1
|
Flipphi M, Márton A, Bíró V, Ág N, Sándor E, Fekete E, Karaffa L. Generation, Transfer, and Loss of Alternative Oxidase Paralogues in the Aspergillaceae Family. J Fungi (Basel) 2023; 9:1195. [PMID: 38132795 PMCID: PMC10744626 DOI: 10.3390/jof9121195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Alternative oxidase (Aox) is a terminal oxidase operating in branched electron transport. The activity correlates positively with overflow metabolisms in certain Aspergilli, converting intracellular glucose by the shortest possible path into organic acids, like citrate or itaconate. Aox is nearly ubiquitous in fungi, but aox gene multiplicity is rare. Nevertheless, within the family of the Aspergillaceae and among its various species of industrial relevance-Aspergillus niger, A. oryzae, A. terreus, Penicillium rubens-paralogous aox genes coexist. Paralogous genes generally arise from duplication and are inherited vertically. Here, we provide evidence of four independent duplication events along the lineage that resulted in aox paralogues (aoxB) in contemporary Aspergillus and Penicillium taxa. In some species, three aox genes are co-expressed. The origin of the A. niger paralogue is different than that of the A. terreus paralogue, but all paralogous clades ultimately arise from ubiquitous aoxA parent genes. We found different patterns of uncorrelated gene losses reflected in the Aspergillus pedigree, albeit the original aoxA orthologues persist everywhere and are never replaced. The loss of acquired paralogues co-determines the contemporary aox gene content of individual species. In Aspergillus calidoustus, the two more ancient paralogues have, in effect, been replaced by two aoxB genes of distinct origins.
Collapse
Affiliation(s)
- Michel Flipphi
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary; (M.F.); (A.M.); (V.B.); (N.Á.); (L.K.)
| | - Alexandra Márton
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary; (M.F.); (A.M.); (V.B.); (N.Á.); (L.K.)
- Juhász-Nagy Pál Doctoral School of Biology and Environmental Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Vivien Bíró
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary; (M.F.); (A.M.); (V.B.); (N.Á.); (L.K.)
- Juhász-Nagy Pál Doctoral School of Biology and Environmental Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Norbert Ág
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary; (M.F.); (A.M.); (V.B.); (N.Á.); (L.K.)
| | - Erzsébet Sándor
- Institute of Food Science, Faculty of Agricultural and Food Science and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Erzsébet Fekete
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary; (M.F.); (A.M.); (V.B.); (N.Á.); (L.K.)
| | - Levente Karaffa
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary; (M.F.); (A.M.); (V.B.); (N.Á.); (L.K.)
| |
Collapse
|
2
|
Kerkaert JD, Huberman LB. Regulation of nutrient utilization in filamentous fungi. Appl Microbiol Biotechnol 2023; 107:5873-5898. [PMID: 37540250 PMCID: PMC10983054 DOI: 10.1007/s00253-023-12680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023]
Abstract
Organisms must accurately sense and respond to nutrients to survive. In filamentous fungi, accurate nutrient sensing is important in the establishment of fungal colonies and in continued, rapid growth for the exploitation of environmental resources. To ensure efficient nutrient utilization, fungi have evolved a combination of activating and repressing genetic networks to tightly regulate metabolic pathways and distinguish between preferred nutrients, which require minimal energy and resources to utilize, and nonpreferred nutrients, which have more energy-intensive catabolic requirements. Genes necessary for the utilization of nonpreferred carbon sources are activated by transcription factors that respond to the presence of the specific nutrient and repressed by transcription factors that respond to the presence of preferred carbohydrates. Utilization of nonpreferred nitrogen sources generally requires two transcription factors. Pathway-specific transcription factors respond to the presence of a specific nonpreferred nitrogen source, while another transcription factor activates genes in the absence of preferred nitrogen sources. In this review, we discuss the roles of transcription factors and upstream regulatory genes that respond to preferred and nonpreferred carbon and nitrogen sources and their roles in regulating carbon and nitrogen catabolism. KEY POINTS: • Interplay of activating and repressing transcriptional networks regulates catabolism. • Nutrient-specific activating transcriptional pathways provide metabolic specificity. • Repressing regulatory systems differentiate nutrients in mixed nutrient environments.
Collapse
Affiliation(s)
- Joshua D Kerkaert
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Lori B Huberman
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
3
|
Bokor E, Ámon J, Varga M, Szekeres A, Hegedűs Z, Jakusch T, Szakonyi Z, Flipphi M, Vágvölgyi C, Gácser A, Scazzocchio C, Hamari Z. A complete nicotinate degradation pathway in the microbial eukaryote Aspergillus nidulans. Commun Biol 2022; 5:723. [PMID: 35864155 PMCID: PMC9304392 DOI: 10.1038/s42003-022-03684-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Several strikingly different aerobic and anaerobic pathways of nicotinate breakdown are extant in bacteria. Here, through reverse genetics and analytical techniques we elucidated in Aspergillus nidulans, a complete eukaryotic nicotinate utilization pathway. The pathway extant in this fungus and other ascomycetes, is quite different from bacterial ones. All intermediate metabolites were identified. The cognate proteins, encoded by eleven genes (hxn) mapping in three clusters are co-regulated by a specific transcription factor. Several enzymatic steps have no prokaryotic equivalent and two metabolites, 3-hydroxypiperidine-2,6-dione and 5,6-dihydroxypiperidine-2-one, have not been identified previously in any organism, the latter being a novel chemical compound. Hydrolytic ring opening results in α-hydroxyglutaramate, a compound not detected in analogous prokaryotic pathways. Our earlier phylogenetic analysis of Hxn proteins together with this complete biochemical pathway illustrates convergent evolution of catabolic pathways between fungi and bacteria.
Collapse
Affiliation(s)
- Eszter Bokor
- University of Szeged Faculty of Science and Informatics, Department of Microbiology, Szeged, Hungary
| | - Judit Ámon
- University of Szeged Faculty of Science and Informatics, Department of Microbiology, Szeged, Hungary
| | - Mónika Varga
- University of Szeged Faculty of Science and Informatics, Department of Microbiology, Szeged, Hungary
| | - András Szekeres
- University of Szeged Faculty of Science and Informatics, Department of Microbiology, Szeged, Hungary
| | - Zsófia Hegedűs
- University of Szeged Faculty of Science and Informatics, Department of Microbiology, Szeged, Hungary
| | - Tamás Jakusch
- University of Szeged Faculty of Science and Informatics, Department of Inorganic and Analytical Chemistry, Szeged, Hungary
| | - Zsolt Szakonyi
- University of Szeged Faculty of Pharmacy, Institute of Pharmaceutical Chemistry, Szeged, Hungary
| | - Michel Flipphi
- Institute de Génétique et Microbiologie, Université Paris-Sud, Orsay, France
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Csaba Vágvölgyi
- University of Szeged Faculty of Science and Informatics, Department of Microbiology, Szeged, Hungary
| | - Attila Gácser
- HCEMM-USZ Fungal Pathogens Research Group, University of Szeged Faculty of Science and Informatics, Department of Microbiology, Szeged, Hungary
- MTA-SZTE "Lendület" Mycobiome Research Group, University of Szeged, Szeged, Hungary
| | - Claudio Scazzocchio
- Section of Microbiology, Department of Infectious Diseases, Imperial College, London, United Kingdom.
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Zsuzsanna Hamari
- University of Szeged Faculty of Science and Informatics, Department of Microbiology, Szeged, Hungary.
| |
Collapse
|
4
|
Papazlatani CV, Karas PA, Lampronikou E, Karpouzas DG. Using biobeds for the treatment of fungicide-contaminated effluents from various agro-food processing industries: Microbiome responses and mobile genetic element dynamics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153744. [PMID: 35149062 DOI: 10.1016/j.scitotenv.2022.153744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Agro-food processing industries generate large amounts of pesticide-contaminated effluents that pose a significant environmental threat if managed improperly. Biopurification systems like biobeds could be utilized for the depuration of these effluents although direct evidence for their efficiency are still lacking. We employed a column leaching experiment with pilot biobeds to (i) assess the depuration potential of biobeds against fungicide-contaminated effluents from seed-producing (carboxin, metalaxyl-M, fluxapyroxad), bulb-handling (thiabendazole, fludioxonil and chlorothalonil) and fruit-packaging (fludioxonil, imazalil) industries, (ii) to monitor microbial succession via amplicon sequencing and (iii) to determine the presence and dynamics of mobile genetic elements like intl1, IS1071, IncP-1 and IncP-1ε often associated with the transposition of pesticide-degrading genes. Biobeds could effectively retain (adsorbed but extractable with organic solvents) and dissipate (degraded and/or not extractable with organic solvents) the fungicides that were contained in the agro-industrial effluents with 93.1-99.98% removal efficiency in all cases. Lipophilic substances like fluxapyroxad were mostly retained in the biobed while more polar substances like metalaxyl-M and carboxin were mostly dissipated or showed higher leaching potential like metalaxyl-M. Biobeds supported a bacterial and fungal community that was not affected by fungicide application but showed clear temporal patterns in the different biobed horizons. This was most probably driven by the establishment of microaerophilic conditions upon water saturation of biobeds, as supported by the significant increase in the abundance of facultative or strict anaerobes like Chloroflexi/Anaerolinae, Acidibacter and Myxococcota. Wastewater application did not affect the dynamics of mobile genetic elements in biobeds whose abundance (intl1, IS1071, IncP-1ε) showed significant increases with time. Our findings suggest that biobeds could effectively decontaminate fungicide-contaminated effluents produced by agro-food industries and support a rather resilient microbial community.
Collapse
Affiliation(s)
- Christina V Papazlatani
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500 Larissa, Greece
| | - Panagiotis A Karas
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500 Larissa, Greece
| | - Eleni Lampronikou
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500 Larissa, Greece
| | - Dimitrios G Karpouzas
- University of Thessaly, Department of Biochemistry and Biotechnology, Laboratory of Plant and Environmental Biotechnology, Viopolis, 41500 Larissa, Greece.
| |
Collapse
|
5
|
Bokor E, Flipphi M, Kocsubé S, Ámon J, Vágvölgyi C, Scazzocchio C, Hamari Z. Genome organization and evolution of a eukaryotic nicotinate co-inducible pathway. Open Biol 2021; 11:210099. [PMID: 34582709 PMCID: PMC8478523 DOI: 10.1098/rsob.210099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In Aspergillus nidulans a regulon including 11 hxn genes (hxnS, T, R, P, Y, Z, X, W, V, M and N) is inducible by a nicotinate metabolic derivative, repressible by ammonium and under stringent control of the nitrogen-state-sensitive GATA factor AreA and the specific transcription factor HxnR. This is the first report in a eukaryote of the genomic organization of a possibly complete pathway of nicotinate utilization. In A. nidulans the regulon is organized in three distinct clusters, this organization is variable in the Ascomycota. In some Pezizomycotina species all 11 genes map in a single cluster; in others they map in two clusters. This variable organization sheds light on cluster evolution. Instances of gene duplication followed by or simultaneous with integration in the cluster, partial or total cluster loss, and horizontal gene transfer of several genes (including an example of whole cluster re-acquisition in Aspergillus of section Flavi) were detected, together with the incorporation in some clusters of genes not found in the A. nidulans co-regulated regulon, which underlie both the plasticity and the reticulate character of metabolic cluster evolution. This study provides a comprehensive phylogeny of six members of the cluster across representatives of all Ascomycota classes.
Collapse
Affiliation(s)
- Eszter Bokor
- Department of Microbiology, University of Szeged Faculty of Science and Informatics, Szeged, Hungary
| | - Michel Flipphi
- Institute de Génétique et Microbiologie, Université Paris-Sud, Orsay, France
| | - Sándor Kocsubé
- Department of Microbiology, University of Szeged Faculty of Science and Informatics, Szeged, Hungary
| | - Judit Ámon
- Department of Microbiology, University of Szeged Faculty of Science and Informatics, Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, University of Szeged Faculty of Science and Informatics, Szeged, Hungary
| | - Claudio Scazzocchio
- Department of Microbiology, Imperial College, London, UK,Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Zsuzsanna Hamari
- Department of Microbiology, University of Szeged Faculty of Science and Informatics, Szeged, Hungary
| |
Collapse
|