i.e. mechanosensors) and intracellular mechanosignaling proteins play essential roles in the differentiation and functions of osteoblasts, osteoclasts, and osteocytes via soluble factors, such as sclerostin, Wnt ligands, and RANKL. This section provides an overview of the in vivo and in vitro evidence for the regulation of RANKL expression by mechanosensing and mechanotransduction.
Collapse
Affiliation(s)
- Fumiyuki Sasaki
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan.
- Core Research for Evolutional Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan.
| | - Mikihito Hayashi
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan.
- Precursory Research for Innovative Medical Care (PRIME), Japan Agency for Medical Research and Development, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan.
| | - Takehito Ono
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan.
- Core Research for Evolutional Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan.
| | - Tomoki Nakashima
- Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan.
- Core Research for Evolutional Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Yushima 1-5-45, Bunkyo-ku, Tokyo, 113-8549, Japan.
| |
Collapse
|
17
|
Sánchez-de-Diego C, Pedrazza L, Pimenta-Lopes C, Martinez-Martinez A, Dahdah N, Valer JA, Garcia-Roves P, Rosa JL, Ventura F. NRF2 function in osteocytes is required for bone homeostasis and drives osteocytic gene expression. Redox Biol 2020; 40:101845. [PMID: 33373776 PMCID: PMC7773566 DOI: 10.1016/j.redox.2020.101845] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022] Open
Abstract
Osteocytes, the most abundant bone cell type, are derived from osteoblasts through a process in which they are embedded in an osteoid. We previously showed that nutrient restriction promotes the osteocyte transcriptional program and is associated with increased mitochondrial biogenesis. Here, we show that increased mitochondrial biogenesis increase reactive oxygen species (ROS) levels and consequently, NRF2 activity during osteocytogenesis. NRF2 activity promotes osteocyte-specific expression of Dmp1, Mepe, and Sost in IDG-SW3 cells, primary osteocytes, and osteoblasts, and in murine models with Nfe2l2 deficiency in osteocytes or osteoblasts. Moreover, ablation of Nfe2l2 in osteocytes or osteoblasts generates osteopenia and increases osteoclast numbers with marked sexual dimorphism. Finally, treatment with dimethyl fumarate prevented the deleterious effects of ovariectomy in trabecular bone masses of mice and restored osteocytic gene expression. Altogether, we uncovered the role of NRF2 activity in osteocytes during the regulation of osteocyte gene expression and maintenance of bone homeostasis. ROS levels and NRF2 activity are increased during osteocytogenesis. NRF2 drives osteocyte specification and activate the transcription of osteocyte-specific genes. NRF2 in osteocytes has a fundamental role in bone homeostasis and its deletion induces osteopenia. Activation of NRF2 with dimethyl fumarate prevents osteopenia induced by ovariectomy.
Collapse
Affiliation(s)
- Cristina Sánchez-de-Diego
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Leonardo Pedrazza
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Carolina Pimenta-Lopes
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Arturo Martinez-Martinez
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Norma Dahdah
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - José Antonio Valer
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Pablo Garcia-Roves
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain.
| |
Collapse
|