1
|
Kislova AV, Zheglo D, Pozhitnova VO, Sviridov PS, Gadzhieva EP, Voronina ES. Replication stress causes delayed mitotic entry and chromosome 12 fragility at the ANKS1B large neuronal gene in human induced pluripotent stem cells. Chromosome Res 2023; 31:23. [PMID: 37597021 DOI: 10.1007/s10577-023-09729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/21/2023]
Abstract
Substantial background level of replication stress is a feature of embryonic and induced pluripotent stem cells (iPSCs), which can predispose to numerical and structural chromosomal instability, including recurrent aberrations of chromosome 12. In differentiated cells, replication stress-sensitive genomic regions, including common fragile sites, are widely mapped through mitotic chromosome break induction by mild aphidicolin treatment, an inhibitor of replicative polymerases. IPSCs exhibit lower apoptotic threshold and higher repair capacity hindering fragile site mapping. Caffeine potentiates genotoxic effects and abrogates G2/M checkpoint delay induced by chemical and physical mutagens. Using 5-ethynyl-2'-deoxyuridine (EdU) for replication labeling, we characterized the mitotic entry dynamics of asynchronous iPSCs exposed to aphidicolin and/or caffeine. Under the adjusted timing of replication stress exposure accounting revealed cell cycle delay, higher metaphase chromosome breakage rate was observed in iPSCs compared to primary lymphocytes. Using differential chromosome staining and subsequent locus-specific fluorescent in situ hybridization, we mapped the FRA12L fragile site spanning the large neuronal ANKS1B gene at 12q23.1, which may contribute to recurrent chromosome 12 missegregation and rearrangements in iPSCs. Publicly available data on the ANKS1B genetic alterations and their possible functional impact are reviewed. Our study provides the first evidence of common fragile site induction in iPSCs and reveals potential somatic instability of a clinically relevant gene during early human development and in vitro cell expansion.
Collapse
Affiliation(s)
| | - Diana Zheglo
- Laboratory of Mutagenesis, Research Centre for Medical Genetics, Moscow, Russia.
| | | | - Philipp S Sviridov
- Laboratory of Mutagenesis, Research Centre for Medical Genetics, Moscow, Russia
| | - Elmira P Gadzhieva
- Laboratory of Mutagenesis, Research Centre for Medical Genetics, Moscow, Russia
| | | |
Collapse
|
2
|
Milagre I, Pereira C, Oliveira RA. Compromised Mitotic Fidelity in Human Pluripotent Stem Cells. Int J Mol Sci 2023; 24:11933. [PMID: 37569309 PMCID: PMC10418648 DOI: 10.3390/ijms241511933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Human pluripotent stem cells (PSCs), which include both embryonic and induced pluripotent stem cells, are widely used in fundamental and applied biomedical research. They have been instrumental for better understanding development and cell differentiation processes, disease origin and progression and can aid in the discovery of new drugs. PSCs also hold great potential in regenerative medicine to treat or diminish the effects of certain debilitating diseases, such as degenerative disorders. However, some concerns have recently been raised over their safety for use in regenerative medicine. One of the major concerns is the fact that PSCs are prone to errors in passing the correct number of chromosomes to daughter cells, resulting in aneuploid cells. Aneuploidy, characterised by an imbalance in chromosome number, elicits the upregulation of different stress pathways that are deleterious to cell homeostasis, impair proper embryo development and potentiate cancer development. In this review, we will summarize known molecular mechanisms recently revealed to impair mitotic fidelity in human PSCs and the consequences of the decreased mitotic fidelity of these cells. We will finish with speculative views on how the physiological characteristics of PSCs can affect the mitotic machinery and how their suboptimal mitotic fidelity may be circumvented.
Collapse
Affiliation(s)
- Inês Milagre
- Católica Biomedical Research Centre, Católica Medical School, Universidade Católica Portuguesa, 1649-023 Lisbon, Portugal
| | | | - Raquel A. Oliveira
- Católica Biomedical Research Centre, Católica Medical School, Universidade Católica Portuguesa, 1649-023 Lisbon, Portugal
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| |
Collapse
|
3
|
van den Berg SJW, Jansen LET. SUMO control of centromere homeostasis. Front Cell Dev Biol 2023; 11:1193192. [PMID: 37181753 PMCID: PMC10172491 DOI: 10.3389/fcell.2023.1193192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Centromeres are unique chromosomal loci that form the anchorage point for the mitotic spindle during mitosis and meiosis. Their position and function are specified by a unique chromatin domain featuring the histone H3 variant CENP-A. While typically formed on centromeric satellite arrays, CENP-A nucleosomes are maintained and assembled by a strong self-templated feedback mechanism that can propagate centromeres even at non-canonical sites. Central to the epigenetic chromatin-based transmission of centromeres is the stable inheritance of CENP-A nucleosomes. While long-lived at centromeres, CENP-A can turn over rapidly at non-centromeric sites and even erode from centromeres in non-dividing cells. Recently, SUMO modification of the centromere complex has come to the forefront as a mediator of centromere complex stability, including CENP-A chromatin. We review evidence from different models and discuss the emerging view that limited SUMOylation appears to play a constructive role in centromere complex formation, while polySUMOylation drives complex turnover. The deSUMOylase SENP6/Ulp2 and the proteins segregase p97/Cdc48 constitute the dominant opposing forces that balance CENP-A chromatin stability. This balance may be key to ensuring proper kinetochore strength at the centromere while preventing ectopic centromere formation.
Collapse
Affiliation(s)
- Sebastiaan J. W. van den Berg
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Instituto Gulbenkian de Ciencia, Oeiras, Portugal
| | - Lars E. T. Jansen
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Deng C, Ya A, Compton DA, Godek KM. A pluripotent developmental state confers a low fidelity of chromosome segregation. Stem Cell Reports 2023; 18:475-488. [PMID: 36638786 PMCID: PMC9968987 DOI: 10.1016/j.stemcr.2022.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 01/13/2023] Open
Abstract
During in vitro propagation, human pluripotent stem cells (hPSCs) frequently become aneuploid with incorrect chromosome numbers due to mitotic chromosome segregation errors. Yet, it is not understood why hPSCs exhibit a low mitotic fidelity. Here, we investigate the mechanisms responsible for mitotic errors in hPSCs and show that the primary cause is lagging chromosomes in anaphase with improper merotelic microtubule attachments. Accordingly, short-term treatment (<24 h) with small molecules that prolong mitotic duration or destabilize chromosome microtubule attachments reduces merotelic errors and lagging chromosome rates, although hPSCs adapt and lagging chromosome rates rebound upon long-term (>24 h) microtubule destabilization. Strikingly, we also demonstrate that mitotic error rates correlate with developmental potential decreasing or increasing upon loss or gain of pluripotency, respectively. Thus, a low mitotic fidelity is an inherent and conserved phenotype of hPSCs. Moreover, chromosome segregation fidelity depends on developmental state in normal human cells.
Collapse
Affiliation(s)
- Chenhui Deng
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Amanda Ya
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Duane A Compton
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Kristina M Godek
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| |
Collapse
|
5
|
Carty BL, Dattoli AA, Dunleavy EM. CENP-C functions in centromere assembly, the maintenance of CENP-A asymmetry and epigenetic age in Drosophila germline stem cells. PLoS Genet 2021; 17:e1009247. [PMID: 34014920 PMCID: PMC8136707 DOI: 10.1371/journal.pgen.1009247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/16/2021] [Indexed: 01/08/2023] Open
Abstract
Germline stem cells divide asymmetrically to produce one new daughter stem cell and one daughter cell that will subsequently undergo meiosis and differentiate to generate the mature gamete. The silent sister hypothesis proposes that in asymmetric divisions, the selective inheritance of sister chromatids carrying specific epigenetic marks between stem and daughter cells impacts cell fate. To facilitate this selective inheritance, the hypothesis specifically proposes that the centromeric region of each sister chromatid is distinct. In Drosophila germ line stem cells (GSCs), it has recently been shown that the centromeric histone CENP-A (called CID in flies)—the epigenetic determinant of centromere identity—is asymmetrically distributed between sister chromatids. In these cells, CID deposition occurs in G2 phase such that sister chromatids destined to end up in the stem cell harbour more CENP-A, assemble more kinetochore proteins and capture more spindle microtubules. These results suggest a potential mechanism of ‘mitotic drive’ that might bias chromosome segregation. Here we report that the inner kinetochore protein CENP-C, is required for the assembly of CID in G2 phase in GSCs. Moreover, CENP-C is required to maintain a normal asymmetric distribution of CID between stem and daughter cells. In addition, we find that CID is lost from centromeres in aged GSCs and that a reduction in CENP-C accelerates this loss. Finally, we show that CENP-C depletion in GSCs disrupts the balance of stem and daughter cells in the ovary, shifting GSCs toward a self-renewal tendency. Ultimately, we provide evidence that centromere assembly and maintenance via CENP-C is required to sustain asymmetric divisions in female Drosophila GSCs. Stem cells can divide in an asymmetric fashion giving rise to two daughter cells with different fates. One daughter remains a stem cell, while the other can differentiate and adopt a new cell fate. Germline stem cells in the testes and ovaries give rise to differentiating daughter cells that eventually form the gametes, eggs and sperm. Here we investigate mechanisms controlling germline stem cell divisions occurring in the ovary of the fruit fly Drosophila melanogaster. Centromeres are epigenetically specified loci on chromosomes that make essential connections to the cell division machinery. Our study is focused on the centromere component CENP-C. We show that CENP-C is critical for the correct assembly of centromeres that occurs prior to cell division in germline stem cells. In addition, we find that CENP-C is asymmetrically distributed between stem and daughter cells, with more CENP-C at stem cell centromeres. Finally, we show that CENP-C depletion in germline stem cells disrupts the balance of stem and daughter cells in the developing ovary, impacting on cell fate. Taken together, we propose that CENP-C level and function at centromeres plays an important role in determining cell fate upon asymmetric division occurring in stem cells.
Collapse
Affiliation(s)
- Ben L. Carty
- Centre for Chromosome Biology, Biomedical Sciences, National University of Ireland Galway, Galway, Ireland
| | - Anna A. Dattoli
- Centre for Chromosome Biology, Biomedical Sciences, National University of Ireland Galway, Galway, Ireland
| | - Elaine M. Dunleavy
- Centre for Chromosome Biology, Biomedical Sciences, National University of Ireland Galway, Galway, Ireland
- * E-mail:
| |
Collapse
|
6
|
Jeffery D, Gatto A, Podsypanina K, Renaud-Pageot C, Ponce Landete R, Bonneville L, Dumont M, Fachinetti D, Almouzni G. CENP-A overexpression promotes distinct fates in human cells, depending on p53 status. Commun Biol 2021; 4:417. [PMID: 33772115 PMCID: PMC7997993 DOI: 10.1038/s42003-021-01941-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
Tumour evolution is driven by both genetic and epigenetic changes. CENP-A, the centromeric histone H3 variant, is an epigenetic mark that directly perturbs genetic stability and chromatin when overexpressed. Although CENP-A overexpression is a common feature of many cancers, how this impacts cell fate and response to therapy remains unclear. Here, we established a tunable system of inducible and reversible CENP-A overexpression combined with a switch in p53 status in human cell lines. Through clonogenic survival assays, single-cell RNA-sequencing and cell trajectory analysis, we uncover the tumour suppressor p53 as a key determinant of how CENP-A impacts cell state, cell identity and therapeutic response. If p53 is functional, CENP-A overexpression promotes senescence and radiosensitivity. Surprisingly, when we inactivate p53, CENP-A overexpression instead promotes epithelial-mesenchymal transition, an essential process in mammalian development but also a precursor for tumour cell invasion and metastasis. Thus, we uncover an unanticipated function of CENP-A overexpression to promote cell fate reprogramming, with important implications for development and tumour evolution.
Collapse
Grants
- Ligue Contre le Cancer
- Agence Nationale de la Recherche (French National Research Agency)
- Université de Recherche Paris Sciences et Lettres (PSL Research University)
- Centre National de la Recherche Scientifique (National Center for Scientific Research)
- Institut Curie
- AG, CRP, DJ, KP, LB, RPL and GA were supported by la Ligue Nationale contre le Cancer (Equipe labellisée Ligue), Labex DEEP (ANR-11-LABX-0044_DEEP, ANR-10-IDEX-0001-02), PSL, ERC-2015-ADG-694694 ChromADICT and ANR-16-CE12-0024 CHIFT. Funding for RPL provided by Horizon 2020 Marie Skłodowska-Curie Actions Initial Training Network “EpiSyStem” (grant number 765966). Individual funding was also provided to DJ from la Fondation ARC pour la recherche sur le cancer (“Aides individuelles” 3 years, post-doc), and to AG from the Horizon 2020 Framework Programme for Research and Innovation (H2020 Marie Skłodowska-Curie Actions grant agreement 798106 “REPLICHROM4D”). DF receives salary support from the Centre Nationale de Recherche Scientifique (CNRS). MD receives salary support from the City of Paris via Emergence(s) 2018 of DF.
Collapse
Affiliation(s)
- Daniel Jeffery
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Alberto Gatto
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Katrina Podsypanina
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Charlène Renaud-Pageot
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Rebeca Ponce Landete
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Lorraine Bonneville
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, Paris, France
| | - Marie Dumont
- Institut Curie, PSL Research University, Centre de Recherche, Sorbonne Université, Cell Biology and Cancer Unit, Paris, France
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, Centre de Recherche, Sorbonne Université, Cell Biology and Cancer Unit, Paris, France
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, Equipe Labellisée Ligue contre le Cancer, Paris, France.
| |
Collapse
|
7
|
Melters DP, Dalal Y. Nano-Surveillance: Tracking Individual Molecules in a Sea of Chromatin. J Mol Biol 2020; 433:166720. [PMID: 33221335 PMCID: PMC8770095 DOI: 10.1016/j.jmb.2020.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 01/12/2023]
Abstract
Chromatin is the epigenomic platform for diverse nuclear processes such as DNA repair, replication, transcription, telomere, and centromere function. In cancer cells, mutations in key processes result in DNA amplification, chromosome translocations, and chromothripsis, severely distorting the natural chromatin state. In normal and diseased states, dozens of chromatin effectors alter the physical integrity and dynamics of chromatin at the level of both single nucleosomes and arrays of nucleosomes folded into 3-dimensional shapes. Integrating these length scales, from the 10 nm sized nucleosome to mitotic chromosomes, whilst jostling within the crowded environment of the cell, cannot yet be achieved by a single technology. In this review, we discuss tools that have proven powerful in the investigation of nucleosome and chromatin fiber dynamics. We also provide a deeper focus into atomic force microscopy (AFM) applications that can bridge diverse length and time scales. Using time course AFM, we observe that chromatin condensation by H1.5 is dynamic, whereas using nano-indentation force spectroscopy we observe that both histone variants and nucleosome binding partners alter material properties of individual nucleosomes. Finally, we demonstrate how high-speed AFM can visualize plasmid DNA dynamics, intermittent nucleosome-nucleosome contacts, and changes in nucleosome phasing along a contiguous chromatin fiber. Altogether, the development of innovative technologies holds the promise of revealing the secret lives of nucleosomes, potentially bridging the gaps in our understanding of how chromatin works within living cells and tissues.
Collapse
Affiliation(s)
- Daniël P Melters
- National Cancer Institute, Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, Bethesda, MD, United States.
| | - Yamini Dalal
- National Cancer Institute, Center for Cancer Research, Laboratory of Receptor Biology and Gene Expression, Bethesda, MD, United States.
| |
Collapse
|