1
|
Zheng A, Vermeulen BJA, Würtz M, Neuner A, Lübbehusen N, Mayer MP, Schiebel E, Pfeffer S. Structural insights into the interplay between microtubule polymerases, γ-tubulin complexes and their receptors. Nat Commun 2025; 16:402. [PMID: 39757296 DOI: 10.1038/s41467-024-55778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/24/2024] [Indexed: 01/07/2025] Open
Abstract
The γ-tubulin ring complex (γ-TuRC) is a structural template for controlled nucleation of microtubules from α/β-tubulin heterodimers. At the cytoplasmic side of the yeast spindle pole body, the CM1-containing receptor protein Spc72 promotes γ-TuRC assembly from seven γ-tubulin small complexes (γ-TuSCs) and recruits the microtubule polymerase Stu2, yet their molecular interplay remains unclear. Here, we determine the cryo-EM structure of the Candida albicans cytoplasmic nucleation unit at 3.6 Å resolution, revealing how the γ-TuRC is assembled and conformationally primed for microtubule nucleation by the dimerised Spc72 CM1 motif. Two coiled-coil regions of Spc72 interact with the conserved C-terminal α-helix of Stu2 and thereby position the α/β-tubulin-binding TOG domains of Stu2 in the vicinity of the microtubule assembly site. Collectively, we reveal the function of CM1 motifs in γ-TuSC oligomerisation and the recruitment of microtubule polymerases to the γ-TuRC.
Collapse
Affiliation(s)
- Anjun Zheng
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Bram J A Vermeulen
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Martin Würtz
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Heidelberg Meyerhofstraße 1, Heidelberg, Germany
| | - Annett Neuner
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Nicole Lübbehusen
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Matthias P Mayer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany.
| | - Stefan Pfeffer
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Heidelberg, Germany.
| |
Collapse
|
2
|
Mammri L, Conduit PT. Cryo-EM structures of γ-TuRC reveal molecular insights into microtubule nucleation. Nat Struct Mol Biol 2024; 31:1004-1006. [PMID: 38956170 DOI: 10.1038/s41594-024-01345-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Affiliation(s)
- Léa Mammri
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Paul T Conduit
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France.
| |
Collapse
|
3
|
Dendooven T, Yatskevich S, Burt A, Chen ZA, Bellini D, Rappsilber J, Kilmartin JV, Barford D. Structure of the native γ-tubulin ring complex capping spindle microtubules. Nat Struct Mol Biol 2024; 31:1134-1144. [PMID: 38609662 PMCID: PMC11257966 DOI: 10.1038/s41594-024-01281-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Microtubule (MT) filaments, composed of α/β-tubulin dimers, are fundamental to cellular architecture, function and organismal development. They are nucleated from MT organizing centers by the evolutionarily conserved γ-tubulin ring complex (γTuRC). However, the molecular mechanism of nucleation remains elusive. Here we used cryo-electron tomography to determine the structure of the native γTuRC capping the minus end of a MT in the context of enriched budding yeast spindles. In our structure, γTuRC presents a ring of γ-tubulin subunits to seed nucleation of exclusively 13-protofilament MTs, adopting an active closed conformation to function as a perfect geometric template for MT nucleation. Our cryo-electron tomography reconstruction revealed that a coiled-coil protein staples the first row of α/β-tubulin of the MT to alternating positions along the γ-tubulin ring of γTuRC. This positioning of α/β-tubulin onto γTuRC suggests a role for the coiled-coil protein in augmenting γTuRC-mediated MT nucleation. Based on our results, we describe a molecular model for budding yeast γTuRC activation and MT nucleation.
Collapse
Affiliation(s)
| | - Stanislau Yatskevich
- MRC Laboratory of Molecular Biology, Cambridge, UK.
- Genentech, South San Francisco, CA, USA.
| | - Alister Burt
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Genentech, South San Francisco, CA, USA
| | - Zhuo A Chen
- Technische Universität Berlin, Chair of Bioanalytics, Berlin, Germany
| | - Dom Bellini
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Juri Rappsilber
- Technische Universität Berlin, Chair of Bioanalytics, Berlin, Germany
- Si-M/'Der Simulierte Mensch', Technische Universität Berlin and Charité, Universitätsmedizin Berlin, Berlin, Germany
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
4
|
Vermeulen BJ, Böhler A, Gao Q, Neuner A, Župa E, Chu Z, Würtz M, Jäkle U, Gruss OJ, Pfeffer S, Schiebel E. γ-TuRC asymmetry induces local protofilament mismatch at the RanGTP-stimulated microtubule minus end. EMBO J 2024; 43:2062-2085. [PMID: 38600243 PMCID: PMC11099078 DOI: 10.1038/s44318-024-00087-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
The γ-tubulin ring complex (γ-TuRC) is a structural template for de novo microtubule assembly from α/β-tubulin units. The isolated vertebrate γ-TuRC assumes an asymmetric, open structure deviating from microtubule geometry, suggesting that γ-TuRC closure may underlie regulation of microtubule nucleation. Here, we isolate native γ-TuRC-capped microtubules from Xenopus laevis egg extract nucleated through the RanGTP-induced pathway for spindle assembly and determine their cryo-EM structure. Intriguingly, the microtubule minus end-bound γ-TuRC is only partially closed and consequently, the emanating microtubule is locally misaligned with the γ-TuRC and asymmetric. In the partially closed conformation of the γ-TuRC, the actin-containing lumenal bridge is locally destabilised, suggesting lumenal bridge modulation in microtubule nucleation. The microtubule-binding protein CAMSAP2 specifically binds the minus end of γ-TuRC-capped microtubules, indicating that the asymmetric minus end structure may underlie recruitment of microtubule-modulating factors for γ-TuRC release. Collectively, we reveal a surprisingly asymmetric microtubule minus end protofilament organisation diverging from the regular microtubule structure, with direct implications for the kinetics and regulation of nucleation and subsequent modulation of microtubules during spindle assembly.
Collapse
Affiliation(s)
- Bram Ja Vermeulen
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Anna Böhler
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Qi Gao
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Annett Neuner
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Erik Župa
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Zhenzhen Chu
- Institut für Genetik, Universität Bonn, Bonn, Germany
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education, Beijing), Lymphoma Department, Peking University Cancer Hospital & Institute, Beijing, China
| | - Martin Würtz
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Ursula Jäkle
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | | | - Stefan Pfeffer
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany.
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany.
| |
Collapse
|
5
|
Rai D, Song Y, Hua S, Stecker K, Monster JL, Yin V, Stucchi R, Xu Y, Zhang Y, Chen F, Katrukha EA, Altelaar M, Heck AJR, Wieczorek M, Jiang K, Akhmanova A. CAMSAPs and nucleation-promoting factors control microtubule release from γ-TuRC. Nat Cell Biol 2024; 26:404-420. [PMID: 38424271 PMCID: PMC10940162 DOI: 10.1038/s41556-024-01366-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
γ-Tubulin ring complex (γ-TuRC) is the major microtubule-nucleating factor. After nucleation, microtubules can be released from γ-TuRC and stabilized by other proteins, such as CAMSAPs, but the biochemical cross-talk between minus-end regulation pathways is poorly understood. Here we reconstituted this process in vitro using purified components. We found that all CAMSAPs could bind to the minus ends of γ-TuRC-attached microtubules. CAMSAP2 and CAMSAP3, which decorate and stabilize growing minus ends but not the minus-end tracking protein CAMSAP1, induced microtubule release from γ-TuRC. CDK5RAP2, a γ-TuRC-interactor, and CLASP2, a regulator of microtubule growth, strongly stimulated γ-TuRC-dependent microtubule nucleation, but only CDK5RAP2 suppressed CAMSAP binding to γ-TuRC-anchored minus ends and their release. CDK5RAP2 also improved selectivity of γ-tubulin-containing complexes for 13- rather than 14-protofilament microtubules in microtubule-capping assays. Knockout and overexpression experiments in cells showed that CDK5RAP2 inhibits the formation of CAMSAP2-bound microtubules detached from the microtubule-organizing centre. We conclude that CAMSAPs can release newly nucleated microtubules from γ-TuRC, whereas nucleation-promoting factors can differentially regulate this process.
Collapse
Affiliation(s)
- Dipti Rai
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Yinlong Song
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Shasha Hua
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Kelly Stecker
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Jooske L Monster
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Victor Yin
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Riccardo Stucchi
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Yixin Xu
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zürich, Zurich, Switzerland
| | - Yaqian Zhang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Fangrui Chen
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Eugene A Katrukha
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences and the Netherlands Proteomics Center, Utrecht University, Utrecht, the Netherlands
- Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Michal Wieczorek
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zürich, Zurich, Switzerland
| | - Kai Jiang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Medical Research Institute, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
6
|
Berman AY, Wieczorek M, Aher A, Olinares PDB, Chait BT, Kapoor TM. A nucleotide binding-independent role for γ-tubulin in microtubule capping and cell division. J Cell Biol 2023; 222:213828. [PMID: 36695784 PMCID: PMC9930161 DOI: 10.1083/jcb.202204102] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/20/2022] [Accepted: 12/22/2022] [Indexed: 01/26/2023] Open
Abstract
The γ-tubulin ring complex (γ-TuRC) has essential roles in centrosomal and non-centrosomal microtubule organization during vertebrate mitosis. While there have been important advances in understanding γ-TuRC-dependent microtubule nucleation, γ-TuRC capping of microtubule minus-ends remains poorly characterized. Here, we utilized biochemical reconstitutions and cellular assays to characterize the human γ-TuRC's capping activity. Single filament assays showed that the γ-TuRC remained associated with a nucleated microtubule for tens of minutes. In contrast, caps at dynamic microtubule minus-ends displayed lifetimes of ∼1 min. Reconstituted γ-TuRCs with nucleotide-binding deficient γ-tubulin (γ-tubulinΔGTP) formed ring-shaped complexes that did not nucleate microtubules but capped microtubule minus-ends with lifetimes similar to those measured for wild-type complexes. In dividing cells, microtubule regrowth assays revealed that while knockdown of γ-tubulin suppressed non-centrosomal microtubule formation, add-back of γ-tubulinΔGTP could substantially restore this process. Our results suggest that γ-TuRC capping is a nucleotide-binding-independent activity that plays a role in non-centrosomal microtubule organization during cell division.
Collapse
Affiliation(s)
- Adi Y. Berman
- https://ror.org/0420db125Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA,Tri-Institutional PhD Program in Chemical Biology, The Rockefeller University, New York, NY, USA
| | - Michal Wieczorek
- https://ror.org/0420db125Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
| | - Amol Aher
- https://ror.org/0420db125Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
| | - Paul Dominic B. Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Brian T. Chait
- Tri-Institutional PhD Program in Chemical Biology, The Rockefeller University, New York, NY, USA,Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Tarun M. Kapoor
- https://ror.org/0420db125Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA,Tri-Institutional PhD Program in Chemical Biology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
7
|
The augmin complex architecture reveals structural insights into microtubule branching. Nat Commun 2022; 13:5635. [PMID: 36163468 PMCID: PMC9512787 DOI: 10.1038/s41467-022-33228-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
In mitosis, the augmin complex binds to spindle microtubules to recruit the γ-tubulin ring complex (γ-TuRC), the principal microtubule nucleator, for the formation of branched microtubules. Our understanding of augmin-mediated microtubule branching is hampered by the lack of structural information on the augmin complex. Here, we elucidate the molecular architecture and conformational plasticity of the augmin complex using an integrative structural biology approach. The elongated structure of the augmin complex is characterised by extensive coiled-coil segments and comprises two structural elements with distinct but complementary functions in γ-TuRC and microtubule binding, linked by a flexible hinge. The augmin complex is recruited to microtubules via a composite microtubule binding site comprising a positively charged unordered extension and two calponin homology domains. Our study provides the structural basis for augmin function in branched microtubule formation, decisively fostering our understanding of spindle formation in mitosis. The formation of branched microtubule networks in mitotic spindles depends on the augmin complex. Zupa, Würtz et al. elucidate the molecular architecture and conformational plasticity of the augmin complex using integrative structural biology, providing structural insights into microtubule branching.
Collapse
|
8
|
Real-Time Imaging of Single γTuRC-Mediated Microtubule Nucleation Events In Vitro by TIRF Microscopy. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2430:315-336. [PMID: 35476342 DOI: 10.1007/978-1-0716-1983-4_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The γ-tubulin ring complex (γTuRC) is the major microtubule nucleator in cells. How γTuRC nucleates microtubules, and how nucleation is regulated is not understood. To gain an understanding of γTuRC activity and regulation at the molecular level, it is important to measure quantitatively how γTuRC interacts with tubulin and potential regulators in space and time. Here, we describe a total internal reflection fluorescence microscopy-based assay on chemically functionalized glass slides for the in vitro study of surface immobilized purified γTuRC. The assay allows to measure microtubule nucleation by γTuRC in real time and at a single molecule level over a wide variety of assay conditions, in the absence and presence of potential regulators. This setup provides a previously unavailable opportunity for quantitative studies of the kinetics of microtubule nucleation by γTuRC.
Collapse
|
9
|
Würtz M, Zupa E, Atorino ES, Neuner A, Böhler A, Rahadian AS, Vermeulen BJA, Tonon G, Eustermann S, Schiebel E, Pfeffer S. Modular assembly of the principal microtubule nucleator γ-TuRC. Nat Commun 2022; 13:473. [PMID: 35078983 PMCID: PMC8789826 DOI: 10.1038/s41467-022-28079-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 01/07/2022] [Indexed: 12/15/2022] Open
Abstract
AbstractThe gamma-tubulin ring complex (γ-TuRC) is the principal microtubule nucleation template in vertebrates. Recent cryo-EM reconstructions visualized the intricate quaternary structure of the γ-TuRC, containing more than thirty subunits, raising fundamental questions about γ-TuRC assembly and the role of actin as an integral part of the complex. Here, we reveal the structural mechanism underlying modular γ-TuRC assembly and identify a functional role of actin in microtubule nucleation. During γ-TuRC assembly, a GCP6-stabilized core comprising GCP2-3-4-5-4-6 is expanded by stepwise recruitment, selective stabilization and conformational locking of four pre-formed GCP2-GCP3 units. Formation of the lumenal bridge specifies incorporation of the terminal GCP2-GCP3 unit and thereby leads to closure of the γ-TuRC ring in a left-handed spiral configuration. Actin incorporation into the complex is not relevant for γ-TuRC assembly and structural integrity, but determines γ-TuRC geometry and is required for efficient microtubule nucleation and mitotic chromosome alignment in vivo.
Collapse
|
10
|
Abstract
As one of four filament types, microtubules are a core component of the cytoskeleton and are essential for cell function. Yet how microtubules are nucleated from their building blocks, the αβ-tubulin heterodimer, has remained a fundamental open question since the discovery of tubulin 50 years ago. Recent structural studies have shed light on how γ-tubulin and the γ-tubulin complex proteins (GCPs) GCP2 to GCP6 form the γ-tubulin ring complex (γ-TuRC). In parallel, functional and single-molecule studies have informed on how the γ-TuRC nucleates microtubules in real time, how this process is regulated in the cell and how it compares to other modes of nucleation. Another recent surprise has been the identification of a second essential nucleation factor, which turns out to be the well-characterized microtubule polymerase XMAP215 (also known as CKAP5, a homolog of chTOG, Stu2 and Alp14). This discovery helps to explain why the observed nucleation activity of the γ-TuRC in vitro is relatively low. Taken together, research in recent years has afforded important insight into how microtubules are made in the cell and provides a basis for an exciting era in the cytoskeleton field.
Collapse
Affiliation(s)
- Akanksha Thawani
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
11
|
Abstract
Centrioles are microtubule-based cylindrical structures that assemble the centrosome and template the formation of cilia. The proximal part of centrioles is associated with the pericentriolar material, a protein scaffold from which microtubules are nucleated. This activity is mediated by the γ-tubulin ring complex (γTuRC) whose central role in centrosomal microtubule organization has been recognized for decades. However, accumulating evidence suggests that γTuRC activity at this organelle is neither restricted to the pericentriolar material nor limited to microtubule nucleation. Instead, γTuRC is found along the entire centriole cylinder, at subdistal appendages, and inside the centriole lumen, where its canonical function as a microtubule nucleator might be supplemented or replaced by a function in microtubule anchoring and centriole stabilization, respectively. In this Opinion, we discuss recent insights into the expanded repertoire of γTuRC activities at centrioles and how distinct subpopulations of γTuRC might act in concert to ensure centrosome and cilia biogenesis and function, ultimately supporting cell proliferation, differentiation and homeostasis. We propose that the classical view of centrosomal γTuRC as a pericentriolar material-associated microtubule nucleator needs to be revised.
Collapse
Affiliation(s)
- Nina Schweizer
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Jens Lüders
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain
| |
Collapse
|
12
|
Böhler A, Vermeulen BJA, Würtz M, Zupa E, Pfeffer S, Schiebel E. The gamma-tubulin ring complex: Deciphering the molecular organization and assembly mechanism of a major vertebrate microtubule nucleator. Bioessays 2021; 43:e2100114. [PMID: 34160844 DOI: 10.1002/bies.202100114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 11/10/2022]
Abstract
Microtubules are protein cylinders with functions in cell motility, signal sensing, cell organization, intracellular transport, and chromosome segregation. One of the key properties of microtubules is their dynamic architecture, allowing them to grow and shrink in length by adding or removing copies of their basic subunit, the heterodimer αβ-tubulin. In higher eukaryotes, de novo assembly of microtubules from αβ-tubulin is initiated by a 2 MDa multi-subunit complex, the gamma-tubulin ring complex (γ-TuRC). For many years, the structure of the γ-TuRC and the function of its subunits remained enigmatic, although structural data from the much simpler yeast counterpart, the γ-tubulin small complex (γ-TuSC), were available. Two recent breakthroughs in the field, high-resolution structural analysis and recombinant reconstitution of the complex, have revolutionized our knowledge about the architecture and function of the γ-TuRC and will form the basis for addressing outstanding questions about biogenesis and regulation of this essential microtubule organizer.
Collapse
Affiliation(s)
- Anna Böhler
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Bram J A Vermeulen
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Martin Würtz
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Erik Zupa
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Stefan Pfeffer
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany
| |
Collapse
|
13
|
Tovey CA, Tsuji C, Egerton A, Bernard F, Guichet A, de la Roche M, Conduit PT. Autoinhibition of Cnn binding to γ-TuRCs prevents ectopic microtubule nucleation and cell division defects. J Cell Biol 2021; 220:212197. [PMID: 34042945 PMCID: PMC8164090 DOI: 10.1083/jcb.202010020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/25/2021] [Accepted: 05/05/2021] [Indexed: 12/22/2022] Open
Abstract
γ-Tubulin ring complexes (γ-TuRCs) nucleate microtubules. They are recruited to centrosomes in dividing cells via binding to N-terminal CM1 domains within γ-TuRC–tethering proteins, including Drosophila Centrosomin (Cnn). Binding promotes microtubule nucleation and is restricted to centrosomes in dividing cells, but the mechanism regulating binding remains unknown. Here, we identify an extreme N-terminal CM1 autoinhibition (CAI) domain found specifically within the centrosomal isoform of Cnn (Cnn-C) that inhibits γ-TuRC binding. Robust binding occurs after removal of the CAI domain or with the addition of phosphomimetic mutations, suggesting that phosphorylation helps relieve inhibition. We show that regulation of Cnn binding to γ-TuRCs is isoform specific and that misregulation of binding can result in ectopic cytosolic microtubules and major defects during cell division. We also find that human CDK5RAP2 is autoinhibited from binding γ-TuRCs, suggesting conservation across species. Overall, our results shed light on how and why CM1 domain binding to γ-TuRCs is regulated.
Collapse
Affiliation(s)
- Corinne A Tovey
- Department of Zoology, University of Cambridge, Cambridge, UK.,Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, Paris, France
| | - Chisato Tsuji
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Alice Egerton
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Fred Bernard
- Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, Paris, France
| | - Antoine Guichet
- Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, Paris, France
| | - Marc de la Roche
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Paul T Conduit
- Department of Zoology, University of Cambridge, Cambridge, UK.,Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, Paris, France
| |
Collapse
|